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Abstract 

In this paper, we focused on testing for the equality of several log-normal means since the log-

normal distribution is one of the most common distributions for analyzing positive and right-

skewed data. Recently, many researchers have proposed a lot of methods based on likelihood-

based methods, generalized pivotal-based methods, and bootstrap-based methods for this case. 

Apparently, since there is not an exact result regarding which test is better than the others in which 

cases, our goal shed light on this important issue. For this reason, we investigate these methods 

and compare them with each other by a simulation study.   
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1. INTRODUCTION  

The log-normal distribution is one of the most common distributions that is used to model positive and 

right-skewed data. It has many practical applications such as economic data, data on response of biological 

material to stimuli, and certain types of life data [3]. A very common problem in applied statistics is to 

compare the means of several log-normal distributions. By using log-transformation version of data, the 

classical ANOVA F-test can be used for this problem. However, the classical ANOVA F-test has high type 

I error rate when the variances of groups are not equal. In the literature, there are many tests dealing with 

this issue [23, 24, 11, 21, 10].   

Traditional tests, including the classical likelihood ratio test (LRT), are asymptotic in nature, and hence do 

not perform well for small sample sizes. Therefore, in recent years, methods called as likelihood-based 

methods, generalized pivotal (GV)-based methods, bootstrap-based methods have been proposed by 

researchers for testing the equality of means of several log-normal distributions. Gill [4] proposed a method 

introduced by Skovgaard [20] , which is a correction to the LRT for small-sample situations. This method 

is referred to as the modified likelihood ratio test (MLRT). A limited simulation study was carried out for 

comparing this test with F-ratio test, only in cases where k=5 and n=5. Besides, Krishnamoorthy and Oral 

[14] proposed a method to improve the LRT, which is called the standardized likelihood ratio test (SLRT), 

for testing the equality of means of several log-normal distributions. They compared it with the MLRT and 

the generalized variable test (GVT). Simulation studies showed that the SLRT appears to be the best in 

terms of type I error rates and powers. They also noted that the MLRT is not appropriate for applications 

as it is not defined for some samples.  

Furthermore, there are alternative modifications based on likelihood ratio method in the literature. For 

example, Wu et al. [22] proposed two methods based on likelihood approach, which are called the signed 

likelihood ratio and modified signed likelihood ratio methods, to construct a confidence interval for the 

mean of a log normal distribution. Lin [16] proposed higher order likelihood method known as the modified 

signed likelihood ratio method to construct a confidence interval for the common mean of several log 

normal distributions. However, these modified versions are very difficult to extend to compare two or more 

log-normal means. 

http://dergipark.gov.tr/gujs
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In the literature, methods based on GV are suggested for testing the equality of means of several log-normal 

distributions. Krishnamoorthy and Mathew [13] suggested the GV approach for testing the equality of two 

log-normal means. Li [17] generalized the GV approach of Krishnamoorthy and Mathew [13] by adopting 

a quadratic procedure for testing the equality of several log-normal means. Li’s simulation study showed 

that when comparing this test with Welch test, it is better than the other. However, Lin and Wang [15] noted 

that the quadratic procedure cannot be suitable for asymmetric distributions, thus they proposed a 

modification of the quadratic method for testing the equality of means of several log-normal distributions. 

They also showed that Li’s [17] results are acceptable only under some combinations of the parameters of 

log-normal distribution.  

In the literature, another proposed approach is bootstrap approach (PB) for testing the equality of means of 

several log-normal distributions. The PB is a type of Monte Carlo method applied on observed data. A 

computational approach test (CAT), which is a type of parametric bootstrap method, was firstly proposed 

by Pal et al. [19]. The CAT method based on simulation and numerical computations uses the maximum 

likelihood estimates (MLEs), and does not require the knowledge of any sampling distribution. Some papers 

related to the CAT are given as, Chang et al. [1, 2], Gökpınar and Gökpınar [6,8,9], Gökpınar et al. [7], 

Mutlu et al. [18], etc.. Gökpınar and Gökpınar [5] proposed a test based on CAT for testing the equality of 

several log-normal means. They compared it with Welch test and GV approach by Krishnamoorthy and 

