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A B S T R A C T  
 

Even though exponential smoothing (ES) is publicized as one of the most successful 

forecasting methods in the time series literature and it is widely used in practice due to its 

simplicity, its accuracy can be affected by the initialization and optimization procedures 

followed. It also suffers from some fundamental problems that can be seen clearly when its 

weighting scheme is studied closely. Exponential smoothing fails to account for the amount 

of data points that can contribute to the forecast when assigning weights to historical data. 

ATA smoothing has been proposed as an alternative forecasting method and is shown to 

perform better than ES when the accuracies are compared on empirical data. In this paper, 

the properties of ATA that make it stand out from ES models will be discussed by just 

comparing the simple versions of both models Empirical performance of the two simple 

models will also be compared based on popular error metrics. 

© 2017 Forecast Research Laboratory. All rights reserved. 
 

 

 

1. Introduction 

Whenever there is a scientific, industrial, commercial or economic activity, forecasting usually is a crucial part of 

the process and doing it accurately makes a big difference. Therefore, the forecasting literature keeps expanding at a 

fast pace inevitably. A comprehensive review of the progress during the 25 year period until the year 2005 can be 

found in [1]. Undoubtedly ARIMA ([2]) and exponential smoothing (ES) ([3]) are still the two dominant major 

forecasting techniques and other methods are frequently derived or inspired from them. Among the two, ES methods 

are applied more frequently due to their simplicity, robustness ([4]) and accuracy as automatic forecasting procedures 

especially in the famous M-competitions ([5–7]). Literature reviews on ES are given in [8], [9] and [10]. 

ES models consist of a family of models which assume that the time series has up to three underlying data 

components: level, trend and seasonality. In ES the goal is to obtain estimates for the level, trend and seasonal pattern 

and then to use these final values to forecast the future. Each model contains one of the five types of trend (none, 

additive, damped additive, multiplicative, and damped multiplicative) and one of the three types of seasonality (none, 

additive, and multiplicative) in addition to a level. [11] started the initiative to provide a taxonomy of ES methods 

and [12], [7] and [13] extended and modified these ideas. When different combinations of trend and seasonality are 

considered, 15 different ES models can be formed. The best known of these are SES (no trend, no seasonality), Holt's 

linear model (additive trend, no seasonality) and Holt-Winters' additive model (additive trend, additive seasonality). 

[10] have proposed the ETS state space models, which provide a solid theoretical foundation for ES. In this paper, in 

addition to what had already been done in the literature, additive and multiplicative error terms were assumed for 

each of the 15 models in previous taxonomies resulting in 30 potential ES models. 
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Despite the fact that there has been substantial research on ES models, some of its shortcomings and fundamental 

issues have not been resolved and these keep affecting the quality of forecasts obtained using this approach. First and 

most overlooked of all is the fact that like in all time series literature it is assumed that future will be a continuation 

of the past and therefore ES models aim to assign relatively more weight to recent observations compared to older 

ones. This however does not always happen and as we will present with examples later on ES models fall victim to 

cases where an optimum smoothing parameter may be chosen such that the already unknown (estimated) initial value 

receives more weight than the most recent observation. Second, there is still no agreed upon consensus on the 

initialization and optimization of ES models and this in return yields to accuracy problems. For example, [14] showed 

that even though for other exponential smoothing models the type of initialization and loss functions that are 

employed did not result in significant changes in post sample forecasting accuracies, for Holt's linear trend model 

they were very influential especially for long term forecasting horizons. Even if this was not the case, the fact that 

trying to find an optimal initial value both complicates and prolongs the optimization process cannot be overlooked. 

Finally, when smoothing a data set over time, the weights should be distributed to observations taking into account 

where along the time-line the value being smoothed resides, i.e. the most recent observation can receive more weight 

when there are fewer data points that are contributing to the smoothed value and a little less weight as we move along 

the time-line. ES models, on the other hand, always assign the most recent value the same weight no matter where 

along the time-line smoothing is being carried out. All these issues keep ES from performing well under some 

circumstances and ATA smoothing helps deal with these problems.  

