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Abstract
We define a semi-symmetric metric connection in an S-manifold and study CR-submanifolds of an S-manifold
with a semi-symmetric metric connection. Moreover, we also obtain integrability and parallel conditions of
the distributions on CR-submanifolds. Finally, we give some results of the sectional curvatures of CR-
submanifolds of an S-space form with a semi-symmetric metric connection.
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1 Introduction

Many authors have studied the geometry of submanifolds
of Kaehlerian and Sasakian manifolds. In this manner, the
notion of a CR-submanifold of Kaehler manifold was
introduced by Bejancu in [4]. Later, CR-submanifold of
Sasakian manifolds were studied by Kobayaski in [17]. For
manifolds with an f-structure, Blair has initiated the study
of S-manifolds, which reduce, in particular cases, to
Sasakian manifolds. Mihai [18] and Ornea [19] have
investigated CR-submanifold of S-manifolds. Also,
Algahemi studied CR-submanifold of an S-manifold in [3].
For CR-submanifolds see also: ([11], [12], [20]). In [10],
Cabrerizo et al. are studied curvature of submanifolds of an
S-space form. They are investigated some properties of
invariant and anti-invarinat submanifolds of an S-space
forms with constant sectional curvature.

Let V be a linear connection in an n-dimensional
differentiable manifold M. The torsion tensor T and the
curvature tensor R of V are given respectively by [5].

TX,Y) =VyY -V, X - [X,Y],
R(X,Y)Z = VyVyZ — VyVyZ — Vix yiZ.
The connection V is symmetric if the torsion tensor T
vanishes, otherwise it is non-symmetric. The connection V
is a metric connection if there is a Riemannian metric g in
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M such that Vg = 0 otherwise it is hon-metric. It is well
known that a linear connection is symmetric and metric if it
is the Levi-Civita connection. In [16], Friedmann and
Schouten introduced the idea of a semi-symetric linear
connection. A linear connection V is said to be semi-
symmetric connection if its torsion tensor T is of the form

TX,Y) =n()X —nX)Y
where 7 is a 1-form. In [23], Yano studied some properties
of semi-symmetric metric connections. The semi-
symmetric connection is important in Riemannian
manifolds having also physical applications. The purpose
of the present paper is to study CR-submanifolds of an S-
manifold endowed with a semi-symetric metric connection.

The paper is organized as follows: In Section 2, we give a
brief description of S-manifolds. In Section 3, we give some
properties of CR-submanifolds of S-manifolds and find
necessary conditions for the induced connection on CR-
submanifolds of an S-manifold with a semi-symmetric
metric connection to be also a semi-symmetric metric
connection. In Section 4, we obtain some basic lemmas of
CR-submanifold of an S-manifold with a semi-symmetric
metric connection. In Section 5, we investigate the
integrability conditions of D and D+ distributions of CR-
submanifolds of an S-manifold with a semi-symmetric
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metric connection. In Section 6, we study the geometry of
foliations of CR-submanifolds of an S-manifold with a
semi-symmetric metric connection. Finally, in the last
section, we give CR-submanifolds of S-space forms with a
semi-symmetric metric connection. Some results of the
sectional curvatures of CR-submanifolds of S-space forms
are studied.

2 S-manifolds

Let (M, g) be a (2n+s)-dimensional Riemannian manifold.
Then, it is said to be a metric f-manifold if there exist on
(M, g) an f-structure f, that is a tensor field f of type (1,1)
satisfying f3 + f = 0 (see [22]), of rank 2n and s local
vector fields &, ..., & (called structure vector fields) such
that, if n%, ..., n" are the dual 1-forms of &, ..., & then

fea=0m% e f =0,/ =~ + > " @

a=1

(2.1)

JEY) = gUFX V) + Dt COon(r)  (22)
a=1

for any X,Y € I'(TM) and a = 1, ..., s The f-structure f is

normal if
[f, f1+2%5-

where [f, f]is the Nijenhuis tensor fields of f. Let F be the
fundamental 2-form defined by F(X,Y) = g(X, fY), for
any X,Y € I'(TM). Then M is said to be an S-manifold if
the f-structure is normal and

1$a @ dn® =

A LA Adn®)" #0, F =dn®

forany a =1, ..., s Inthis case, the structure vector fields
are Killing vector fields. When s=1 S-manifolds are
Sasakian manifolds.

