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ABSTRACT 

 In this paper, a step process of semi-Markovian random walk with delaying barrier on the 

zero-level from below and 𝑎(𝑎 > 0)-level from upper is constructed mathematically and the 

Laplace transformation for the distribution function of this is given. Also, the expectation and 

standard diversion of a boundary functional of the process are given. 
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1. Introduction 

 In recent years, random walks with one or two barriers are being used to solve a 

number of very interesting problems in the fields of inventory, queues and reliability 

theories, mathematical biology etc. Many good monographs in this field exist in literature 

(see references Afanas’eva et al. 1983; Feller 1968 and etc.).  

 In particular, a number of very interesting problems of stock control, queues and 

reliability theories can be expressed by means of random walks with two barriers. These 

barriers can be reflecting, delaying, absorbing, elastic, etc., depending on concrete 

problems at hand. For instance, it is possible to express random levels of stock in a 

warehouse with finite volumes or queuning systems with finite waiting time or sojourn 

time by means of random walks with two delaying barriers. Furthermore, the functioning 

of stochastic systems with spare equipment can be given by random walks with two 

barriers, one of them is delaying and the other one is any type barrier. 

 It is known that the most of the  problems of stock control theory is often given by 

means of random walks or random walks with delaying barriers (see Afanas’eva et al. 

1983; Borovkov 1972 , etc.).  Numerous studies have been done about step processes of 
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semi-Markovian random walk with two barriers of their practical and theoretical 

importance. But in the most of these studies the distribution of the process has free 

distribution. Therefore the obtained results in this case are cumbersome and they will not 

be useful for applications (Afanas’eva et al. 1983;  Gihman 1975 and etc.). For the 

problem considered in this study, it is considered a semi-Markov random walk with two 

delaying barriers, and the process representing the quantity of the stock has been given 

by using a random walk and a renewal process. Such models were rarely considered in 

literature. The practical state of the problem mentioned above is as follows.    

 Suppose that some quantity of a stock in a certain warehouse is increasing or 

decreasing in random discrete portions depending to the demands at discrete times. Then, 

it is possible to characterize the level of stock by a process called the semi-Markovian 

random walk process. But sometimes some problems occur in stock control theory such 

that in order to get an adequate solution we have to consider some processes which are 

more complex than semi-Markovian random walk processes. For example, if the 

borrowed quantity is demanded to be added to the warehouse immediately when the 

quantity of demanded stock is more than the total quantity of stock in the warehouse then, 

it is possible to characterize the level of stock in the warehouse by a stochastic process 

called as semi-Markovian random walk processes with delaying barrier at zero-level. 

Also since the volume of warehouse is finite in real cases, the supply coming to the 

warehouse is stopped until the next demand when the warehouse becomes full. In order 

to characterize the quantity of stock in the warehouse under these conditions it is 

necessary to use a stochastic process called as semi-Markovian random walk process with 

two delaying barriers.  Note that semi-Markovian random walk processes with two 

delaying barriers, have not been considered enough in literature. This type problems may 

occur,  for example, in the control of military stocks, refinery stocks, reserve of oil wells, 

and etc.  

 

2. Construction of the Process 

 Suppose {(𝜉𝑖 , 𝜂𝑖)}, 𝑖 = 1,2,3,… is a sequence of identically and independently 

distributed pairs of random variables, defined on any probability space (𝛺, ℱ, 𝑃) such that 

𝜉𝑖’s are positive valued, i.e., 𝑃{𝜉𝑖 > 0} = 1, 𝑖 = 1,2,3,….  In addition, the random 
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variables 𝜉𝑖 and 𝜂𝑖 are mutually independent as well.  Also let us denote the distribution 

function of 𝜉1 and 𝜂1  

𝛷(𝑡) = 𝑃{𝜉1 < 𝑡}, Ϝ(𝑥) = 𝑃{𝜂1 < 𝑥}, 𝑡 ∈ ℝ
+, 𝑥 ∈ ℝ , 

respectively.  

