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SOME RESULTS ON THE INTEGER TRANSLATION OF

COMPOSITE ENTIRE AND MEROMORPHIC FUNCTIONS

SAMTEN TAMANG AND NITYAGOPAL BISWAS

Abstract. In the paper, authors have studied the comparative growth prop-

erties of composite entire and meromorphic functions on the basis of integer

translation applied upon them and established some newly developed results.

1. Introduction, Definitions, and Notations

Let f (z) be a meromorphic function defined in the Complex Plane C. For n ∈ N,
the translation of f (z) be denoted by f (z + n) . We now describe or investigate
the changes to Nevanlinna’s Characteristic function of the translated meromorphic
functions. We do not explain the standard definitions and notations in the theory
of entire and meromorphic functions as those are available in [7] and [3].

For each n ∈ N, we may obtain a function with some properties. Let us de-
note this family by fn (z) = {f (z + n) : n ∈ N} . The Nevanlinna’s Characteristic
function of a meromorphic function f denoted by T (r, f) is defined as

T (r, f) = N (r, f) +m (r, f)

where

N (r, f) =

r∫
0

n (t, f)− n (0, f)

t
dt+ n (0, f) log r

and

m (r, f) =
1

2π

2π∫
0

log+
∣∣f (reiθ)∣∣ dθ.

It is clear that the number of zeros of f may be changed in a finite region after
translation but it remains unaltered in the open complex plane C i.e.,

N (r, f (z + n)) = N (r, f) + en, where en → 0 as r →∞.
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Also

m (r, f (z + n)) =
1

2π

2π∫
0

log+
∣∣f (reiθ + n

)∣∣ dθ
= m (r, f) + e′n, where e′n → 0 as r →∞.

Therefore on adding we get that

N (r, f (z + n)) +m (r, f (z + n)) = N (r, f) +m (r, f) + en + e′n.

Now if n varies then the Nevanlinna’s Characteristic function for the family fn
is

T (r, fn) = nT (r, f) +
∑
n

(en + e′n)

i.e., log T (r, fn) = log T (r, f) + log n.(1.1)

In order to express the rate of growth on the integer translation of composite
entire and meromorphic functions more precisely we recall the following definitions:

Definition 1.1. The order ρf and lower order λf of an entire function f is defined
as

ρf = lim sup
r→∞

log[2]M (r, f)

log r
and λf = lim inf

r→∞

log[2]M (r, f)

log r

where log[k] x = log
(

log[k−1] x
)

for k = 1, 2, ..., n and log[0] x = x.

When f is meromorphic, one can easily verify that

ρf = lim sup
r→∞

log T (r, f)

log r
and λf = lim inf

r→∞

log T (r, f)

log r
.

Definition 1.2. The hyper order ρf and hyper lower order λf of an entire function
f is defined as

ρf = lim sup
r→∞

log[3]M (r, f)

log r
and λf = lim inf

r→∞

log[3]M (r, f)

log r
.

If f is meromorphic, then

ρf = lim sup
r→∞

log[2] T (r, f)

log r
and λf = lim inf

r→∞

log[2] T (r, f)

log r
.

Definition 1.3. The type σf of a meromorphic function f is defined as

σf = lim sup
r→∞

T (r, f)

rρf
, 0 < ρf <∞.

If f is entire then

σf = lim sup
r→∞

logM (r, f)

rρf
, 0 < ρf <∞.

Applying (1.1) on Definition 1.1, Definition 1.2, and Definition 1.3 we get that

ρfn = ρf , λfn = λf , ρfn = ρf , λfn = λf and σfn = nσf

and the relations can easily be verified on considering f = exp z.
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In this paper, we establish some new results in the connection with the compar-
ative growth properties of composite entire and meromorphic functions by using
integer translation upon them.

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.1. [4] Let g (z) be an integral function with λg < ∞, and assume that
ai (z) (i = 1, 2, ..., n; n ≤ ∞) are entire functions satisfying T (r, ai (z)) = o {T (r, g)}
and

n∑
i=1

δ (ai (z) , g) = 1, then

lim
r→∞

T (r, g)

logM (r, g)
=

1

π
.

Lemma 2.2. [5] Let f and g be two entire functions. If M (r, g) > 2+ε
ε |g (0)| for

any ε (ε > 0) then

T (r, f ◦ g) < (1 + ε)T (M (r, g) , f) .

In particular, if g (0) = 0 then

T (r, f ◦ g) < T (M (r, g) , f) .

for all r > 0.

Lemma 2.3. [1] If f is meromorphic and g is entire then for all large values of r

T (r, f ◦ g) ≤ {1 + o (1)} T (r, g)

logM (r, g)
T (M (r, g) , f) .