The Riemannian connection V of an S-manifold satisfying

7D

(Vxf)Y = Zom1 UK NE +1*NF2X)  (23)
and
Vyéa = —fX (2.4)
forany X,Y e(TM)anda =1, ..., s
3 CR-Submanifold of S-Manifolds
Definition 3.1 An (2m+s)-dimensional Riemannian
submanifold M of S-manifold M is called a CR-

submanifold if &, ..., & is tangent to M and there exists on
M two differentiable distributions D and DY on M

M.A. Akyol
satisfying:
1. TM = D @ D* @ sp{&,, ..., &}

2. The distribution D is invariant under f that is D, =
D, foranyx e M

3. The distribution D+ is anti-invariant under f, that is,
fDt c T{M for any x € M where T, M and T{M are the
tangent space of M at x.

We denote by 2p and q the real dimensions of D, and Di
respectively, for any x € M. Then if p=0 we have an anti-
invariant submanifold tangent to ¢, ..., &, and if g=0 we
have an invariant submanifold.

Now, we give the following example.

Example 3.1 In what follows, (R#**S,f,n,& g) will
denote the manifold R?™*S with its usual S-structure given

by

a
- Z?:l)’i dxi): $a =2—

0zgy

1
=3 (dz,

f Q% 1(X +Y'_)+Za 1Zaa ) =
X; 6_yi) + Za=1 ZizlYiYia

i=1(yia_xi

9 =25 @1 +5 (ks dx; @ dx; + dy; ® dyy),
(%1, s Xy Y1y o2 Y Z1, -, Zo) denoting the Cartesian
coordinates on R?"**S. The consider a submanifold of R*°
defined by

M= X(u, vk, l, tl’ tz) = Z(u, k, 0,0, v, O, l, 0, tl’ tz)

Then local frame of TM
a

9 9
e,=2—,e,=2—,e3=2—
1 dxy’ 2 oy, 3 axy’
d d d
e, =2—,ec =2—= g =2—=
4 9y, €5 oz $1,66 = 92, ¢
and
d . d
et =——,e" =—
1 ax3’ 2 )

from a basis of T*M. We determine D, = sp{e;,e,} and
D, = sp{es,e,}. Then D;, D, are invariant and anti-
invariant distribution, respectively. Thus TM =D, @
D, @ sp{¢,,&,} is a CR-submanifold of RO,

Let V be the Levi-Civita connection of M with
respect to the induced metric g. Then Gauss and Weingarten
formulas are given by

730



/

J

Celal Bayar University Journal of Science
Volume 13, Issue 3, p 729-736

VY =VyY +h(X,Y)
VyN = Vi N — AyX

(3.1)
(3.2)

for any X,Y eT(TM) and N € I(TtM). V** is the
connection in the normal bundle, h is the second
fundamental from of M and Ay is the Weingarten
endomorphism associated with N. The second fundamental
form h and the shape operator A related by

Let M be CR-submanifold of M. M is said to be totally
geodesic if h(X,Y) = 0 forany X,Y € T'(TM).

We denote by R and R the curvature tensor fields associated
with V and V respectively. The Gauss equation is given by

R(X,Y,Z,W) =R(X,Y,Z,W) + g(h(X,Z), h(Y,W))
forall X,Y,Z, W € I'(TM).

The projection morphisms of TM to D and D+ are denoted

by P and Q respectively. For any X,Y € I'(TM) and N €
[(T+M), we have

X=PX+QX+Y5_1n%(X)é,, 1< a<s (3.4)

fN = BN + CN (3.5)

where BN (resp. CN) denotes the tangential (resp. normal)
component of fN.

Now, we define a connection V as
VeV =V Y + 351" (NX — g(X,Y) &

Then, V is lineer connection.
Let T be the torsion tensor of V. Then, for all X, Y € I'(TM)
T(X,Y) = VY -V, X — [X,Y]
= Ya=1n*NX —n*COY} (3.6)

The_n V is semi symmetric. Morever we get, 3
(Vx (Y, 2) = X[g(Y,2)] — g(VxY,Z) — g(Y,VxZ).

In view of (3.6) and the above equation, we give the
following theorem.

Theorem 3.1 Let V be the Riemannian connection on an S-
manifold M. Then the linear connection which is defined as

ViV = ViV + 300" (NX —g(X, )&} 37)
is a semi-symmetric metric connection on M.

Theorem 3.2 Let M be CR-submanifolds of an S-manifold

M. Then

(V)Y = Xo=1lg X, V) — g(X, fYE — n* (VX
-n“(Y)fX} (3.8)
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forall X,Y € T'(TM).