 By using the random pairs (𝜉𝑖 , 𝜂𝑖), we can construct a step process of a semi-

Markov random walk  

 𝑋1(𝑡) = ∑ 𝜂𝑖
𝑛
𝑖=1 , if     ∑ 𝜉𝑖

𝑛−1
𝑖=0 ≤ 𝑡 < ∑ 𝜉𝑖

𝑛
𝑖=0  , 𝑛 ≥ 1 

where 𝜉0 = 0 and 𝜂0 = 𝑧 ∈ (0, 𝑎). Now, let us delay this process by a delaying barrier at 

zero level as follows: 

 𝑋2(𝑡) = 𝑋1(𝑡) − inf
0≤𝑠≤𝑡

{0,   𝑋1(𝑠)}. 

This process  forms a step process of semi-Markovian random walk with delaying barrier 

on the zero-level. Then, the process 𝑋2(𝑡) is delayed by a delaying barrier on 𝑎(𝑎 > 0)-

level: 

 𝑋(𝑡) = 𝑋2(𝑡) − sup
0≤𝑠≤𝑡

{0,   𝑋2(𝑠) − 𝑎}. 

The process 𝑋(𝑡) forms a step process of semi-Markovian random walk with delaying 

barriers on the zero-level and on the 𝑎(𝑎 > 0). 

 

𝑋(𝑡) 

  𝑎                                 

                        

 

                                                              

            

   𝑋0   

     0                                                                                                                             t                      

 

Fig. 1. A View of a Step Process of Semi-Markov Random Walk with  

Two Delaying Barriers  
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Now, the process 𝑋(𝑡) is restated by means of the sequence of identically and 

independently distributed random pairs {(𝜉𝑖 , 𝜂𝑖)}, 𝑖 = 1,2,3, … ,  as follows: 

𝑋(𝑡) = 𝑋𝑛 , if     ∑ 𝜉𝑖
𝑛−1
𝑖=0 ≤ 𝑡 < ∑ 𝜉𝑖

𝑛
𝑖=0  , 𝑛 ≥ 1, 

where 

   𝑋𝑛 = 𝑚𝑖𝑛{𝑎,𝑚𝑎𝑥{0, 𝑋𝑛−1 + 𝜂𝑛}} , 𝑛 ≥ 1,  

and 𝑋0 = 𝑧 ∈ (0, 𝑎). 

Note that a lot of very interesting problems of stock control theory are expressed 

and solved by using this type processes. 

The aim of this study is to determine the Laplace transform for the distribution 

function with one dimensional of this process when  the random variable 𝜂1 has the 

Laplace distribution. For this reason, let us introduce the following notations: Let us 

denote the conditional distribution function with one dimensional of this process by 

𝑅(𝑡, 𝑥|𝑧) = 𝑃[𝑋(𝑡) < 𝑥|𝑋(0) = 𝑧]. 

The Laplace transformation with the time of the conditional distribution function of the 

process is denoted by 

�̃�(𝜃, 𝑥|𝑧) = ∫ 𝑒−𝜃𝑡𝑅(𝑡, 𝑥|𝑧)𝑑𝑡
∞

𝑡=0
, 𝜃 > 0.   

Also, let us denote the Laplace transformation with the time and the Laplace - Stieltjes 

transformation by the phase of the conditional distribution function of the process is 

denoted by 

�̃̃�(𝜃, 𝛼|𝑧) = ∫ 𝑒−𝛼𝑥𝑑𝑥�̃�(𝜃, 𝑥|𝑧)
∞

𝑡=0
.   

In order to convenient, let us denote the Laplace transformation of random variable 𝜉1 by 

𝜑(𝜃) = 𝐸[𝑒−𝜃𝜉1]. 

Finally, let us denote that ℰ(𝑥) = {
1, 𝑥 ≥ 0
0,   𝑥 < 0

 . 
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3. The Integral Equation for  �̃̃�(𝜃, 𝛼|𝑧) 

In this section we give an integral equation for the Laplace transformation with the 

time and the Laplace - Stieltjes transformation by the phase of the conditional distribution 

function  𝑅(𝑡, 𝑥|𝑧) of the process 𝑋(𝑡). For this, we can state the following theorem:  

 

Theorem 1. Under above representations, we have 

           �̃̃�(𝜃, 𝛼|𝑧) =
1−𝜑(𝜃)