Methew [13] when the number of groups was 2 (k=2). Their numerical results show that the proposed test 

is better than the others in most of the considered cases. Jafari and Abdollahnezhad [12] proposed three 

tests based on CAT for testing the equality of several log-normal means. Two of these tests are CAT 

modifications of the LRT and MLRT. They compared them with the other tests-the LRT, the MLRT, GV 

approach by Li [17] and GV approach by Krishnamoorthy and Methew [13] when k=2- only in terms of 

the type I error rates. Their simulation study showed that the type I error rates of CAT modifications of the 

LRT and MLRT are closer to the nominal level than the others. 

As mentioned above, in general, for testing the equality of means of several log-normal distributions, 

classified methods in the literature are three folds: likelihood-based methods, generalized pivotal-based 

methods and bootstrap-based methods. For this reason, in this study we investigated these methods and 

compared them with each other by a comprehensive simulation study.  

The rest of this study was organized as follows. In Section 2, we defined the null and alternative hypotheses 

of interest, and presented the likelihood-based methods-LRT, MLRT, SLRT-, generalized pivotal-based 

methods-GV approach by Krishnamoorthy and Mathew [13] when k=2, GV approach by Li [17]-,bootstrap-

based methods-CAT approach by Gökpınar and Gökpınar [5], CAT approaches by Jafari and 

Abdollahnezhad  [12]-. In Section 3, we conducted simulation study to assess the type I error rates and 

powers of these tests for different cases. Concluding remarks were summarized in Section 4.  

2.  TEST STATISTICS 

Let , 1, , , 1, , ,ij iY i k j n   be a random sample from population with log-normal  2

i i,   

distribution. The mean of the ith population is given as
 i iM exp( ),   where 

2

i i i 2.     It is well 

known that ij ijln( )X Y  is distributed as normal distribution with mean 
i  and variance 

2

i .  The unbiased 

estimators of 
2

i iand   are defined as  

 

in

i ij ij 1
X X n


 ,          i

2n2

i ij i ij 1
S X X n 1 .


  

                                                              
(1) 

 

We want to test H0 against H1 given in Eq. (2): 

 

 0 1 2 k 1 i iH : M M M , H : M M , i i i, i 1, , k . (2)
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It is clear that testing H0 in Eq. (2) is equivalent to testing (1)

0H  in Eq. (3) given as 

 

 (1) (1)

0 1 2 k 1 i iH : , H : , i i i, i 1, , k . (3)
              

 

 

In the following sections, for testing H0 in Eq. (2) (or (1)

0H in Eq. (3)), likelihood-based methods, 

generalized pivotal-based methods and bootstrap-based methods were presented. 

2.1. Likelihood-Based Tests 

2.1.1. The likelihood ratio test 

The log-likelihood function is  

 
 

2

2

2
1 1 1

0.5 log 0.5 .
ink k

ij i

i i

i i j i

x
l n




  


     

 

The maximum likelihood (ML) estimates of 2

i iand    are denoted as  

 

in

i i ij ij 1
ˆ X X n


                i

2n2

i ij i ij 1
ˆ X X n .


                                                          (4) 

 

Under the null hypothesis the log-likelihood function, that is, the restricted log-likelihood function 

is 
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The restricted maximum likelihood (RML) estimates of 2

i iand    are given as 
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As seen from equations, the RMLEs of the   and 2

i  have no closed forms. The RMLEs of  and 
2

i  
(i=1,2,...,k) can be solved iteratively. Jafari and Abdollahnezhad [12] used an initial value 
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k k

0

i i i

i i

n x n   , Gökpınar and Gökpınar [5] used an initial value 
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The likelihood ratio test (LRT) is  
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where i

i


k

n n .   has an approximate chi-square distribution with k-1 degrees of freedom under 

the null hypothesis. 