In this paper, we will compare in depth the simple versions of ATA proposed by [15] and [16] and exponential 

smoothing based on popular metrics that are commonly used for comparing forecasting techniques. Since it is already 

shown in [16] that generalizing ATA to higher order models is straightforward and the higher order ATA model's 

accuracy is better than its counter ES model, comparing the models in their simple forms here is sufficient and the 

results can easily be expanded. Details on the results from the more sophisticated ATA methods on M3-sompetition 

data ([6]) along with R code and an Excel macro to implement the methods can be found on the website 

“https://atamethod.wordpress.com/”. Here, the resulting accuracy measures obtained by applying simple versions of 

both methods to the M3-competition data sets will be provided for comparison. 

 

2. The ATA method 

For the series 𝑋𝑡 , 𝑡 = 1, 2, … , 𝑛, the model which we will denote by 𝐴𝑇𝐴(𝑝, 𝑞) throughout the paper can be written 

as: 
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for 𝑝 ∈ (1,… , 𝑛), 𝑞 ∈ (0,… , 𝑛), 𝑡 > 𝑝 ≥ 𝑞 and ℎ = 1, 2, …. For 𝑡 ≤ 𝑝 let 𝑆𝑡 = 𝑋𝑡, for 𝑡 ≤ 𝑞 let 𝑇𝑡 = 𝑋𝑡 − 𝑋𝑡−1 and 

𝑇1 = 0. Here 𝑋𝑡 is the value of the original series, 𝑇𝑡 is the trend component and 𝑆𝑡is the smoothed value at time t. p 

is the smoothing parameter for level, q is the smoothing parameter for trend and �̂�𝑡(ℎ)  is the h step ahead forecast 

value. 

Recognize that ATA has similar form to ES but the smoothing parameters are now dependent on the number of 

observations. The specific ATA model defined in equations (1)-(3) mimics the Holt linear trend model. It is also 

worth pointing out that when 𝑞 = 0, 𝐴𝑇𝐴(𝑝, 𝑞) reduces to the ATA-simple model with no trend, i.e. for 𝑡 > 𝑝: 
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and t tS X  for 𝑡 ≤ 𝑝. This model is very similar to the simple exponential smoothing model (SES) 

  11t t tS X S     for  0,1 . 
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The forecasts for 𝐴𝑇𝐴(𝑝, 0) can be computed easily as  ˆ
tX h X  for 1,2,h  .Throughout the rest of the paper 

the comparisons and applications will be carried out using 𝐴𝑇𝐴(𝑝, 0) and simple exponential smoothing for brevity 

and simplicity but the results can easily be generalized to models with more components. 

 

3. Comparison of 𝑨𝑻𝑨(𝒑,𝟎) and SES 

While the functional forms of ATA models are generally very similar to those of exponential smoothing models, 

there are distinctive features of ATA that separate it from ES. 𝐴𝑇𝐴(𝑝, 0) can be thought of as an approach that lies 

in between moving averages (MA) and simple exponential smoothing (SES). 𝐴𝑇𝐴(𝑝, 0) attaches weights to only the 

most recent  n p  observations and zero weights to the other p  observations like a MA model and the weights 

decrease exponentially like SES for some  3p p  . The weighting scheme of 𝐴𝑇𝐴(𝑝, 0) however, is more flexible 

and intuitive than SES. For 1p   the h step ahead forecast value for 𝐴𝑇𝐴(𝑝, 0)  ˆ
tX h X  i.e. all observations 

contribute equally to the forecast. This very important estimator, which intuitively should be the starting point for 

any method, can never be formed with SES. For 2p  , 𝐴𝑇𝐴(𝑝, 0) produces weights that decrease linearly with slope 
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n
. This also cannot be achieved with a SES model. For 3p  , 𝐴𝑇𝐴(𝑝, 0) produces 

exponentially decreasing weights similar to but not exactly the same as SES. In this case, 𝐴𝑇𝐴(𝑝, 0) gives greater 

emphasis than SES to the most recent history and less emphasis than SES to the more distant past at the same 

smoothing constant level, i. e. when both models give the same weight to the most recent data point n

p
X
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 to 
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. See Figure 1 for illustration of weights assigned to observations for various p levels. 

