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ABSTRACT 

This paper proposes Hartley-Ross ( )HR  unbiased estimator of the finite population mean 

using two auxiliary variables in ranked set sampling ( )RSS . The variance of the proposed 

unbiased estimator is obtained to first degree of approximation. Comparisons among the 

proposed and some existing estimators are made both theoretically and through simulation 

study. It is shown that the proposed estimator is more efficient as compared to all other 

competitor estimators under RSS  scheme.  
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1. INTRODUCTION  

Ranked set sample scheme is more effective to reduce cost and increase efficiency when the survey variable 

is costly and time consuming, but it can be ranked easily at no cost or at very little cost. The technique of 

RSS  was first suggested by McIntyre [11] to increase efficiency of the estimator. Takahasi and Wakimoto 

[19] proved the mathematical theory that the sample mean under RSS  is an unbiased estimator of the finite 

population mean and more precise than the sample mean estimator under simple random sampling )(SRS

. Stokes [18] did the ranking of elements on basis of the auxiliary variable instead of judgment. Singh et al. 

[16] proposed an estimator for population mean and ranking of the elements is observed on basis of the 

auxiliary variable. Kadilar et al. [5] used RSS  technique to improve ratio estimator given by Prasad [13].  

 Hartley and Ross [4] were the first to propose an unbiased ratio estimator for finite population mean in 

SRS . Later, Pascual [12] proposed an unbiased ratio type estimator in stratified random sampling. Singh 

et al. [17] and Kadilar and Cekim [6] suggested Hartley-Ross )(HR  type unbiased estimators of the finite 

population mean using auxiliary information of population parameters in SRS . Khan and Shabbir [7,8] 

suggested a class of HR  type unbiased estimators in RSS  and stratified ranked set sampling )(SRSS . 

Khan and Shabbir [9] also proposed efficient ratio-type estimators of population mean using two auxiliary 

variables under RSS  scheme. Khan et al. [10] introduced HR  type unbiased estimators of population 

mean using SRSS  technique.  

Here, we propose an unbiased estimator of the finite population mean using two auxiliary variables under 

RSS  scheme.  
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2.  RANKED SET SAMPLING AND SOME EXISTING ESTIMATORS 

In RSS  first m  independent random samples each of size m  are chosen and the elements in each sample 

are selected with equal probability and without replacement from a finite population of size N . The 

elements of each random sample are ranked with respect to the characteristic of the study variable or 

auxiliary variable. Let Y  is the study variable and X  and Z  are the two auxiliary variables. Then 

randomly select 
2m  trivariate sample elements from the population and allocate them into m  sets, each of 

size m . Each sample is ranked with respect to one of the auxiliary variables X  or Z . Here, ranking is 

done on basis of the auxiliary variable X . An actual measurement from the first sample is then taken on 

the element with the smallest rank of X , together with variables Y  and Z  associated with smallest rank 

of X . From second sample of size m , the variables Y  and Z  associated with the second smallest rank of 

X  are measured. By this way, this procedure is continued until, the Y  and Z  values associated with the 

highest rank of X  are measured from the m th sample. This completes one cycle of the sampling. The 

process is repeated r  times to obtain the desired sample of size mrn =  elements. Thus in a RSS  scheme, 

a total of rm2
 elements have been drawn from the population and only mr  of them are selected for 

analysis. To estimate population mean )(Y  in RSS  using a chain ratio estimator, the procedure can be 

summarized as follows:   

 Step 1: Randomly select 
2m  trivariate sample units from the population.  

 Step 2: Allocate these 
2m  units into m  sets, each of size m .  

 Step 3: Each set is ranked with respect to the concomitant variable X .  

 Step 4: Select the i th ranked unit from the i th ( mi 1,2,...,= ) set for actual magnitude.  

 Step 5: Repeat Steps 1  through 4  for r  cycles until the desired sample size mrn = , is obtained.  

The usual RSS  estimator )(rssUy  and its variance, are given by 
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Khan and Shabbir [7] suggested the following Hartley-Ross type unbiased estimator in RSS  
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 and its variance is given by  

 ).(2)()()( 2222222

)( yxyxxxyyrssHR WCXYRWCRXWCYyV    (4) 

Khan and Shabbir [9] proposed the following ratio-type estimator in RSS  
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 where 1  and 2  are unknown constants. The optimum values of 1  and 2  are  
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 The minimum bias and MSE  of )(RSSRy , are given respectively  
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3.  PROPOSED UNBIASED ESTIMATOR IN RSS 

On the lines of Khan and Shabbir [7], we suggest the following estimator  
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The bias of )(RSSPy , is given by  
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 To find the variances of the unbiased estimators, we define the following error terms: 
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4. EFFICIENCY COMPARISONS 

We obtained the conditions under which the proposed unbiased estimator )(rssPy  is more efficient than the 

usual RSS  mean estimator )(rssUy , HR  type unbiased estimator )(rssHRy  and ratio-type estimator )(rssRy . 
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ii. By (4) and (11),  
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5. SIMULATION STUDY 

To obtain variance of the proposed unbiased estimator, a simulation study is conducted. Ranking is 

performed on basis of the auxiliary variable X . Trivariate random observations ),,( ZYX , are generated 

from a trivariate gamma distribution with known population correlation coefficient yx , yz  and 
xz . 