Proof. By the use of (3.7), we get
(Vx Y = (Vxf)Y = Zemalg (X, f)E0 — n*(NX}

forall X,Y € I'(TM). Now using (2.3), we obtain (3.8).

As an immediate consequence of Theorem 3.2 we have the
following result.

Corollary 3.1 Let M be CR-submanifolds of an S-manifold
M with a semi—syanetric metric connection V. Then
Vxéa = _fX_fZX

forall X e I(TM).

(3.9)

Theorem 3.3 Let M be CR-submanifolds of an S-manifold
M with a semi-symmetric metric connection V. Then, M is
trans Sasakian manifold of type (1,1) with s=1.

We denote by same symbol g both metrics on # and M. Let

V be the semi-symmetric metric connection on M and V be

the induced connection on M. Then,
Vil = V¥ + m(X,Y) (3.10)

where m is a tensor field on CR-submanifold M. Using (3.1)

and (3.4) we have,

Ve¥ +m(X,Y) = Vi + h(X,Y) + 35, n%(Y)X . (3.11)

Comparing tangential and normal components from both
the sides in (3.11), we get
m(X,Y) = h(X,Y)

and

VeV = VY + 35 1 n%(N)X. (3.12)
Thus V is also a semi-symmetric metric connection. For X €
[(TM) and N € T(T+M) from (3.2) and (3.12), we have
VN = ViN + Y51 n*(N)X = —AyX + X5 n*(N)X.

Now, Gauss and Weingarten formulas for a CR-
submanifolds of a S-manifold with a semi-symmetric
metric connection is given by

S
TN = —AyX + VAN + Z 19X (3.14)

a=1

forall X,Y € I(TM), N € T(T+M), h second fundamental
form of M and A, is the Weingarten endomorphism
associated with N.

Theorem 3.4 The connection induced on CR-submanifolds
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of an S-manifold with a semi-symmetric metric connection
is also a semi-symetric metric connection.
4 Some Basic Lemmas

Lemma 4.1 If M be CR-submanifolds of an S-manifold M
with a semi-symmetric metric connection. Then,
PVyfPY — PAsoyX — fPVxY

== 2a=1m*(Y)PX + n“(Y)fPX}, (4.1)
QVxfPY — QAsorX — Bh(X,Y) =
—2a=1n"()QX, (4.2)
h(X, fPY) — fQV,Y + VEfQY
=—2a=1n"(Y)fQX + Ch(X,Y) (4.3)

o= (VxfPY)éa —n*(ArorX)éa} =
fx:1{g(X' Y)fa - g(Xr fy)ga + 7']a(VXY)fot
—n“(Xn*(¥Y)¢a} (4.4)

forall X,Y € I'(TM).

Proof. By direct differentiating covariantly, we have
vaY = (va)Y +fVXY.
By virtue of (3.4), (3.8), (3.13) and (3.14), we get
VxfPY + h(X, fPY) + (—Asor X + V£fQY) =
a=1{9 X, Y)Ee — g (X, [V + n* (VX —n*(V)fX} +
VY + fh(X,Y).

Then, from (3.4), we have

PVxfPY + QVxfPY + h(X, fPY) — PAsoy X —

QArorX + VxfQY = Xoma{ g(X, V)0 — g (X, fY)E, —
n*Y)PX —=n (V)X —n*XOn“(Y)é + n*(VxY)§s —
n“)fPX —n*(Y)fQX} + fPVxY + fQVxY +
Bh(X,Y) + Ch(X,Y.)

Comparing tangential, vertical and normal components in
above equation, we get desired results.

Lemma 4.2 If M be CR-submanifolds of an S-manifold
with a semi-symmetric metric connection. Then,
—ApyX — fPVxY — Bh(X,Y) = $51{g(X, V)&,
-Nn*MX —n*(¥)fX (4.5)
VifY = fQV4Y + Ch(X,Y)
forall X,Y € (Dt @ sp{&,, ..., &)).

(4.6)

Proof. By the use of (3.8) and fY € I'(T+M), then for all
X,Y e T(D* @ sp{&,, ..., &}) we get
(Vx )Y = Zoalg (X, V)E = n* (X —n*(V)fX}.