 

2.1.2. The Modified Likelihood Ratio Test 

Gill [4] proposed a correction given by Skovgaard [20] to the likelihood ratio test statistic which 

leads to more accurate inference in small-sample situations. The modified likelihood ratio test 

(MLRT) is given by  

  
2

1* 1 log .
                                                                   (7) 

Here  is defined as 
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.                                                            (8) 

where 
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 be an estimate of  

under the null hypothesis. Similarly, and   are estimates of and   under the null 
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hypothesis. ˆ ˆand   are ML estimates of and  . *  has an approximate chi-square 

distribution with k-1 degrees of freedom under the null hypothesis. 

Remark 1. Krishnamoorthy and Oral [14] noted that, as the quantity  in Eq. (8) could be negative 

for some samples, the MLRT is not appropriate for these cases. We also observed this case in the 

simulation study, then we ignored this test in the simulation study.  

 

2.1.3. The standardized likelihood ratio test 

Krishnamoorthy and Oral [14] proposed the standardize likelihood ratio test (SLRT) for testing 

the equality of means of several log-normal distributions. The SLRT is defined as 

 

 
 2(k 1) 1 ,

S

m
k

SD

   
       

                                                  (9) 

where    andm SD   are the mean and standard deviation of , respectively. 
S

 has an 

approximate chi-square distribution with k-1 degrees of freedom under the null hypothesis. 

Krishnamoorthy and Oral [14] estimated the expressions of    vem SD   through simulation 

because they are difficult to obtain. The SLRT can be computed through the following steps. 

For a given data  1 2, , , ,
ii i inx x x calculate 

2and .i ix s  

1. Calculate the LRT statistic in Eq. (6) 

2. Generate an artificial sample  2 2

ij i i iX N 0.5 , , j 1,...,n , i 1,...,k       where  2

iand   in Eq. 

(5). 

3. Calculate the LRT statistic in Eq. (6) for this replicated sample. 

4. Repeat the steps 2 and 3 for a large number of times. 

5. Calculate the mean and standard deviation of these simulated LRT, and find the SLRT statistic 

S
   in   Eq. (9).  

6. If 2

1;1S k 
 

  , then H0 is rejected. 

 

2.2. The Generalized Variable-based Tests 

2.2.1. Krishnamoorthy and Mathew’s Test  

Krishnamoorthy and Mathew [13] suggested the GV approach for testing the equality of two log-

normal means. The GV is defined as: 

1 2
T T T ,    

where  

i

2
2i i i

i i i i 2

i i

Z (n 1)
T (n 1) n , i 1,2. (10)

U 2U

s
x s


      

Here      2 2 2 2

1~ 0,1 and 1 ~ , 1,2.
ii i i i i i i i i nZ n X N U n S i          The GV method can 

be computed through the following steps. 
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For a given data  1 2, , , ,
ii i inx x x calculate 

2and .i ix s
 

1. Generate  
i

2 2

i i 10,1 and ~ , 1,2 nZ ~ N U i .
 

   2 22. Compute 1 1 2 , 1,2 in Eq.(10).      
i i i i i i i i i iT x Z s n U n s n U i

  

1 2
3. Compute T T T .    

4. Let Al =1 if T0. 

5. Repeat step 1-4 a total L times. Let  p*
1

.
L

ll
A L


  

6. Calculate the p-value as p= 2min(p*, 1- p*). In the case of  p<, 
0H  is rejected.  

2.2.2. Li’s Test 

Li [17] proposed the GV approach for testing the equality of several log-normal means by using 

the GV suggested by Krishnamoorthy and Mathew [13]. The GV method can be computed through 

the following steps. 

1. Generate  
i

2 2

i i 10,1 and ~ , 1,...,k.nZ ~ N U i 
 

 
1 1

2. Compute = ,..., .
k k k

D T T T T
    

 
  

3. Repeat the steps 1 and 2 for a large number of times, say, M. 

4. Calculate the mean and covariance of these values of D


, denote them by ˆˆ andT T  , 

respectively. 

5. Calculate 1ˆˆ ˆ .T T T   

6. Calculate    * 1ˆˆ ˆ ,T T TQ D D       for each of M values of .D


 

7. Repeat step 1-6 a large number of times, say, L. Calculate the estimate of the generalized p 

value, that is,  * 1ˆˆ ˆ ˆ# .T T Tp Q L      

We refer to this test as L-GV in the simulation study. 