Using 20,000 simulations, estimates of variance for unbiased ratio estimator are computed under ranked 

set sampling scheme as described in Section 2. Estimators are compared in terms of variances, percentage 

relative mean square error ( PRRMSE ) and percentage relative bias )(PRB . The values of PRB  allow 

us to analyze the empirical bias of the different estimators, whereas the values of PRRMSE  reveal the 

most efficient estimator from an empirical point of view. Chambers and Dunstan [2], Rao et al. [14], Silva 

and Skinner [15] and Harms and Duchesne [3] used PRB  and PRRMSE . The results are presented in 

Tables 1 and 2. The results showed that with increase in sample size, variances and PRRMSE  decrease 

which is expected results. The expressions of variance, PRB  and PRRMSE  are defined as follows:  
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Table  1. Variances of different estimators for a simulated trivariate gamma distribution. 

m  r  n  )(rssUy  )(rssHRy  )(rssRy  )(rssPy  

3 

3 9 0.159535 0.050708 0.035220 0.005498 

4 12 0.121736 0.038089 0.026410 0.004203 

5 15 0.096354 0.028721 0.022321 0.003237 

10 30 0.047230 0.014200 0.010592 0.001638 

4 
3 12 0.104722 0.036583 0.027143 0.003980 

5 20 0.059821 0.021148 0.016234 0.002403 
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10 40 0.031772 0.010567 0.00791 0.001208 

15 60 0.021210 0.006845 0.005291 0.000772 

5 

5 25 0.043045 0.016335 0.012887 0.001938 

10 50 0.021152 0.008142 0.006261 0.000974 

15 75 0.014156 0.005491 0.004153 0.000662 

20      100 0.011127 0.004082 0.003110 0.000474 

 

Table  2. PRRMSE  and )(PRB  of different estimators for a simulated trivariate gamma distribution. 

m  r  n  )(rssUy  )(rssHRy  )(rssRy  )(rssPy  

 

 

 

3 

3 9 
20.61 

(0.13) 

11.62 

(-0.22) 

9.52 

(0.51) 

3.82 

(-0.02) 

4 12 
18.01 

(0.28) 

10.07 

(-0.39) 

8.20 

(0.18) 

3.34 

(0.01) 

5 15 
16.02 

(0.03) 

8.74 

(-0.13) 

7.53 

(0.08) 

2.93 

(0.00) 

10 30 
11.22 

(-0.17) 

6.15 

(-0.02) 

5.19 

(-0.05) 

2.08 

(0.01) 

 

 

 

4 

3 12 
16.70 

(0.23) 

9.87 

(-0.31) 

8.33 

(0.20) 

3.25 

(0.05) 

5 20 
12.62 

(0.12) 

7.50 

(0.03) 

6.40 

(0.20) 

2.53 

(0.02) 

10 40 
9.19 

(-0.07) 

5.30 

(-0.08) 

4.53 

(0.10) 

1.79 

(0.07) 

15 60 
7.51 

(0.01) 

4.26 

(-0.03) 

3.64 

(0.05) 

1.43 

(0.04) 

 

 

 

5 

5 25 
10.71 

(-0.07) 

6.59 

(-0.05) 

5.71 

(0.14) 

2.27 

(0.01) 

10 50 
7.51 

(-0.09) 

4.65 

(-0.08) 

4.01 

(-0.02) 

1.61 

(-0.01) 

15 75 
6.14 

(-0.02) 

3.82 

(-0.04) 

3.27 

(0.03) 

1.33 

(0.07) 

20 100 
5.44 

(0.00) 

3.29 

(0.03) 

2.84 

(0.00) 

1.12 

(0.00) 
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6. CONCLUSION 

From Tables 1 and 2, we see that the proposed unbiased estimator )(rssPy , has less variance and PRRMSE  

as compared to )(rssUy , )(rssHRy  and )(rssRy . Also, variance and PRRMSE  decrease with increase in 

sample size. So, we conclude that the proposed unbiased estimator is preferable than the usual RSS  mean 

estimator and HR  type unbiased estimator and ratio-type estimator )(rssRy  using two auxiliary variables 

under RSS  scheme. The proposed estimator has reasonable biases, since the values of PRB  in Table 2 

are all less than 1 %  in absolute terms.  
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