𝜃
ℰ(𝑥 − 𝑧) + 𝜑(𝜃) [�̃̃�(𝜃, 𝛼|𝑎) 𝑃{𝜂1 > 𝑎 − 𝑧}           

                            + �̃̃�(𝜃, 𝛼|0) 𝑃{𝜂1 < −𝑧} + ∫ �̃̃�(𝜃, 𝛼|𝑦)
𝑎

𝑦=0
𝑑𝑦𝑃{𝜂1 < 𝑦 − 𝑧}]       (3.1) 

Proof: According to the total probability formula, it is obvious that 

 𝑅(𝑡, 𝑥|𝑧) = 𝑃[𝑋(𝑡) < 𝑥|𝑋(0) = 𝑧] 

                       = 𝑃{𝑋(𝑡) < 𝑥; 𝜉1 > 𝑡|𝑋(0) = 𝑧}+𝑃{𝑋(𝑡) < 𝑥; 𝜉1 < 𝑡|𝑋(0) = 𝑧} 

           = 𝑃{𝑧 < 𝑥; 𝜉1 > 𝑡} + ∫ 𝑃{𝜉1 ∈ 𝑑𝑠}
𝑡

𝑠=0
 

               ×∫ 𝑃{𝑚𝑖𝑛{𝑎,𝑚𝑎𝑥{0, 𝑧 + 𝜂1}} ∈ 𝑑𝑦}
𝑎

𝑦=0
𝑃{𝑋(𝑡 − 𝑠) < 𝑥|𝑋(0) = 𝑦} 

           = ℰ(𝑥 − 𝑧) 𝑃{𝜉1 > 𝑡} + ∫ 𝑃{𝜉1 ∈ 𝑑𝑠}
𝑡

𝑠=0
 

               × ∫ 𝑃{𝑚𝑖𝑛{𝑎,𝑚𝑎𝑥{0, 𝑧 + 𝜂1}} ∈ 𝑑𝑦}
𝑎

𝑦=0
𝑅(𝑡 − 𝑠, 𝑥|𝑦)                     (3.2) 

By applying the Laplace transformation on the both side of (3.2) with respect to  𝑡, i.e., 

multiplying both sides of  (3.1) by 𝑒−𝜃𝑡, integrating with respect to 𝑡 from 0 to ∞, and 

taking into account the definition of �̃�(𝜃|𝑧),  we have 

 �̃�(𝜃, 𝑥|𝑧) = ∫ 𝑒−𝜃𝑡𝑅(𝑡, 𝑥|𝑧)𝑑𝑡
∞

𝑡=0
 

               = ℰ(𝑥 − 𝑧)𝑃{𝜉1 > 𝑡} + ∫ 𝑒−𝜃𝑡 𝑃{𝜉1 > 𝑡}
∞

𝑡=0
𝑑𝑡 

                         +∫ 𝑃{𝑚𝑖𝑛{𝑎,𝑚𝑎𝑥{0, 𝑧 + 𝜂1}} ∈ 𝑑𝑦}
𝑎

𝑦=0
 

                         × ∫ 𝑒−𝜃𝑡 ∫ 𝑃{𝜉1 ∈ 𝑑𝑠}𝑅(𝑡 − 𝑠, 𝑥|𝑦)𝑑𝑡.
𝑡

𝑠=0

∞

𝑡=0
                                       (3.3) 

We note that 

 𝜑(𝜃) = ∫ 𝑒−𝜃𝑡𝑃{𝜉1 < 𝑡}𝑑𝑡.
∞

𝑡=0
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Thus, we can write 

�̃̃�(𝜃, 𝛼|𝑧) = ∫ 𝑒−𝛼𝑥𝑑𝑥�̃�(𝜃, 𝑥|𝑧)
∞

𝑡=0
     

     =
1−𝜑(𝜃)

𝜃
ℰ(𝑥 − 𝑧) + 𝜑(𝜃) ∫ 𝑃{𝑚𝑖𝑛{𝑎,𝑚𝑎𝑥{0, 𝑧 + 𝜂1}} ∈ 𝑑𝑦}

𝑎

𝑦=0
 �̃�(𝜃, 𝑥|𝑦) 

                 =
1−𝜑(𝜃)

𝜃
ℰ(𝑥 − 𝑧) + 𝜑(𝜃) [�̃̃�(𝜃, 𝛼|𝑎) 𝑃{𝜂1 > 𝑎 − 𝑧}           

        + �̃̃�(𝜃, 𝛼|0) 𝑃{𝜂1 < −𝑧} + ∫ �̃̃�(𝜃, 𝛼|𝑦)
𝑎

𝑦=0
𝑑𝑦𝑃{𝜂1 < 𝑦 − 𝑧}], 

and therefore, the Theorem is proved. 