 

Figure 1. Weights assigned to observations by ATA(𝑝, 0) for various p values to obtain X̂n(h) 

Not only is 𝐴𝑇𝐴(𝑝, 0) more flexible but also it is more adaptive to the data at hand. No matter where along the 

time line smoothing is being carried out, the weights attached to the observations by SES stay fixed. The observations 

are assigned the weights    
2

, 1 , 1 ,       regardless of the sample size at hand every time. This is not the 

case for 𝐴𝑇𝐴(𝑝, 0) as the weights change with respect to the sample size as the weights are: 

1
, , ,

1 1 2

p p n p p n p n p
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respectively. 

Also, the optimization process is easier for 𝐴𝑇𝐴(𝑝, 0). Even though both SES and 𝐴𝑇𝐴(𝑝, 0) methods require 

smoothing constants, 𝐴𝑇𝐴(𝑝, 0) does not need an initial value unlike SES. When the optimal smoothing parameter 

is found, the initial value is found simultaneously. With ATA there is no limitation on the number of observations to 

forecast, only one observation is enough. The smoothing constants for ES are commonly estimated heuristically 



                       Yapar et al. | Turkish Journal of Forecasting vol. 01 no. 1 (2017) pp. 30-39 33 

 
(between (0,0.3), [8]) or estimated by minimizing a pre-determined error measure like the mean squared error (MSE), 

the mean absolute error (MAE) or the mean absolute percentage error (MAPE). After discussing various theoretical 

and empirical arguments for selecting an appropriate smoothing constant, [8] concludes that it is best to estimate an 

optimum 𝛼 from the data. This is generally done by a grid search of the parameter space for 𝛼 where 𝛼 ∈ (0,1). In 

practice, various 𝛼 values starting from 0.01 with increments 0.01 are tried and the 𝛼 value that produces the 

minimum error is chosen. The number of iterations required to find the optimum smoothing constant for ES is then 

100 for any data set. The number of iterations for higher order smoothing models (level, trend and season) to find the 

optimum smoothing constant combinations will be huge (1003)On the other hand, for 𝐴𝑇𝐴(𝑝, 0) the search for the 

optimal smoothing constant is much easier since the constant depends on the choice of p and 𝑝 ∈ {1, 2, … , 𝑛}. 
Therefore the total number of iterations needed is only n and it will be 𝑛3 for higher order smoothing models. As a 

result, when the data size is less than 100, the total number of iterations for 𝐴𝑇𝐴(𝑝, 0) will always be less than those 

for ES. 

Forecasting models can also be compared on some well-known metrics like the average age of the method and the 

variance of the forecast. The average age k  of a model is a measure of the model's ability to utilize fresh data. The 

smaller k  the better. [3] defines the average age 
1

n

tt
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  where 

tw  is the weight given to the 𝑡𝑡ℎ observation 

when trying to obtain a forecast. The variance of the forecast can be calculated as    2 2 2
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([3]). The average age and V of SES are given in [3] as 
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. In order to compare SES and 

𝐴𝑇𝐴(𝑝, 0) on these metrics, the models will now be given in a compact form as follows. The smoothed value at time 

t for SES can be represented in the weighted average form as: 
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and when the model in (4) is applied recursively to all observations in the series, 𝑆𝑡 for 𝐴𝑇𝐴(𝑝, 0) can be written in 

the alternative form: 
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where pS  is the starting value of 𝐴𝑇𝐴(𝑝, 0) which is simply the 𝑝𝑡ℎ observation. The weights of 𝐴𝑇𝐴(𝑝, 0) as given 

(6) can be thought of as the probabilities from a Negative Hyper-Geometric distribution with parameters  , ,1t p

([17]). 

