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Abstract 
 
In this paper, By using an identity for differentiable functions, we obtain some new type integral 
inequalities for the class of functions whose derivatives in absolutely value at certain powers are 
p -quasi convex. Also, we give some applications to special means of positive real numbers  
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p -QUASI KONVEKS FONKSİYONLAR İÇİN YENİ TİP  
İNTEGRAL EŞİTSİZLİKLER 

 
 
 

Özet 
 
Bu çalışmada, diferansiyellenebilir fonksiyonlar için bir özdeşlik kullanılarak, türevlerinin mutlak 
değerlerinin belirli kuvvetleri p -quasi-konveks olan fonksiyonların sınıfı için bazı yeni tip 

integral eşitsizlikler elde ediyoruz. Aynı zamanda, pozitif reel sayıların özel ortalamaları için bazı 

uygulamalar veriyoruz. 
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1. Introduction 
 
Definition 1.1 A function RR If :  is said to be convex if the inequality 

   )()(1)()(1 yftxtfyttxf   
is valid for all Iyx ,  and  0,1t . If this inequality reverses, then f  is said to be concave on 
interval I Ø . This definition is well known in the literature.  
 
Definition 1.2 A function RR If :  is said to be quasi-convex if the inequality 

    )(),(max)(1 yfxfyttxf   
holds for all Iyx ,  and  0,1t .  
 
Remark 1.1 Clearly, any convex function is a quasi-convex function. Furthermore, there exist 
quasi-convex functions which are not convex (Ion 2007).  

 
 Let RR If :  be a convex function defined on the interval I  of real numbers and 

Iba ,  with ba < . The following inequality 
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  (1.1) 

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality 
for convex functions. Note that some of the classical inequalities for means can be derived from 
(1.1) for appropriate particular selections of the mapping f . Both inequalities hold in the reversed 
direction if f  is concave. 

 In recent years, much attention have been given to theory of convexity because of its great 
utility in various fields of pure and applied sciences. Many researchers have extended and 
generalized the classical concepts of convex functions in various directions using novel and 
innovative techniques. For more information, see (Dragomir et al 1995, Fang & Shi 2014, İşcan 
2014; 2016; 2016, Kunt & İşcan 2016, Matkowski 2003/2004, Ostrowski 1938, Varošanec 2007). 

 In (İşcan 2014), the author gave the definition of harmonically convex function as follow 
and established Hermite-Hadamard’s inequality for harmonically convex functions. 
 
Definition 1.3 Let  0\RI  be a real interval. A function RIf :  is said to be harmonically 
convex, if    

 )()(1)(
)(1

xftytf
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 (1.2) 

for all Iyx ,  and  1,0t . If the inequality in (1.2) is reversed, then f  is said to be 
harmonically concave.  
 
Definition 1.4 Let   RR  0\: If  be a harmonically convex function and Iba ,  with 

.< ba  If ],[ baLf   then the following inequalities hold 
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The  above inequalities are sharp.  
Definition 1.5 A function     0,0,: If  is said to be harmonically quasi-convex, if  

  )(),(max
)(1

yfxf
yttx

xyf 









 

for all Iyx ,  and  0,1t .  
 
Remark 1.2 Any harmonically convex function on   0,I  is a harmonically quasi-convex 
function, but not conversely.  
 

 In (İşcan 2016), the definition of p-convex function is given a different as follows: 
Definition 1.6 Let   0,I  be a real interval and  .0\Rp  A function RIf :  is said to 
be a p-convex function, if 

   )()(1)()(1
1

yfxfyxf ppp  







  

for all Iyx ,  and  1,0 .  
 According to Definition 6, It can be easily seen that for 1=p  and 1= p , p-convexity 

reduces to ordinary convexity and harmonically convexity of functions defined on   0,I , 
respectively. 

 
Definition 1.7 (İşcan 2016)   0,I  be a real interval and  0\Rp . A function RIf :  
is said to be p-quasi-convex, if 

    )(),(max)(1
1

yfxfyxf ppp 







   (1.3) 

for all Iyx ,  and  1,0 . If the inequality in (1.3) is reversed, then f is said to be            p-
quasi-concave.  

 In (Fang & Shi 2014, Theorem 5) and (İşcan 2016), Hermite-Hadamard’s inequality for 

p -convex functions is given as follow: 
 
Theorem 1.1 Let   R 0,: If  be a p -convex function,  0\Rp , and Iba ,  with 

.< ba  If ],[ baLf   then we have  
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 (1.4) 

In order to prove our main results we need the following Lemma (İşcan et al 2017): 
 
Lemma 1.1 Let   R 0,: If  be a differentiable function on I  and Iba ,  with ba <  
and  0\Rp . If ],[ baLf   then  

 ,1=)()()( 1
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By using Lemma 1.1, İşcan obtained some new integral inequalities for p -convex functions in 
(İşcan 2016). In this work, we established some new type integral inequalities for the class of 
functions whose derivatives in absolutely value at certain powers are p -quasi-convex. Therefore 
we also obtained some new integral inequalities for quasi-convex and harmonically quasi-convex 
functions in special case of obtained inequalities. 
For some results related to p -convex functions and its generalizations, we refer the reader to see 
(Fang & Shi 2014, İşcan 2016; 2016, Noor & Noor 2015). 
Throughout this paper we will use the following notations: Let ,<<0 ba  we will denote with 

       ,
lnln

:=,,:=,,
2
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ab

abbaLabbaGbabaA
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the arithmetic, geometric, logarithmic and p-logarithmic respectively. 
 
2. Main results 
 
Theorem 2.1 Let   R 0,: If  be a differentiable function on I , Iba ,  with ,< ba  

 0\Rp  and ].,[ baLf   If qf   is p-quasi-convex on ],[ ba  for 1,q  then for all 
 bax , , we have 
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        (2.1) 

Proof. From Lemma 1.1, Power mean integral inequality and the p-quasi convexity of qf   on 
],,[ ba we have 
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Here, it is easily seen that the following equality holds: 
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Hence, we obtain the desired result. This completes the proof.  
 



H. Kadakal, İ. İşcan and M. Kadakal 

 

128 
 

Corollary 2.1 In Theorem 2.1, 
       (i) If we take 1=p , then we have the following inequality when qf   is convex on ],[ ba : 

     .,max),()(1)()( bfafbaAduuf
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(ii) If we take 1= p , then we have the following inequality when qf   is harmonically 
convex on ],[ ba : 
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Theorem 2.2 Let   R 0,: If  be a differentiable function on I , Iba ,  with ,< ba  

and ].,[ baLf   If qf   is p-quasi-convex on ],[ ba  for 1,=111,>
qr

q   then 
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Proof. From Lemma 1.1 and Hölder’s inequality and the p-quasi-convexity of qf   on ],,[ ba we 
have 
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Here, it is easily seen that the following equality holds: 
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Hence, we obtain the desired result. This completes the proof. This completes the proof.  
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Corollary 2.2 In Theorem 2.2, 
 

(i) If we take 1=p , then we have the following inequality when qf   is quasi-convex on 
],[ ba : 

     .,max),()(1)()( bfafbaLduuf
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(ii) If we take 1= p , then we have the following inequality when qf   is harmonically 
quasi-convex on ],[ ba : 
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3. Some applications for special means 
 

Proposition 3.1 Let ba <<0  and .1,0,
2
1\









Rp  Then we have the following inequality 
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Proof. The assertion follows from the inequality (2.1) in Theorem 2.1, for 
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Proof. The assertion follows from the inequality (2.2) in Theorem 2.2, for 
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