 The integral equation  (3.1) can be solved by method of successive approximations 

for arbitrarily distributed random variables 𝜉𝑖 and 𝜂𝑖, 𝑖 ≥ 1, but it is unsuitable for 

applications. On the other hand, this equation has a solution in explicit form in the class 

of Laplace distributions. For example, let the random walk follow the compound Laplace 

distribution. We introduce random variable 𝜂1 = 𝜂1
+ − 𝜂1

− in which random variables 𝜂𝑖
+ 

and 𝜂𝑖
− are distributed as follows: 

𝐹𝜂1+(𝑥) = {
 0 ,                  𝑥 < 0               

1 − 𝑒−𝜆𝑡 ,     𝑥 > 0,    𝜆 > 0,
   

and 

𝐹𝜂1−(𝑥) = {
0 ,                  𝑥 < 0            

1 − 𝑒−𝜇𝑥 ,    𝑥 > 0, 𝜇 > 0,
 

respectively. Then it is easy to see that the distribution function of random variable 𝜂1 

has the form 

𝐹𝜂1(𝑥) = 𝑃{𝜂1 < 𝑥} = {
  
𝜆

𝜆+𝜇
 𝑒𝜇𝑥  ,       𝑥 < 0, 𝜆 > 0, 𝜇 > 0,    

1 −
𝜇

𝜆+𝜇
 𝑒−𝜆𝑥 , 𝑥 > 0, 𝜆 > 0, 𝜇 > 0 ,

                       (3.4) 

and the probability density function of its has the form 

𝑓𝜂1(𝑡) =
𝑑[𝐹𝜂1(𝑡)]

𝑑𝑡
= {

𝜆𝜇

𝜆+𝜇
 𝑒𝜇𝑡 ,       𝑡 < 0,          

𝜆𝜇

𝜆+𝜇
𝑒−𝜆𝑡 ,        𝑡 > 0,       

                                                  (3.5) 

(see, Nasirova et al. 2009). The distribution function given by (3.4) is called the 

compound Laplace distribution function of order (1,1) and denote by 𝐿(1+, 1−). In this 

case, the integral equation (3.1) can be rewritten as follows: 
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�̃̃�(𝜃, 𝛼|𝑧) = ∫ 𝑒−𝛼𝑥𝑑𝑥�̃�(𝜃, 𝑥|𝑧)
∞

𝑡=0
     

                =
1−𝜑(𝜃)

𝜃
𝑒−𝛼𝑧 +

𝜇

𝜆+𝜇
𝜑(𝜃)�̃̃�(𝜃, 𝛼|𝑎)𝑒−𝜆(𝑎−𝑧)      

                 +
𝜆

𝜆+𝜇
𝜑(𝜃) �̃̃�(𝜃, 𝛼|0)𝑒−𝜇𝑧 +

𝜆𝜇

𝜆+𝜇
𝜑(𝜃) 𝑒−𝜇𝑧 ∫ �̃̃�(𝜃, 𝛼|𝑦)

𝑧

𝑦=0
𝑒𝜇𝑦𝑑𝑦 

                            +
𝜆𝜇

𝜆+𝜇
𝜑(𝜃) 𝑒𝜆𝑧 ∫ �̃̃�(𝜃, 𝛼|𝑦)

𝑎

𝑧
𝑒−𝜆𝑦𝑑𝑦                                                          (3.6) 

By using the integral equation (3.6), we obtain the ordinary differential equation with 

constant coefficients  

�̃̃�′′(𝜃, 𝛼|𝑧) − (𝜆 − 𝜇)�̃̃�′(𝜃, 𝛼|𝑧) − 𝜆𝜇[1 − 𝜑(𝜃)]�̃̃�(𝜃, 𝛼|𝑧) 