Utilizing the expected value of this distribution, the average age of 𝐴𝑇𝐴(𝑝, 0) can then be easily found as 
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From equation (7) it can be seen that V involves the Generalized Hyper-Geometric series 

    3 2 1, , , 1 ,1 ,1F p n p n n n    ([18]). 

At the same smoothing constant level 
p
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 the average age of 𝐴𝑇𝐴(𝑝, 0) is smaller than the average age of 

SES �̅�𝐴𝑇𝐴 =
𝑛−𝑝

𝑝+1
< �̅�𝑆𝐸𝑆 =

1−𝛼

𝛼
, therefore 𝐴𝑇𝐴(𝑝, 0) should be preferred by researchers since it utilizes fresher data. 
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In order for the two models to have equal average ages the smoothing constant of SES should be given the value 

1

1

p

n






 When smoothing constants for the two models are chosen in this fashion to make the average ages equal, 

 ,0ATA p is still preferable since then 𝑉𝐴𝑇𝐴(𝑝,0) < 𝑉𝑆𝐸𝑆 =
𝛼

2−𝛼
. 

To present the discussions above in a more organized way, the weights that 𝐴𝑇𝐴(𝑝, 0) SES and MA assign to the 

observations when trying to obtain 
1

ˆ
tX 

 are given in Tables 1 and 2 for sample sizes 12 and 30 respectively. The 

tables also contain the average ages, variance components and the initial values and weights assigned to them. The 

initial value for the ES are marked as “?'' since there are various ways that the initial value can be assigned. 

Table 1. Weights assigned to observations by ATA, ES and MA for 12n  to obtain 
12
ˆ (1)X  

 1p   and 1/12   2p   and 2/12   3p   and 3/12   6p   and 6 /12   

t ATA ES MA ATA ES MA ATA ES MA ATA ES MA 

12 0.083 0.083 0.083 0.167 0.167 0.167 0.250 0.250 0.250 0.500 0.500 0.50 

11 0.083 0.076 0.083 0.152 0.139 0.167 0.205 0.188 0.250 0.273 0.250 0.50 

10 0.083 0.07 0.083 0.136 0.116 0.167 0.164 0.141 0.250 0.136 0.125 - 

9 0.083 0.064 0.083 0.121 0.096 0.167 0.127 0.105 0.250 0.061 0.063 - 

8 0.083 0.059 0.083 0.106 0.080 0.167 0.095 0.079 - 0.023 0.031 - 

7 0.083 0.054 0.083 0.091 0.067 0.167 0.068 0.059 - 0.006 0.016 - 

6 0.083 0.049 0.083 0.076 0.056 - 0.045 0.044 - - 0.008 - 

5 0.083 0.045 0.083 0.061 0.047 - 0.027 0.033 - - 0.004 - 

4 0.083 0.042 0.083 0.045 0.039 - 0.014 0.025 - - 0.002 - 

3 0.083 0.038 0.083 0.030 0.032 - - 0.019 - - 0.001 - 

2 0.083 0.035 0.083 - 0.027 - - 0.014 - - 0.000 - 

1 - 0.032 0.083 - 0.022 - - 0.011 - - 0.000 - 

Initial 

value 1X  ? - 2X  ? - 3X  ? - 6X  ? - 

Weight of 

initial 
0.083 0.352 - 0.015 0.112 - 0.005 0.032 - 0.001 0 - 

AA 5.500 6.776 5.500 3.348 4.327 2.500 2.259 2.873 1.500 0.863 1.000 0.50 

V 0.083 0.162 0.083 0.116 0.102 0.167 0.164 0.144 0.250 0.347 0.333 0.50 

From the tables it can be seen that for p=1 the MA and 𝐴𝑇𝐴(𝑝, 0) models assign the same weights to observations 

therefore they have equal average ages, however, SES has larger average age with a slightly smaller variance. For 