From the a_bove equation, we have
VxfY — fVxY = Yaca{lgX, YV)E —n* (V)X —
n“(¥)fx}.
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Now using (3.13) and (3.14) in the above equation, we have
—ApyX + VxfY — fVxY — fR(X,Y) = X5-1{g(X,Y)Eo —
n* (X —n*(Y)fx}

or
—AsyX + VEfY — fPVyY — fQVxY — Bh(X,Y) —
Ch(X,Y) = Xo=1{g(X, Y)éq —n*“ (V)X —n*(V)fX}

for all X,Y € I(D* @ sp{é,,...,&}) Now, comparing
tangential, vertical and normal components in the above
equation, we get desired results.

Lemma 4.3 If M be CR-submanifolds of an S-manifold M
with a semi-symmetric metric connection. Then,
VxfY = fPVxY = 30 i{g(X,Y)$e — g (X, fY)Ea}
—Bh(X,Y)
h(X,fY) = fQVy4Y + Ch(X,Y)
forall X,Y € I'(D).

(4.7)
(4.8)

Proof. From (3.8), we have
VxfY — fVxY = 3o {g (X, Y)E, — g(X, fY)E0}

forall X,Y € T(D). Now using (2.2), we get
Vi fY + h(X, fY) — fPVyY — fQV4Y — Bh(X,Y) —
Ch(X,Y) = Xa=1{9 (X, Y)$a — g(X, fY)E0}

In the above equation, comparing tangential, vertical and
normal components, we get (4.7) and (4.8).

5 Integrability Conditions of Distributions

Theorem 5.1 Let M be CR-submanifolds of an S-manifold
M with a semi-symmetric metric connection. Then the
distribution D @ D+ is not integrable.

Proof. For any X,Y € I'(D @ D), we have
g([X,Y1,62) = g(¥, V&) + 9 (X, Vy$a).
Using (3.9) and (3.13), we get
g(X,Y],8) = —g (¥, Vx&s — X —n%(X)$,)
+g(X' vaoc -Y- na(y)fa)
=g, fX + f2X) + g(X, fY + f?Y)
This completes the proof.

Theorem 5.2 Let M be CR-submanifolds of an S-manifold

M with a semi-symmetric metric connection. The

distribution D @ sp{&,, ..., &} is integrable if and only if
h(X,fY) = h(Y, fX)

forall X,Y e I'(D @ sp{é&y, ..., &}).

Proof. By using of (3.21), we have

h(X,fY) — h(Y,fX) = fQ[X,Y]. (5.1)
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Let D @ sp{é,, ..., &} be integrable. Then Q[X,Y] = 0.
From (5.1), we have
h(X,fY) = h(Y, fX)
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(5.2)

Vice verse, h(X, fY) = h(Y,fX) or fQ[X,Y] = 0. This
completes the proof.

As an immediate consequence of Theorem 5.2 we have the
following result.

Corollary 5.1 Let M be CR-submanifolds of an S-manifold

M with a semi-symmetric metric connection. The

distribution D @ sp{&,, ..., &} is integrable if and only if
AnfX = —fANX

forall X e T'(D @ sp{&,, ..., &} )-

Theorem 5.3 Let M be CR-submanifolds of an S-manifold
M with a semi-symmetric metric connection. The
distribution D* @ sp{&,, ..., &} is integrable if and only if
ApxY — A X = T (XY —n*(N)X

+n*QOfY —n*(VfX
forall X,Y € T(D* @ sp{&,, ..., &}).

(5.3)

Proof. If X,Y € T(D* @ sp{&,, ..., &} ), then from (4.4)
—ApyX — fPVxY — Bh(X,Y) = 35-1{g(X, V)&,

—n X - n*¥)fX} (5.4)
Now interchanging X and Y, subtracting the equations, we
have
—AryX + ApxY — fP[X, Y] = 251 {—*(")X + n*(X)Y

-n*WMFX +n“C0OfY}y (5.5)

From (5.5), we obtain

—ApyX + ArxY — fPIX, Y] = X5, {—n"(NX +
n“(X)y}

Now, let D* @ sp{¢,, ..., &} be integrable. For all X,Y €
(D! @ sp{éy, ..., &}), [X, Y] = 0. Then

ArxY = ApyX = Yoo (n*QOY —n*(NX +n*(X)fY —
n*()fx}

By using (5.5), fP[X,Y] = 0 then [X,Y] = 0.

Corollary 5.2 Let M be CR-submanifolds of an S-manifold
M with a semi-symmetric metric connection. Then the
distribution D*is integrable if and only if
forall X,Y e I'(D1).