                           =
1−𝜑(𝜃)

𝜃
(𝜆 − 𝜇)(𝛼 + 𝜆)𝑒−𝛼𝑧 .                                               (3.7) 

This equation has a characteristic equation  

𝑘2(𝜃) − (𝜆 − 𝜇)𝑘(𝜃) − 𝜆𝜇[1 − 𝜑(𝜃)] = 0.                                                        (3.8)   

and so, it has a general solution in the form 

�̃̃�(𝜃, 𝛼|𝑧) = 𝐶1(𝜃)𝑒
𝑘1(𝜃)𝑧 + 𝐶2(𝜃)𝑒

𝑘2(𝜃)𝑧 +
(1−𝜑(𝜃))(𝛼−𝜇)(𝛼+𝜆)

𝜃(𝛼+𝑘1(𝜃))(𝛼+𝑘2(𝜃))
𝑒−𝛼𝑧              (3.9) 

where 𝑘1(𝜃) and 𝑘2(𝜃) are roots of the characteristic equation (3.8).  

Now, we should find 𝐶𝑖(𝜃), 𝑖 = 1,2. The following system is obtained from the initially 

boundary conditions for differential equation (3.7) from integral equation (3.6), by taking 

zero instead of 𝑧: 

{
 
 
 

 
 
 �̃̃�(𝜃, 𝛼|0) =

1−𝜑(𝜃)

𝜃
+

𝜇

𝜆+𝜇
𝜑(𝜃)�̃̃�(𝜃, 𝛼|𝑎)𝑒−𝜆𝑎                                          

               +
𝜆

𝜆+𝜇
𝜑(𝜃) �̃̃�(𝜃, 𝛼|0) +

𝜆𝜇

𝜆+𝜇
𝜑(𝜃) ∫ �̃̃�(𝜃, 𝛼|𝑦)

𝑎

0
𝑒−𝜆𝑦𝑑𝑦 

           

�̃̃�′(𝜃, 𝛼|0) = −𝛼
1−𝜑(𝜃)

𝜃
+

𝜆𝜇

𝜆+𝜇
𝜑(𝜃)�̃̃�(𝜃, 𝛼|𝑎)𝑒−𝜆𝑎                                    

                 −
𝜆𝜇

𝜆+𝜇
𝜑(𝜃) �̃̃�(𝜃, 𝛼|0) +

𝜆2𝜇

𝜆+𝜇
𝜑(𝜃) ∫ �̃̃�(𝜃, 𝛼|𝑦)

𝑎

0
𝑒−𝜆𝑦𝑑𝑦

           

      (3.10)  

By substituting these expressions on the left hand of (3.9) instead of the desired function 

under the integral into (3.10), we obtain the system of algebraic equations in relation to 

𝐶𝑖(𝜃), 𝑖 = 1,2. Thus we have 
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{

                               

�̃̃�(𝜃, 𝛼|0) = 𝐶1(𝜃) + 𝐶2(𝜃) +
(1−𝜑(𝜃))(𝛼−𝜇)(𝛼+𝜆)

𝜃(𝛼+𝑘1(𝜃))(𝛼+𝑘2(𝜃))
                                      

�̃̃�′(𝜃, 𝛼|0) =  𝑘1(𝜃)𝐶1(𝜃) + 𝑘2(𝜃)𝐶2(𝜃) − 𝛼
(1−𝜑(𝜃))(𝛼−𝜇)(𝛼+𝜆)

𝜃(𝛼+𝑘1(𝜃))(𝛼+𝑘2(𝜃))
          

     (3.11) 

Now, by multiplying the first equality by 𝛼 and then adding these equalities side by side, 

we have  

�̃̃�′(𝜃, 𝛼|0) + 𝛼�̃̃�(𝜃, 𝛼|0) = (𝛼 + 𝑘1(𝜃))𝐶1(𝜃) + (𝛼 + 𝑘2(𝜃))𝐶2(𝜃).           (3.12) 

By using  (3.12) and the definition of �̃�(𝜃, 𝛼), we get 

 �̃�(𝜃, 𝛼) = ∫ �̃̃�(𝜃, 𝛼|𝑥) 𝑑𝑃{𝑚𝑖𝑛{𝑎,𝜂1} < 𝑥}
𝑎

0
. 