p=2 the weights of the oldest two observations are zero for 𝐴𝑇𝐴(𝑝, 0) and the average age and variance of the model 

is now between those of MA and ES with ES having the largest. For p=3, now the weights of the oldest three 

observations are zero for 𝐴𝑇𝐴(𝑝, 0) and the average age and variance of the model are again between those of MA 

and ES with ES having the largest. It is worth drawing attention to the differences between the weights attached to 

the initial values by the ES and 𝐴𝑇𝐴(𝑝, 0). For all smoothing levels ES assigns a relatively much larger weight to the 

initial value compared to 𝐴𝑇𝐴(𝑝, 0). The fact that ES is not adaptive to the data can be seen by looking at the p=6 

column of Table 1 and the p=15 column of 2. Since 𝛼 = 0.5 for both of these cases, even though the weights should 

be distributed among 12 observations in the first case and 30 observations in the second case, ES assigns 0.5 to the 

most recent, 0.273 to the second most recent etc., exactly the same weights for both data sets. 𝐴𝑇𝐴(𝑝, 0) on the other 

hand takes into account the amount of data that can be utilized and is able to distribute the weights in a fashion that 

still favours the recent observations but lets the model utilize more recent points at the same time. When the tables 

are studied closely, it can be seen that 𝐴𝑇𝐴(𝑝, 0) always assigns more weight to recent observations and less weight 

to older observations when the models are at the same smoothing level.  
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Table 2. Weights assigned to observations by ATA, ES and MA for 30n   to obtain 
30
ˆ (1)X  

