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Abstract 

In this paper, some new integral inequalities like Hermite-Hadamard type for functions whose third 

derivatives absolute value are 𝑙𝑜𝑔 −convex are established. Some applications to quadrature formula for 

midpoint error estimate are given. 
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1  Introduction 

 
We shall recall the definitions of convex functions 

and 𝑙𝑜𝑔 −convex functions: 

Let 𝐼 be an interval in ℝ. Then 𝑓: 𝐼 → ℝ is said to be 

convex if for all 𝑥, 𝑦 ∈ 𝐼 and all 𝛼𝜖[0,1], 

𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦) (1.1) 

holds. If (1.1) is strict for all yx   and (0,1),  

then f  is said to be strictly convex. If the 

inequality in (1.1) is reversed, then f  is said to be 

concave. If it is strict for all yx   and (0,1),  

then f  is said to be strictly concave. 

A function is called 𝑙𝑜𝑔 −convex or 

multiplicatively convex on a real interval 

],,[= baI  if 𝑙𝑜𝑔𝑓 is convex , or, equivalently if for 

all Iyx ,  and all 0,1],[  

.)(.)())(1(
)(1 




 yfxfyxf (1.2) 

It is said to be log-concave if the inequality in (1.2) 

is reversed. For some results for log convex 

functions see [1,2,3,4,5,6,7]. 

The following inequality is called Hermite-

Hadamard inequality for convex functions: 

Let 𝑓: 𝐼 → ℝ be a convex function on the interval I  

of real numbers and Iba ,  with .< ba  Then 

double inequality 
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holds. 

The main purpose of this paper is to obtain some 

new integral inequalities like Hermite-Hadamard 

type for functions whose third derivatives absolute 

value are 𝑙𝑜𝑔 −convex. 

In order to prove our main results for 𝑙𝑜𝑔 −convex 

functios we need the following Lemma from [8]: 

Lemma 1.1.  Let 𝑓: 𝐼 ⊂ ℝ → ℝ be a three times 

differentiable mapping on 


I  (the interior of 

𝐼 ) and 


Iba ,  with .< ba  If 
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In the sequel of paper, we deduce 

𝐿𝑝[𝑎, 𝑏] = {𝑓: (∫ |𝑓(𝑥)|𝑝𝑑𝑥
𝑏

𝑎

)

1
𝑝

< ∞, 1 ≤ 𝑝 < ∞} 
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where [𝑎, 𝑏] is a closed interval. 

 

2  Inequalities for log-convex functions 
We shall start the following result: 

 

Theorem 2.1.  Let ),0,[: If  be a three times 

differentiable mapping on 


I  such that 

],[
1

baLf
'''
  where ba ,  


I  with .< ba  If 

'''
f  is 𝑙𝑜𝑔 −convex on ],[ ba  , then the following 

inequality holds: 
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 In the sequel of the paper, we set 1, MK . 

 

Proof. From Lemma 1.1, property of the modulus 

and 𝑙𝑜𝑔 −convexity of 
'''

f  we have 
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The proof is completed by making use of the 

neccessary computation.  

 

Corollary 2.1.  Let K
MK

,,   and M  be defined 

as in Theorem 2.1. If we choose 0=
2
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Theorem 2.1, we obtain the following inequality 
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Theorem 2.2.  Let ),0,[: If  be a three times 

differentiable mapping on 


I  such that 

],[
1

baLf
'''
  where ba ,  


I  with .< ba  If 

'''
f  is 𝑙𝑜𝑔 −convex on ],[ ba  , then the following 

inequality holds for some fixed 1>q  
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where K and M are as in Theorem 2.1.  and 
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1.=
11

qp
  

Proof. From Lemma 1.1 and using the Hölder 

integral inequality, we obtain 
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Since  
'''

f  is 𝑙𝑜𝑔 −convex on ],[ ba  we can say 

q
'''

f  is also 𝑙𝑜𝑔 −convex on ],[ ba  . If we use the 

𝑙𝑜𝑔-convexity of 
q

'''
f  above, we can write 
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The proof is completed.  

 

Corollary 2.2.  Let K and M be defined as in 

Theorem 2.2. If we choose 0=
2
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Theorem 2.2, we obtain the following inequality 
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Theorem 2.3.  Let ),0,[: If  be a three times 

differentiable mapping on 


I  such that 

],[
1

baLf
'''
  where ba ,  


I  with .< ba  If 

'''
f  is log convex on ],[ ba . Then the 

following inequality holds for some fixed :1q  
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and K, M are as in Theorem 2.1. 

 
Proof. From Lemma 1.1, using the well-known 

power-mean integral inequality and 

𝑙𝑜𝑔 −convexity of 
q

'''
f  we have 
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The proof is completed by making use of the 

neccessary computation.  

 

Corollary 2.3.  Let 
qMqK ,,

,   be defined as in 

Theorem 2.3 and K, M be defined as in Theorem 

2.1. If we choose 0=
2
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Corollary 2.4.  From Corollaries 2.1-2.3, we have 
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and K, M are as in Theorem 2.1.   
Remark 2.1.  In Theorem 2.3 and Corollary 2.3, if 

we choose 1,=q  we obtain Theorem 2.1 and 

Corollary 2.1 respectively.  

 

3  Applications to midpoint formula 
We give some error estimates to midpoint formula 

by using the results of Section 2. Let d  be a 

division bxxxxa
nn

=<<...<<=
110 

 of the 

interval ],[ ba  and consider the formula  

),(),(=)( dfEdfMdxxf
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the midpoint version and ),( dfE  denotes the 

associated approximation error. 

 

Proposition 3.1.  Let )0,[: If  be a three 

times differentiable mapping on 


I  with 


Iba ,  



 

CBÜ F Bil. Dergi., Cilt 13, Sayı 2, s 353-358                                                                       CBU J. of Sci., Volume 13, Issue 2, p 353-358 

 

357 

such that .< ba  If 
'''

f  is 𝑙𝑜𝑔 −convex function 

with ],,[
1

baLf
'''
  then for every division d  of 

],,[ ba  the midpoint error estimate satisfies 
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Proof. By applying Corollary 2.1 on the 

subintervals ],,[
1ii

xx  1)0,1,...,=( ni  of the 

division d  we have 
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By summing over i  from 0  to 1,n  we can write 
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which completes the proof.  

 

Proposition 3.2.  Let )0,[: If  be a three 

times differentiable mapping on 


I  with 


Iba ,  

such that .< ba  If 
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11
, MK  are as defined in 

Proposition 3.1.  

 

Proof. The proof can be maintained by using 

Corollary 2.2 like Proposition 3.1.  

 

Proposition 3.3.  Let )0,[: If  be a three 

times differentiable mapping on 


I  with 


Iba ,  

such that .< ba  If 
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and 
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, MK  are as defined in Proposition 3.1.  

Proof. The proof can be maintained by using 

Corollary 2.3 like Proposition 3.1.  
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