Lemma 2.4. [2] Let f be meromorphic and g is entire and suppose that 0 < µ < ρg
≤ ∞. Then for a sequence of values of r tending to infinity

T (r, f ◦ g) ≥ T (exp (r)
µ
, f) .

Lemma 2.5. [6] Let f and g be two entire functions. Then we have

T (r, f ◦ g) ≥ 1

3
logM

{
1

8
M
(r

4
, g
)

+O (1) , f

}
.

3. Theorems

In this section we present the main results of the paper.

Theorem 3.1. Let f (z) and g (z) be two non-constant integral functions such that
ρf and λg are finite. Also suppose there exist entire functions ai (z) (i = 1, 2, ..., n; n ≤ ∞)
such that (i) T (r, ai (z)) = o {T (r, g)} as r → ∞ for i = 1, 2, ..., n and (ii)
n∑
i=1

δ (ai (z) , g) = 1. If fn = {f (z + n)} and gn = {g (z + n)} for n ∈ N, then

lim sup
r→∞

log T (r, fn ◦ gn)

T (r, gn)
≤ π

n
ρf .

Proof. Since f and g are two non-constant and in view of ρfn = ρf , we get for all
large r and given ε (> 0) that

T (r, fn ◦ gn) ≤ logM (M (r, gn) , fn) ≤ {M (r, gn)}ρfn+ε
.
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So, for all large r

log T (r, fn ◦ gn) ≤ (ρfn + ε) logM (r, gn)

Hence we get for all large values of r

lim sup
r→∞

log T (r, fn ◦ gn)

T (r, gn)
≤ (ρfn + ε) lim sup

r→∞

logM (r, gn)

T (r, gn)

i.e., lim sup
r→∞

log T (r, fn ◦ gn)

T (r, gn)
≤ (ρf + ε) lim sup

r→∞

logM (r, gn)

T (r, gn)
.(3.1)

Now,

lim sup
r→∞

logM (r, gn)

T (r, gn)
= lim sup

r→∞

logM (r, g)

nT (r, g) +
∑
n

(en + e′n)

=
1

n
lim sup
r→∞

logM (r, g)

T (r, g)
=
π

n
[from Lemma1],

where en → 0 & e′n → 0 as r →∞.
Since ε (> 0) is arbitrary, it follows from (3.1)

lim sup
r→∞

log T (r, fn ◦ gn)

T (r, gn)
≤ π

n
ρf .

This proves the theorem. �

Example 3.1. Let us consider two functions f (z) = ez and g (z) = ee
z

. Then

fn (z) = ez+n, gn (z) = ee
z+n

and (fn ◦ gn) (z) = ee
ez+n

. Here ρfn = 1, λgn =∞.

T (r, gn) =
eren

(2π3r)
1
2

log T (r, fn ◦ gn) = eren + 0 (1)

lim sup
r→∞

log T (r, fn ◦ gn)

T (r, gn)
=
eren + 0 (1)

eren

(2π3r)
1
2

=∞.

Theorem 3.2. Let f (z) and g (z) be two entire functions of finite order such that
g (0) = 0 and ρg < λf ≤ ρf . If fn (z) = {f (z + n)} and gn (z) = {g (z + n)} for
n ∈ N. Then

lim
r→∞

sup
log T (r, fn ◦ gn)

T (r, fn)
≤ ρf

Proof. In view of ρfn = ρf and λfn = λf , let us choose ε > 0 such that ρgn + ε <
λfn − ε.

By the definitions of λfn = λf , we have for ε > 0,

T (r, fn) > rλfn−ε

(3.2) i.e., T (r, fn) > rλf−ε .

Again by the Lemma 2.2 we have

T (r, fn ◦ gn) ≤ T (M (r, gn) , fn)

< {M (r, gn)}ρfn+ε
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or, log T (r, fn ◦ gn) < (ρfn + ε) logM (r, gn)

< (ρfn + ε) rρgn+ε

< (ρfn + ε) rλfn−ε

(3.3) i.e., log T (r, fn ◦ gn) < (ρf + ε) rλf−ε

From (3.2) and (3.3) , we obtained for all large values of r

log T (r, fn ◦ gn)

T (r, fn)
<

(ρf + ε) rλf−ε

rλf−ε
= (ρf + ε)

Since ε > 0 is arbitrary, it follows that

lim
r→∞

sup
log T (r, fn ◦ gn)

T (r, fn)
≤ ρf .

Thus the theorem is established. �

Example 3.2. Let us consider two functions f (z) = ez and g (z) = ez − 1.