 1p   and 1/ 30   2p   and 2/ 30   3p   and 3/ 30   6p   and 6/ 30   

t ATA ES MA ATA ES MA ATA ES MA ATA ES MA 

30 0.033 0.033 0.033 0.067 0.067 0.067 0.100 0.100 0.100 0.500 0.500 0.50 

29 0.033 0.032 0.033 0.064 0.062 0.067 0.093 0.09 0.100 0.259 0.250 0.50 

28 0.033 0.031 0.033 0.062 0.058 0.067 0.086 0.081 0.100 0.129 0.125 - 

27 0.033 0.03 0.033 0.06 0.054 0.067 0.080 0.073 0.100 0.062 0.063 - 

26 0.033 0.029 0.033 0.057 0.051 0.067 0.074 0.066 0.100 0.029 0.031 - 

25 0.033 0.028 0.033 0.055 0.047 0.067 0.068 0.059 0.100 0.013 0.016 - 

24 0.033 0.027 0.033 0.053 0.044 0.067 0.062 0.053 0.100 0.005 0.008 - 

23 0.033 0.026 0.033 0.051 0.041 0.067 0.057 0.048 0.100 0.002 0.004 - 

22 0.033 0.025 0.033 0.048 0.038 0.067 0.052 0.043 0.100 0.001 0.002 - 

21 0.033 0.025 0.033 0.046 0.036 0.067 0.047 0.039 0.100 0.000 0.001 - 

20 0.033 0.024 0.033 0.044 0.033 0.067 0.042 0.035 - 0.000 0.000 - 

19 0.033 0.023 0.033 0.041 0.031 0.067 0.038 0.031 - 0.000 0.000 - 

18 0.033 0.022 0.033 0.039 0.029 0.067 0.033 0.028 - 0.000 0.000 - 

17 0.033 0.021 0.033 0.037 0.027 0.067 0.030 0.025 - 0.000 0.000 - 

16 0.033 0.021 0.033 0.034 0.025 0.067 0.026 0.023 - 0.000 0.000 - 

15 0.033 0.02 0.033 0.032 0.024 - 0.022 0.021 - - 0.000 - 

14 0.033 0.019 0.033 0.030 0.022 - 0.019 0.019 - - 0.000 - 

13 0.033 0.019 0.033 0.028 0.021 - 0.016 0.017 - - 0.000 - 

12 0.033 0.018 0.033 0.025 0.019 - 0.014 0.015 - - 0.000 - 

11 0.033 0.018 0.033 0.023 0.018 - 0.011 0.014 - - 0.000 - 

10 0.033 0.017 0.033 0.021 0.017 - 0.009 0.012 - - 0.000 - 

9 0.033 0.016 0.033 0.018 0.016 - 0.007 0.011 - - 0.000 - 

8 0.033 0.016 0.033 0.016 0.015 - 0.005 0.010 - - 0.000 - 

7 0.033 0.015 0.033 0.014 0.014 - 0.004 0.009 - - 0.000 - 

6 0.033 0.015 0.033 0.011 0.013 - 0.002 0.008 - - 0.000 - 

5 0.033 0.014 0.033 0.009 0.012 - 0.001 0.007 - - 0.000 - 

4 0.033 0.014 0.033 0.007 0.011 - 0.001 0.006 - - 0.000 - 

3 0.033 0.013 0.033 0.005 0.010 - - 0.006 - - 0.000 - 

2 0.033 0.013 0.033 - 0.010 - - 0.005 - - 0.000 - 

1 - 0.012 0.033 - 0.009 - - 0.005 - - 0.000 - 

Initial 

value 1X  ? - 2X  ? - 3X  ? - 15X  ? - 

Weight of 

initial 
0.033 0.362 - 0.002 0.126 - 0.000 0.042 - 0.000 0.000 - 

AA 14.500 18.150 14.500 9.333 12.107 7.000 6.757 8.491 4.500 0.938 1.000 0.50 

V 0.032 0.015 0.033 0.045 0.034 0.067 0.062 0.053 0.100 0.339 0.333 0.50 

The weights these three approaches assign to observations for these two cases (n=12 and n=30) are visualized in 

Figures 2 and 3. From the figures it can be seen that 𝐴𝑇𝐴(𝑝, 0) starts with weights equal to those from MA for p=1 

and as p increases it starts to produce weights similar to SES with the exception that it keeps assigning more weight 

to recent observations and less weight to older observations while assigning some of the oldest observations zero 

weight like MA. As p increases the weights from 𝐴𝑇𝐴(𝑝, 0) get closer to the weights from SES. 
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Figure 2. Weights assigned to observations by 𝐴𝑇𝐴(𝑝, 0), SES and MA for n=12 and various p values 

 

Figure 3. Weights assigned to observations by 𝐴𝑇𝐴(𝑝, 0), SES and MA for n=30 and various p values 
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To summarize, if the goal is to estimate the final value for a component and it is known that it is changing in time, 

it makes sense to give greater emphasis to the most recent history versus the more distant past, due to fact that the 

component is changing and therefore the recent history should more accurately reflect current conditions. For this 

reason it is not surprising that ATA is more accurate than traditional ES methods. Also philosophically, ATA does 

never violate the concept of exponential smoothing; from the point of view that the recent data is more representative 

of the future therefore should be assigned more weight. This is guaranteed with ATA since the smallest weight 

attached to the most recent observation is 1 𝑛⁄ .  However, with exponential smoothing models this is not always the 

case since the weight assigned to the most recent observation can be much smaller than that assigned to the initial 

value which is highly contradictory of the time series concept that the recent past should receive greater emphasis 

when predicting the future. 

 

4. M-3 competition results 

To compare 𝐴𝑇𝐴(𝑝, 0) and SES  on their forecasting accuracies, we applied both methods to the M3-competition 

data ([6]) since this collection is the most recent and comprehensive time-series data collection available with verified 

results. This collection consists of 3003 data sets from various fields. Data sets are of various lengths, with different 

kinds of trend and seasonality components and each data set consists of in-sample and out-sample data points. When 

comparing the methods, the optimum smoothing parameters are obtained by minimizing an in-sample error measure 

and then the forecasts up to 18 steps ahead (the number of steps as specified in the M3-competition) are computed to 

obtain the average out-sample errors for both models. The data sets are deseasonalized by the classical decomposition 

method of the ratio-to-moving averages, if necessary and reseasonalized forecasts are produced for as many steps 

ahead as required.  