6 Parallel Distributions

Definition 6.1 The horizontal (resp.vertical) distribution on
D (resp. D) is said to be parallel with respect to the
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connection V on M if
VY € D (resp.V,W € DY) for any X,Y €
(D) (resp. Z,W € I'(D1)).

Now, we have the following Theorem:

Theorem 6.1 Let M be a &, —horizontal CR-submanifolds
of an S-manifold M with a semi-symmetric metric
connection. Then, the horizontal distribution D is parallel
if and only if

h(X,fY) = h(Y,fX) = fh(X,Y) (6.1)
forall X,Y e I'(D).

Proof. Since every parallel distribution is involutive then
the first equality follows immediately. Now since D is
parallel, we have

VyfY € D,VX,Y € T (D).

From (4.2), we have
Bh(X,Y)=0, VX,YeIl(D) (6.2)
and from (4.3), if ¢, € T'(D), then D is parallel if and only
if
h(X,fY) = Ch(X,Y).
But we have,
fh(X,Y) = Bh(X,Y) + Ch(X,Y),

and from (4.7), fh(X,Y) = Ch(X,Y) which completes the
proof.

Lemma 6.1 Let M be CR-submanifolds of an S-manifold M
with a semi-symmetric metric connection. Then the
distribution D+ is parallel if and only if

—AwZ =35, 9(Z,W)é, + BR(Z,W)  (6.3)
forall Z,W e I'(D4).

Proof. Using (4.4), we have,
—AswZ — fPV W =351 9(Z,W)éy + BR(Z,W),
v Z,w eTr(dhH)

Hence
V,W € I'(DY) ifand only if PV,W = 0.

Since PV,W = 0 we get (6.3).

Lemma 6.2 Let M be CR-submanifolds of an S-manifold M
with a semi-symmetric metric connection. Then the
distribution D+is parallel is parallel if and only if

AswZ €T(DY) (6.4)

forall Z,W € (DY)
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(

Proof. Using Gauss and Weingarten formulas in (3.8), we
have

(V2OW = 2o lg(fZ, fW)Ea +n“W)(F?Z - f2)}
for Z, W € I'(D*) By using (3.13) and (3.14), we get
VoW = [V W =35 {g(fZ, fW)Ee + n*W)(f?Z -
fZ)}

or
~ApwZ + VW — fV,W — fh(Z,W) =
a=1lgUZ, fW)ée +n*W)(f?Z - fZ)}

Now taking inner product with Y € T'(D) in above equation,
we have

~9(AwZ,Y) + g(VfW,Y) = g(fV,W,Y) —
g(FR(EZ,W),Y) = ¥ouilg(fZ, fW)g(§a, Y) +
n“W)g(f?z,Y) —n*W)g(fZ,Y)}

This implies that
9(AswZ,Y) = 0if and only if ApyZ € T(DY).

Therefore, we get
VW € D* ifand only if Asyy Z € D*.

This completes the proof.

7 CR-Submanifolds of an S-Space form with a semi
symmetric metric connection

In [1], Akyol et al introduced constant ¢ sectional curvature
R with a semi symmetric metric connection. Let M be CR-
submanifolds of an S-manifold M with a semi-symmetric
metric connection. Then a CR-submanifold M has constant
¢ sectional curvature c if and only if the Riemannian
curvature tensor R satisfied

R(X,Y,Z,W) = 237755 (g (X, W)n' (Nn/ (Z) +

g, W' COm! () + g (¥, 2! X! (W) —

9&X, Z)n' (V)n! W)} +

L3S COn* (N’ (Zm* (W) -
n*W)n' (Nn? @n* W) +n*On* Wn*@)n’ W) —
n* X' Wn*“W)in'(2)}

+ <2 (g (0X, W) g (Y, 9Z) — g(9X, 9Z) g (@Y, pW)}

+ 29X, oW)g (Y, 92) = g(X, 92)g(Y, W) —
29X, oY) g(Z, W)} + s{g(@Z, X)g(Y, W) —
gXW)g(@Z,Y) + g(¥,0Z)g(eX, W) +
9X,2)gY, W) —g¥,2)gX,w) —

9X, 2)g(pY, W)} + g(h(X,2),h(Y,W)) —
g(h(Y,2),h(X,W)) (7.1)

forall X,Y,Z,W € I'(TM)

We choose a local field of orthonormal frames

M.A. Akyol

{ El' ...,Em, Em+1, ey EZm, El’ ""ES } Of TM, Where D=
sp{Ei, ...,Ep} and Dt = sp{E,;1, .., Eam }-

Now, let begin with the following theorem:

Theorem 7.1 Let M be CR-submanifolds of an S-space
form M (c) with a semi symmetric metric connection. Then

R(X,Y,Z,W) = ?{g(Y, 29X, W)

+9(h(X,2), h(Y,W)) — g(h(Y, Z), R(X,W)) (7.2)
forall X,Y,Z,W € T(D4Y).

