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Abstract 

In this study,we investigate the problem of pointwise convergence at lebesgue points of f funtions for 

the family of non-linear integral operators 
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where   is a real parameter, ),(
,

txK
m

 is non-negative kernels and f  is the function in ),(
1

baL . 

We consider two cases where ),( ba  is a finite interval and when is the whole real axis. 
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1 Introduction 
In [1], the concept of singularity was extended to 

cover the case of nonlinear integral operators,  

,x,))(,(=)( GdttfxtKsfT
G

   

the assumption of linearity of the operators being 

replaced by an assumption of a Lipschitz condition 

for 
λ

K with respect to the second variable. Later, 

Swiderski and Wachnicki [2] investigated the 

problem of convergence of above the same 

operators to f  as    
00,

, swsw   where 
0

s  is an 

accumulation point of the locally compact abelian 

group G  in ),( 
p

L  and )(RL
p

. 

 

In [3] Karsli examined both the pointwise 

convergence and the rate of pointwise convergence 

of above operators on a  generalized Lebesque 

point to f ),(
1

baL  as ).,(),(
00

 xx 
 
And in 

[4] it is studied the rate of convergence of nonlinear 

integral operators for functions of bounded 

variation at a point ,x  which has a discontinuity of  

the first kinds as 
0

  . In [5] they obtained 

estimates, convergence results and rate of 

approximation for functions belonging to BV-spaces 

for a family of nonlinear integral operators of  the 

convolution type 
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in the periodic case. In paper [6], they obtained 

pointwise convergence and rate of pointwise 

convergence results at Lebesgue points for a family 

of nonlinear integral operators of the form  





 0,>0,>,))(,,(=),(

0

x
z

dz
zfzxKxfT

with  


K  is a family of kernel satisfying a 

Lipschitz condition. 

 

Karsli [7] stated some approximation theorems 

about pointwise convergence and its rate for a class 

of non-convolution type nonlinear integral 
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operators. 

 

Soon, in [8], Almali and Gadjiev proved 

convergence of exponentially nonlinear integrals in 

Lebesgue points of generated function, having 

many applications in approximation theory [9,10]. 

 

The aim of the article is to obtain pointwise 

convergence results for a family of non-linear 

operators of the form 

(1)   ),()(=),(
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where ),(, txK m  is a family of kernels depending 

on . .We study convergence of the family (1) at 

every Lebesque point of the function f  in the 

spaces of ),(1 baL  and ),(1 L  with 
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Now we give the following definition 

 

Definition 1 (Class A): We take a family  )(K  of 

functions RRXRtxK m :),(, . We will say that 

the function ),( txK


 belongs the class A, if the 

following conditions are satisfied: 

a) ),(, txK m  is a non-negative function defined for 

all t  and x  on ),( ba  and .  

b) As function of t , ),(, txK m  is non-decreasing 

on  xa,  and non-increasing on  bx,  for any fixed 

x  and  . 

c)For any fixed ,x   mm

b

a

CdttxK =),(, . 

d) m

m

C


1=

 is convergence. 

e) For 0.=),(lim,

1=

,






m
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2. Main Result 
We are going to prove the family of  non-linear 

integral operators (1) with the positive kernel 

convergence to the functions ),(1 baLf   

 

Theorem 1. Suppose that ),(1 baLf   and f  is 

bounded on ).,( ba  If non-negative the kernel mK ,  

belongs to Class A, then, for the operator ),( xfL  

which is defined in (1)  
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Proof.  For integral (1), from c), we can write 
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Now we consider ).,(
0
xI  For any fixed 0> , 

we can write ),(
0
xI  as follow. 
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Firstly we shall calculate ),,(
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By the condition b), we have 
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In the same way, we can estimate ),,(
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mxI 

.From property b) 
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On the other hand, since 
0

x  is a Lebesque point of 

,f  for every 0,>  there exists a 0>  such that 
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for all .<0 h  Now let’s define a new function as 

follows, 
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Then from (5), for 
0

xt  we have  

).()( 0xttF    

Also, since f  is bounded, there exists 0>M  such 

that  
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is satisfied. Therefore, we can estimate ),,(
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as follows.  
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We apply integration by part, then we obtain the 

following result.  
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Since mK ,  is decreasing on  bx ,0 , it is clear that 

mK ,  is increasing. Hence its differential is 

positive. Therefore, we can wirte 
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Integration by parts again, we have the following 

inequality 
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Now, we can use similar method for evaluation 

).,,( 02 mxI   Let 
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x

t
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Then, the statement  

dtxftftdG )()(=)( 0  

is satisfied. For  tx0 , by using (6), it can be 

written as follows 

txtG 
0

)(   

Hence, we get 
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By integration of parts, we have 
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From (6), we obtain  
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By using integration of parts again, we find  
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Combined (7) and (8), we get 
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From condition d), (9) tends to 0 as  . 

Finally,from (3), (4) and (9),the terms on right hand 

side of these inequalitys tend to 0 as  . That’s  
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Thus, the proof is completed.  

 

In this theorem, specially interval  ),( ba  may be 

expanded interval ),(  . In this case, we can 

give the following theorem. 

 

Theorem 2 Let ),(1  Lf  and f  is bounded. If 

non-negative the kernel mK ,  belongs to Class A and 

satisfies also the following properties , 
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),,(2 mxA   and ),,(3 mxA   integrals are 

calculated as the proof in Theorem1. For proof, it is 

sufficent to show that ),,(1 mxA   and 

),,(4 mxA   tend to zero as .  

 

Firstly, we consider ).,,(1 mxA   Since f  

is bounded and by the property b), this integration 
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In addition to, we obtain the inequality  
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According to the conditions d), (10) and (11),we find 

that 0),,(),,( 41  mxAmxA   as .

This completes the proof. 
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