2.2.3. Lin and Wang’s Test 

Lin and Wang [15] proposed a modified method based on GV approach for testing the equality of 

several log-normal means. (1)

0H in Eq. (3) can be expressed as follows: 

(2) *

0 0 0H : ,C  

 

where  1 2θ ,θ ,...,θk
θ , 

0 k 1 0  and  

*

0

1 1 0 0

1 0 1 0

1 0 0 1

 
 


 
 
 

 

C  
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The GV given in Eq. (10) can be written as: 

 
i

2

i 2

( 1)
T , 1,..., k . (11)

2

i i i
i

ii

s s n
x t i

Un



     

The proposed modified method based on GV approach can be computed through the following 

steps. 

For a given data  1 2, , , ,
ii i inx x x calculate 

2and .i ix s  

1. Generate 
i

2 2

1 i 1and ~ , 1,...,k.
ii n nt ~ t U i    

2. Compute , i=1,2...,k.i
T  

3. Compute R=C*G, where * *

0C C  and  
1 2

= , ,...,  


k

T T TG . 

4. Repeat step 1-3 m times and obtain an array of Rs. 

5. Calculate the mean and covariance matrix of R, denote them by andRm
*
RS , respectively. 

Obtain    
1/2

q qR


  RR m
*
RS  for q=1,2,…,m. 

6. Compute 
m

q p q

p 1

d m, q 1,...,m.


 
   
 
 R R  

7. Let 
m

0 p 0

p 1

d


  R R with    
1/2

0 0



  RR m
*
RS  ,  then calculate Monte Carlo estimate of 

the generalized p-value as  0 qp̂ # d d m  , for q=1,…m. 

 

We refer to this test as LW-GV in the simulation study. 

2.3. Parametric Bootstrap-based Tests 

2.3.1. Gökpınar and Gökpınar’s CAT Test 

Gökpınar and Gökpınar [5] proposed a test based on CAT which is a type of parametric bootstrap 

method. (1)

0H in Eq. (3) is expressed in terms of suitable scalar  as follows: 

  
 

2
k

i i(3)

0 1 k 2
i 1 i

n
H : , , 0,



  
      




                                                     

(12) 

where 
k k

i i ii 1 i 1
n n .

 
     

Using the MLEs of µi and i
2 (i=1,2,...,k), we can obtain the 

estimator of   which can be used as a test statistic for testing (3)

0H . The CAT method can be 

computed through the following steps. 

1. Calculate the MLE of , that is,  
k 2

2

i i i

i 1

ˆˆˆ ˆn


      , where 

k k2

i i i i i ii 1 i 1

ˆˆ ˆX S 2 and n n
 

       , 
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2. Assume that (1)

0H  is true, find the restricted MLEs of  2 2

1 1k, , ,    in Eq. (5), and denoted 

as  2 2

1 1k, , ,   . 

3. Generate artificial sample  2 2

i~N - 2, , 1,..., n , 1,..., k ij i iX j i    a large of number of 

times (say, L times). For each of these replicated samples, recalculate the values of 
( )ˆ , 1,..., .l l L   

4. Calculate the p-value as  ( )ˆ ˆ# lp L   . In the case of p<, H0 is rejected.  

We refer to this test as CAT1 in the simulation study. 

2.3.2. Jafari and Abdollahnezhad’s CAT Tests 

Jafari and Abdollahnezhad  [12]  proposed some tests based on CAT for testing the equality of 

several log-normal means. (1)

0H in Eq. (3) can be expressed as follows: 

(4)

0H :C , 0

 

where  1 2, ,..., k   θ   and  

1 1 0 0

1 0 1 0
C

1 0 0 1

 
 


 
 
 

 

 

The test statistic is given as: 

     
2

1* 2

1 1

1

1ˆ ˆ ˆ ˆ , 


 



 
    

 
 



k k

i i i ik
i i

i

i

T C CVC C w w

w

                                 (13) 

where   
 

1
2 4

1
and .