Proof. For all X,Y,Z,W € I'(D}), by making use of (7.1),
we obtain

R(X,Y,Z,W) = =2 {g(X, W)g(¥,Z) -

g(¥,Z)g(X, W)}

+9(h(X,2),h(Y,W)) — g(h(Y,Z),R(X,W))

c—s s—c¢
= TQ(X, W)g(Y,Z2) +TQ(X.Z)9(Y. w)

+g(h(X,2),h(Y,W))
- g(h(Y,2),h(X,W))
which give us (7.2).

As a consequence of Theorem 7.1, we can give the
following corollary,

Corollary 7.1 Let M be CR-submanifolds of an S-space
form M (c) with a semi symmetric metric connection. and
for all X,Y,Z,W € I'(D4). Let Dt be a totally geodesic.
Then M is flat if and only if c=s.

Theorem 7.2 Let M be CR-submanifolds of an S-space form
M (c) with a semi symmetric metric connection. and for all
X,Y e T(DY). If Dt is totally geodesic, Then the scalar
curvature of D+ is given by

— c—S
TpL = Tm(m -1,
where T is the scalar curvature.

Proof. For all X,Y € T'(D) using (7.2), we get
S(X.Y) = %51 R(ELX,Y,E) = - (m = Dg(X, 1),

where S is Ricci tensor.
Theorem 7.3 Let M be CR-submanifolds of an S-space

form M (c) with a semi symmetric metric connection. . Then
the scalar curvature determined by D is given
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_ c¢c—s
Tp =Tm(m+2).

Proof. For all X,Y € I'(D) from (7.2), we have

c+3s

R(X,Y,Z,W) = T{g(X, W)g(¥,z) —

9gX,2)g(Y, W)}

+ 29X, oW (Y, 92) = g(X, 2 g (Y, pW) —
29X, Y)g(Z, W)}

+s{g(0Z, X)g(Y, W) — g(X,W)g(eZ,Y) +

g, 02)g(eX, W)+ g(X,Z)g(¥, W) —

gV, 2)gX, W) — g(X,Z)g(pY, W)} +
9(h(X,2), (Y, W)) — g(h(Y,2), (X, W))

Then, if S is Ricci tensor field of M then we have
S(X,Y) === (m+2)g(X,Y) +s(2 = m)g (X, pY),

Theorem 7.4 Let M be CR-submanifolds of an S-space
form M (c) with a semi symmetric metric connection. Then,
p-sectional curvature of D is 2s-c if and only if D is totally
geodesic.

Proof. By the use of (7.1), we have

c+3s

RX, 0X, X, 0X) = ——{g(X,9X)g (X, X) —

9&X, X)g(@X, pX)

+={g(X, 0*X)g(@X, 0X) — g(X, 9X) g (X, 9*X) —
29X, 9*X)g(X, p*X)}

+s{g(pX,X)g (X, pX) — g(X, pX) g(¢X, pX) +
90X, pX)g(0X, X) + g(X, X) g (@X, pX) —
9(@X, X)g(X, pX) — g(X,X)g(@*X, pX)} +
g(h(X, X), h(pX, pX)) — g(h(pX, X), h(X, pX))

for all X € T'(D). Then, we obtain
RX, 0X,X,0X) = —c + 25 — 2g(h(X, X), h(X, X)).

Proposition 7.1 Let M be CR-submanifolds of an S-
manifold with a semi symmetric metric connection. Then,
RX,Y,Z,W)=0

forall X,Y € I'(D @ sp{&,, ...,&}) and Z, W € T(D4).

Proof. Let M be CR-submanifolds of an S-manifold with a
semi symmetric metric connection M. Then for all Z, W €
r(pY),

©Z, oW € oDt c TM*,

Using (7.1), we finish the proof of the proposition.

Proposition 7.2 Let M be CR-submanifolds of an S-

manifold with a semi symmetric metric connection. Then,
RX,Y,ZW)=0

forall X,Y e I'(D) and Z, W € T'(D* @ sp{&y, ..., &} ).

M.A. Akyol
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