Therefore, we can write 

             �̃�(𝜃, 𝛼) =
1

(𝑘1(𝜃)−𝜆)
[𝑘1(𝜃) 𝑒

−(𝜆−𝑘1(𝜃))𝑎 − 𝜆]𝐶1(𝜃) 

                           +
1

(𝑘2(𝜃)−𝜆)
[𝑘2(𝜃) 𝑒

−(𝜆−𝑘2(𝜃))𝑎 − 𝜆]𝐶2(𝜃)        

                           +
(1−𝜑(𝜃))(𝛼−𝜇)

𝜃(𝛼+𝑘1(𝜃))(𝛼+𝑘2(𝜃))
[𝛼 𝑒−(𝛼+𝜆)𝑎 + 𝜆].                                             (3.13)       

and from this, we have 

                     Lim
𝜃→0

𝜃 �̃�(𝜃, 𝛼) =
(𝜆−𝜇)

𝜆2−𝜇2𝑒−(𝜆−𝜇)𝑎
[
𝜆(𝛼+𝜆)

𝛼+𝜆−𝜇
 +

𝜇(𝛼−𝜇)

𝛼+𝜆−𝜇
𝑒−(𝛼+𝜆−𝜇)𝑎].       

On the other hand, the process  𝑋(𝑡) is ergodic since 𝑃{𝜂1 > 0} > 0 and 𝑃{𝜂1 < 0} > 0 

(see Nasirova 1984.). Hence the Tauberian Theorem can be used: 

 �̃�(𝛼) = Lim
𝜃→0

𝜃 �̃�(𝜃, 𝛼).  

So, we get  

�̃�(𝛼) =
(𝜆−𝜇)

𝜆2−𝜇2𝑒−(𝜆−𝜇)𝑎
[
𝜆(𝛼+𝜆)

𝛼+𝜆−𝜇
 +

𝜇(𝛼−𝜇)

𝛼+𝜆−𝜇
𝑒−(𝛼+𝜆−𝜇)𝑎] , 𝜆 > 𝜇.                           (3.14) 

Now we can derive 𝐸[𝑋] and 𝐷[𝑋], expectation and standard diversion of the the ergodic 

distribution of the process 𝑋(𝑡) from (3.14). We use 𝑋 to denote the random variable, for 

which the following equality holds:  

Lim
𝑡→∞

𝑃{𝑋(𝑡) < 𝑥} = 𝑃{𝑋 < 𝑥}. 

Since �̃�(𝛼) is a Laplace transformation, it is known that 
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𝐸[𝑋] = −�̃�′(0) and  𝐷[𝑋] = �̃�′′(0) − [�̃�′(0)]2. 

Thus, by considering (3.14), it is obtained that 

 𝐸[𝑋] = −
𝜇

(𝜆−𝜇)(𝜆2−𝜇2𝑒−(𝜆−𝜇)𝑎)
[𝜆 − 𝜆 𝑒−(𝜆−𝜇)𝑎 − 𝜇𝑎(𝜆 − 𝜇)𝑒−(𝜆−𝜇)𝑎], 𝜆 > 𝜇, 

and 

𝐷[𝑋] =
1

(𝜆2 − 𝜇2𝑒−(𝜆−𝜇)𝑎)2
[−𝜇2𝑎2𝜆2 𝑒−(𝜆−𝜇)𝑎 − 2𝜇𝑎𝜆(𝜆 + 𝜇)𝑒−(𝜆−𝜇)𝑎] 

−
2𝜆𝜇2

(𝜆 − 𝜇)
𝑒−(𝜆−𝜇)𝑎 −

2𝜆𝜇(𝜆2 + 𝜇2 + 𝜆𝜇)

(𝜆 − 𝜇)2
𝑒−(𝜆−𝜇)𝑎 −

𝜆2𝜇(2𝜆 − 𝜇)

(𝜆 − 𝜇)2
. 
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