2 1

i i
i i

i i i

S S
V diag v w

v n n



 
          

 The proposed test based on CAT 

method can be computed through the following steps. 

1. Calculate the value of T* in Eq. (13), denote it by T̂ *. 

2. Find the restricted MLEs of  2 2

1 1k, , ,    in Eq. (5), that is,  2 2

1 1k, , ,   . 

3. Generate artificial sample  2 2

i~N -0.5 , , 1,..., n , 1,..., kij i iX j i      a large of number of 

times (say, L times). For each of these replicated samples, recalculate the values of T* and 

denote it by 
*( )ˆ , 1,..., .lT l L  

4. Calculate the p-value as  *( ) *ˆ ˆ# lp T T L . In the case of p<, H0 is rejected.  

We refer to this test as CAT2 in the simulation study.  

Jafari and Abdollahnezhad  [12] also proposed two tests based on CAT. These approaches are very similar 

to the previous test, in the first approach, they used the likelihood ratio statistic in Eq. (6), instead of T 

statistic in Eq. (13).  We refer to this test based on the likelihood ratio statistic as CAT3. Therefore, we do 

not mention how to calculate these tests’ steps again. In the second approach, they also used the modified 
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likelihood ratio statistic in Eq. (7), instead of T statistic in Eq. (13). As mentioned in the remark, because 

the MLRT is not appropriate for some samples, we ignored this test based on CAT in the simulation study.  

3. SIMULATION STUDY 

In this section, the SLRT, L-GV, LW-GV, CAT1, CAT2 and CAT3 were compared with respect to their 

estimated type I error rates and powers. We considered the cases of k=3, 5 with small and moderately large 

sample sizes.  

To estimate the type I error rates and powers of all the tests under the specified nominal level of 0.05, we 

generated 2000 random numbers with sample size ni (i=1,…,k) from the log-normal distribution. We also 

took L=m=2000 to estimate the p-values. The simulation study was carried out in the MATLAB. The 

estimated type I error rates and powers of all the tests were given in the tables. 

 

Table 1. The estimated type I error rates of the all tests for k=3 

σ n CAT CAT2 CAT3 SLRT L-GV LW-GV 

1,2,2 

6,6,6 0.033 0.033 0.047 0.047 0.009 0.010 

10,10,10 0.042 0.047 0.062 0.063 0.018 0.020 

20,20,20 0.052 0.048 0.052 0.052 0.028 0.031 

30,30,30 0.054 0.047 0.048 0.051 0.029 0.035 

6,6,10 0.026 0.038 0.048 0.047 0.007 0.008 

6,10,20 0.041 0.036 0.046 0.045 0.012 0.014 

10,20,30 0.040 0.041 0.047 0.048 0.018 0.022 

1,2,4 

6,6,6 0.028 0.045 0.050 0.051 0.013 0.015 

10,10,10 0.044 0.042 0.052 0.050 0.018 0.020 

20,20,20 0.046 0.046 0.048 0.048 0.029 0.032 

30,30,30 0.044 0.043 0.044 0.042 0.034 0.034 

6,6,10 0.035 0.033 0.044 0.046 0.006 0.013 

6,10,20 0.028 0.036 0.056 0.057 0.010 0.012 

10,20,30 0.042 0.050 0.060 0.060 0.027 0.030 

1,4,9 

6,6,6 0.017 0.034 0.044 0.042 0.017 0.019 

10,10,10 0.037 0.051 0.054 0.054 0.035 0.038 

20,20,20 0.033 0.059 0.058 0.059 0.047 0.048 

30,30,30 0.051 0.053 0.054 0.052 0.045 0.044 

6,6,10 0.017 0.046 0.061 0.062 0.020 0.021 

6,10,20 0.012 0.047 0.048 0.048 0.014 0.018 

10,20,30 0.033 0.046 0.045 0.047 0.028 0.031 
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Table 2. The estimated type I error rates of the all tests for k=5 