First, to stay consistent with the rest of the literature, the symmetric mean absolute percentage errors (sMAPE) 

were used. The in-sample one-step-ahead sMAPE can be defined as: 
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where 
tX  is the actual value and ˆ

tX  is the one-step-ahead forecast.  For all data sets, the required numbers of 

forecasts (for the pre-determined forecasting horizons) were computed and out-sample sMAPEs were averaged 

across all 3003 series for each forecasting horizon. The results are given in Table 3. 

Table 3. Average sMAPE across different forecasting horizons: all 3003 series 

 Forecasting horizons  Averages 

Method 1 2 3 4 5 6 8 12 15 18  1--4 1--6 1--8 1--12 1--15 1--18 

SES 9.5 10.6 12.7 14.1 14.3 14.9 13.3 14.5 18.3 19.4  11.73 12.68 12.82 13.12 13.66 14.31 

ATA 8.9 10.0 12.1 13.7 13.9 14.7 12.8 13.9 17.3 18.9  11.16 12.21 12.34 12.64 13.13 13.77 

When the methods are compared based on sMAPE as in Table 3, it can be seen that 𝐴𝑇𝐴(𝑝, 0) produces smaller 

average errors for all individual forecasting horizons. The errors are averaged for short and long term horizons on 

the right side of the table so that the differences between the errors can be more clearly seen. Overall 𝐴𝑇𝐴(𝑝, 0)’s 

average sMAPE is 13.77 compared to 14.31 for SES which is significantly larger. It is also worth noting that the 

average sMAPE for all forecasting horizons for the ETS models proposed by [10] is exactly the same (13.77) as the 

average sMAPE for 𝐴𝑇𝐴(𝑝, 0). This is very impressive since 𝐴𝑇𝐴(𝑝, 0), a single model, can produce as accurate 

forecasts as ETS which performs a model selection on 24 exponential smoothing models for each data set. 

Another comparison can be made based on the mean absolute scaled error (MASE) proposed by [19]. MASE can 

be calculated using 
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where 
te  in the numerator of 

tq  is the error from the method and denominator of 
tq  can be thought of as the in-

sample mean absolute error from the naive forecast method where the forecast for any time point t  is simply assumed 

to be
1tX 
. MASE is independent of the scale of the data and it will be less than one if the method gives, on average, 

smaller errors than the one-step ahead errors from the naive method. It is preferred over other scaled measures since 

it is less sensitive to outliers and scaled errors are starting to be more commonly used for comparing forecast accuracy 

across series on different scales. We summarize the average MASE for both models in Table 4. When the comparison 

is based on this metric, 𝐴𝑇𝐴(𝑝, 0) still performs better than SES on each forecasting horizon and on average for both 

short and long term forecasting horizons. 

Table 4. Average MASE across different forecasting horizons: all 3003 series 

 Forecasting horizons  Averages 

Method 1 2 3 4 5 6 8 12 15 18  1--4 1--6 1--8 1--12 1--15 1--18 

SES 0.78 1.03 1.36 1.63 1.82 2.05 1.49 0.97 1.25 1.38  1.20 1.45 1.44 1.35 1.32 1.33 

ATA 0.75 1.00 1.33 1.61 1.80 2.04 1.47 0.97 1.20 1.37  1.17 1.42 1.42 1.33 1.30 1.30 

 

5. Conclusion 

In this paper, the comparisons between ATA and ES are carried out based on the simple versions of the two 

approaches. These comparisons in addition to the empirical performances of the methods prove that based on 

accuracy, simplicity, speed and interpretability ATA is better than ES. 

ATA is very flexible and the next line of research on ATA will be incorporating dampened and multiplicative 

trend components to the model in addition to obtaining prediction intervals. The fact that even the simple version of 

ATA performs so well is very promising and it is inevitable that the more sophisticated versions where combinations 

and model selection are allowed will perform much better. 
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