σ n CAT1 CAT2 CAT3 SLRT L-GV LW-GV 

1,1,2,2,2 

6,6,6,6,6 0.042 0.034 0.049 0.052 0.004 0.006 

10,10,10,10,10 0.039 0.044 0.057 0.058 0.012 0.016 

20,20,20,20,20 0.046 0.045 0.050 0.049 0.026 0.029 

30,30,30,30,30 0.045 0.052 0.050 0.052 0.035 0.041 

6,6,6,10,10 0.042 0.031 0.053 0.052 0.008 0.011 

6,6,10,10,20 0.044 0.036 0.060 0.060 0.011 0.014 

10,10,20,20,30 0.052 0.043 0.044 0.044 0.016 0.022 

1,1,2,2,4 

6,6,6,6,6 0.036 0.032 0.052 0.055 0.006 0.010 

10,10,10,10,10 0.043 0.043 0.049 0.051 0.017 0.021 

20,20,20,20,20 0.043 0.050 0.048 0.048 0.028 0.035 

30,30,30,30,30 0.040 0.052 0.048 0.049 0.034 0.038 

6,6,6,10,10 0.040 0.027 0.045 0.044 0.008 0.009 

6,6,10,10,20 0.036 0.031 0.049 0.048 0.007 0.007 

10,10,20,20,30 0.040 0.045 0.049 0.049 0.014 0.021 

1,2,2,4,9 

6,6,6,6,6 0.029 0.033 0.039 0.038 0.013 0.013 

10,10,10,10,10 0.035 0.045 0.050 0.049 0.022 0.022 

20,20,20,20,20 0.044 0.041 0.046 0.043 0.029 0.032 

30,30,30,30,30 0.041 0.045 0.045 0.043 0.032 0.033 

6,6,6,10,10 0.025 0.047 0.061 0.061 0.015 0.017 

6,6,10,10,20 0.036 0.030 0.050 0.051 0.010 0.012 

10,10,20,20,30 0.043 0.045 0.049 0.050 0.017 0.023 

 

 

Table 3. The estimated powers of the all tests for k=3 and =(0.5, 1, 1.5) 

σ n CAT1 CAT2 CAT3 SLRT L-GV LW-GV 

1,2,2 

6,6,6 0.085 0.060 0.128 0.132 0.009 0.011 

10,10,10 0.163 0.121 0.187 0.189 0.040 0.047 

20,20,20 0.358 0.335 0.385 0.383 0.249 0.266 

30,30,30 0.551 0.522 0.560 0.559 0.454 0.467 

6,6,10 0.131 0.079 0.146 0.150 0.028 0.034 

6,10,20 0.208 0.201 0.193 0.194 0.094 0.112 

10,20,30 0.325 0.353 0.305 0.305 0.219 0.234 

1,2,4 

6,6,6 0.072 0.020 0.070 0.070 0.005 0.007 

10,10,10 0.118 0.038 0.112 0.113 0.008 0.013 

20,20,20 0.249 0.097 0.235 0.238 0.076 0.089 

30,30,30 0.364 0.193 0.325 0.323 0.189 0.202 

6,6,10 0.113 0.025 0.090 0.092 0.006 0.005 

6,10,20 0.182 0.092 0.134 0.134 0.026 0.037 

10,20,30 0.268 0.176 0.197 0.195 0.092 0.101 

1,4,9 

6,6,6 0.044 0.024 0.047 0.047 0.008 0.011 

10,10,10 0.074 0.026 0.065 0.067 0.019 0.020 

20,20,20 0.115 0.011 0.092 0.089 0.011 0.011 

30,30,30 0.158 0.021 0.132 0.133 0.039 0.039 

6,6,10 0.057 0.022 0.062 0.061 0.010 0.009 

6,10,20 0.075 0.026 0.078 0.075 0.007 0.009 

10,20,30 0.142 0.027 0.094 0.097 0.019 0.021 
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Table 4. The estimated powers of the all tests for k=3 and =(0.5, 1,  2) 
σ n CAT1 CAT2 CAT3 SLRT L-GV LW-GV 

1,2,2 

6,6,6 0.119 0.112 0.238 0.240 0.022 0.027 

10,10,10 0.306 0.314 0.417 0.417 0.109 0.135 

20,20,20 0.666 0.719 0.751 0.753 0.590 0.612 

30,30,30 0.875 0.913 0.922 0.921 0.865 0.871 

6,6,10 0.224 0.168 0.271 0.273 0.063 0.077 

6,10,20 0.370 0.376 0.380 0.380 0.224 0.237 

10,20,30 0.608 0.656 0.618 0.623 0.515 0.523 

1,2,4 

6,6,6 0.102 0.029 0.138 0.141 0.004 0.006 

10,10,10 0.206 0.067 0.220 0.217 0.011 0.020 

20,20,20 0.496 0.248 0.453 0.453 0.187 0.208 

30,30,30 0.650 0.456 0.626 0.634 0.418 0.441 

6,6,10 0.185 0.048 0.173 0.175 0.008 0.011 

6,10,20 0.334 0.195 0.268 0.269 0.071 0.084 

10,20,30 0.492 0.369 0.420 0.422 0.223 0.243 

1,4,9 

6,6,6 0.049 0.018 0.061 0.058 0.006 0.010 

10,10,10 0.108 0.018 0.086 0.088 0.013 0.013 

20,20,20 0.203 0.016 0.151 0.150 0.021 0.024 

30,30,30 0.282 0.034 0.232 0.233 0.058 0.072 

6,6,10 0.091 0.021 0.082 0.080 0.008 0.011 

6,10,20 0.155 0.025 0.111 0.112 0.006 0.007 

10,20,30 0.258 0.051 0.181 0.185 0.031 0.034 

 

 

 

Table 5. The estimated powers of the all tests for k=5 and =(0.5, 0.5, 1, 1, 1.5) 
σ n CAT1 CAT2 CAT3 SLRT L-GV LW-GV 

1,1,2,2,2 

6,6,6,6,6 0.078 0.036 0.124 0.129 0.002 0.004 

10,10,10,10,10 0.146 0.097 0.206 0.206 0.018 0.029 

20,20,20,20,20 0.377 0.280 0.430 0.427 0.170 0.209 

30,30,30,30,30 0.565 0.517 0.618 0.625 0.448 0.469 

6,6,6,10,10 0.124 0.066 0.161 0.161 0.011 0.016 

6,6,10,10,20 0.219 0.146 0.212 0.213 0.064 0.079 

10,10,20,20,30 0.357 0.339 0.365 0.364 0.183 0.210 

1,1,2,2,4 

6,6,6,6,6 0.069 0.023 0.103 0.103 0.006 0.008 

10,10,10,10,10 0.133 0.036 0.140 0.140 0.007 0.011 

20,20,20,20,20 0.277 0.109 0.245 0.240 0.071 0.087 

30,30,30,30,30 0.418 0.217 0.389 0.392 0.189 0.214 

6,6,6,10,10 0.126 0.026 0.122 0.121 0.006 0.008 

6,6,10,10,20 0.184 0.054 0.130 0.126 0.011 0.016 

10,10,20,20,30 0.303 0.169 0.226 0.226 0.087 0.102 

1,2,2,4,9 

6,6,6,6,6 0.042 0.024 0.049 0.050 0.005 0.007 

10,10,10,10,10 0.079 0.028 0.069 0.072 0.012 0.015 

20,20,20,20,20 0.124 0.022 0.091 0.092 0.017 0.019 

30,30,30,30,30 0.164 0.027 0.146 0.145 0.030 0.040 

6,6,6,10,10 0.068 0.023 0.077 0.074 0.005 0.006 

6,6,10,10,20 0.079 0.025 0.065 0.067 0.006 0.006 

10,10,20,20,30 0.158 0.045 0.096 0.094 0.012 0.021 
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Table 6. The estimated powers of the all tests for k=5 and =(0.5, 1, 1.5, 1.5, 2)                                            
σ n CAT1 CAT2 CAT3 SLRT L-GV LW-GV 

1,1,2,2,2 

6,6,6,6,6 0.118 0.072 0.172 0.174 0.008 0.012 

10,10,10,10,10 0.286 0.237 0.343 0.348 0.077 0.100 

20,20,20,20,20 0.667 0.643 0.687 0.688 0.500 0.540 

30,30,30,30,30 0.875 0.873 0.887 0.889 0.813 0.828 

6,6,6,10,10 0.194 0.128 0.241 0.238 0.033 0.046 

6,6,10,10,20 0.320 0.269 0.319 0.318 0.117 0.145 

10,10,20,20,30 0.576 0.564 0.524 0.531 0.352 0.394 

1,1,2,2,4 

6,6,6,6,6 0.109 0.045 0.150 0.149 0.003 0.007 

10,10,10,10,10 0.235 0.103 0.223 0.222 0.034 0.049 

20,20,20,20,20 0.512 0.397 0.509 0.512 0.305 0.341 

30,30,30,30,30 0.754 0.668 0.733 0.732 0.612 0.638 

6,6,6,10,10 0.176 0.062 0.153 0.152 0.012 0.015 

6,6,10,10,20 0.294 0.137 0.197 0.199 0.033 0.042 

10,10,20,20,30 0.465 0.351 0.358 0.364 0.194 0.218 

1,2,2,4,9 

6,6,6,6,6 0.069 0.019 0.084 0.084 0.004 0.005 

10,10,10,10,10 0.126 0.016 0.123 0.123 0.006 0.009 

20,20,20,20,20 0.260 0.058 0.246 0.250 0.049 0.061 

30,30,30,30,30 0.425 0.174 0.411 0.408 0.192 0.219 

6,6,6,10,10 0.092 0.023 0.103 0.105 0.003 0.004 

6,6,10,10,20 0.154 0.022 0.125 0.128 0.004 0.004 

10,10,20,20,30 0.280 0.099 0.202 0.202 0.041 0.053 

 

From the numerical results in Table 1 and Table 2, it appears that the estimated type I error rates of the 

CAT3 and SLRT are close to the nominal level for all of the considered cases. The estimated type I error 

rates of the CAT1 and CAT2 are close to the nominal level for large sample sizes while the estimated type 

I error rates of these tests are smaller than the nominal level for small sample sizes. The L-GV and LW-GV 

have the estimated type I error rates smaller than the nominal level even for large sample sizes. 

 

We also evaluated the powers of these tests for some sample sizes and parameter configurations. From the 

numerical results in Table 3, it appears that the powers of the CAT3 and especially the SLRT are better 

than the others. As the sample sizes increase, the powers of the CAT1 are close to those of the CAT3 and 

SLRT. Furthermore, the CAT1 are affected positively from the increase of the variances of the groups. In 

these cases, even for small sample sizes, the CAT1 has higher power when compared to the others while 

the estimated type I error rate of the CAT1 are smaller than the nominal level according to the CAT3 and 

SLRT. The L-GV and LW-GV have far smaller powers when compared to the others, even the values of 

these powers are smaller than the nominal level. As the sample sizes increase, the powers of these tests 

increase, but these powers are smaller than those of the others.  

As expected, the powers of all tests increase with the difference of between the values of . From the 

numerical results in Table 4, it appears that the powers of the CAT3 and SLRT are better than the others 

especially for small sample sizes. As the variances of the groups increase, especially for large sample sizes, 

the power of the CAT1 is higher than the others.  

The patterns that we noticed in Table 3 and Table 4 continue to hold in Table 5 and Table 6 as well.  

4.  CONCLUSION 

In this paper, we investigated some methods based on likelihood-based methods, generalized pivotal (GV)-

based methods and bootstrap-based methods for testing the equality of several log-normal means. We 

compared them with each other in terms of type I error rate and power by using Monte Carlo simulation 

for different number of groups and sample sizes. Simulation results indicate that the powers of the CAT3 

and SLRT are better than the others especially for small sample sizes when the difference among the 

variances of the groups is small.  As the variances of the groups increase, especially for large sample sizes, 

the power of the CAT1 is higher than the others. 
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