Then fn (z) = ez+n, gn (z) = ez+n−1 and (fn ◦ gn) (z) = ee
z+n−1. Here ρgn = 1,

ρfn = 1.

T (r, fn) =
r

π
+ n

log T (r, fn ◦ gn) = r − 1

2
log
(
2π3r

)
+ n

log T (r, fn ◦ gn)

T (r, fn)
=
r − 1

2 log
(
2π3r

)
+ n

r
π + n

= π

Thus

lim
r→∞

sup
log T (r, fn ◦ gn)

T (r, fn)
> ρf = 1

Theorem 3.3. Let f (z) and g (z) be two entire functions of finite order with
ρg > λf . If fn (z) = {f (z + n)} and gn (z) = {g (z + n)} for n ∈ N.Then

lim
r→∞

sup
log T (r, fn ◦ gn)

T (r, fn)
=∞

Proof. Since ρfn = ρf and ρgn = ρg. So we can choose ε (> 0) such that ρg − ε >
ρf + ε.

By the Lemma 2.5 we get for a sequence of values of r tending to infinity

T (r, fn ◦ gn) ≥ 1

3
logM

(
1

8
M
(r

4
, gn

)
+O (1) , fn

)
≥ 1

3

{
1

8
M
(r

4
, gn

)
+O (1)

}λfn−ε

≥ 1

3

{
1

9
M
(r

4
, gn

)}λfn−ε

≥ 1

3

(
1

9

)λfn−ε{
exp

(r
4

)ρgn−ε}λfn−ε
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i.e., log T (r, fn ◦ gn) ≥ log
1

3

(
1

9

)λfn−ε

+ (λfn − ε)
(r

4

)ρgn−ε
i.e., log T (r, fn ◦ gn) ≥ log

1

3

(
1

9

)λf−ε

+ (λf − ε)
(r

4

)ρg−ε
i.e., log T (r, fn ◦ gn) ≥ logA+ (λf − ε)

(r
4

)ρg−ε
(3.4)

where A = 1
3

(
1
9

)λf−ε.
Again for any ε > 0

T (r, fn) < rρfn+ε

i.e., T (r, fn) < rρf+ε .(3.5)

From (3.4) and (3.5) it follows for a sequence of values of r tending to infinity
that

log T (r, fn ◦ gn)

T (r, fn)
>

logA

rρf+ε
+

(λf − ε)
(
r
4

)ρg−ε
rρf+ε

.

Since ρg − ε > ρf + ε,

lim
r→∞

(
r
4

)ρg−ε
rρf+ε

=∞.

Hence

lim
r→∞

sup
log T (r, fn ◦ gn)

T (r, fn)
=∞.

This proves the theorem. �

Theorem 3.4. Let f (z) and g (z) be two transcendental entire functions of finite
order with ρg > 0. If fn (z) = {f (z + n)} and gn (z) = {g (z + n)} for n ∈ N.Then

lim
r→∞

sup
log T (r, fn ◦ gn)

log T (r, gn)
=∞.

Proof. In view of Lemma 2.5 we have for a sequence of values of r tending to infinity

T (r, fn ◦ gn) ≥ 1

3
logM

(
1

8
M
(r

4
, gn

)
+O (1) , fn

)
≥ 1

3

{
1

8
M
(r

4
, gn

)
+O (1)

}λfn−ε

≥ 1

3

{
1

9
M
(r

4
, gn

)}λfn−ε

≥ 1

3

(
1

9

)λfn−ε{
exp

(r
4

)ρgn−ε}λfn−ε

i.e., log T (r, fn ◦ gn) ≥ log
1

3

(
1

9

)λfn−ε

+ (λfn − ε)
(r

4

)ρgn−ε
i.e., log T (r, fn ◦ gn) ≥ log

1

3

(
1

9

)λf−ε

+ (λf − ε)
(r

4

)ρg−ε
(3.6) i.e., log T (r, fn ◦ gn) ≥ logA+ (λf − ε)

(r
4

)ρg−ε
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where A = 1
3

(
1
9

)λf−ε.
Also for any ε > 0

T (r, gn) < rρgn+ε

log T (r, gn) < (ρgn − ε) log r

i.e., log T (r, gn) < (ρg − ε) log r.(3.7)

From (3.6) and (3.7) we obtained for a sequence of values of r tending to infinity

log T (r, fn ◦ gn)

T (r, gn)
≥ logA

(ρg − ε) log r
+

(λf − ε)
4ρg−ε

· rρg−ε

(ρg − ε) log r
.

Therefore

lim
r→∞

sup
log T (r, fn ◦ gn)

log T (r, gn)
=∞, since ρg > 0 .

Thus the theorem is established. �

Theorem 3.5. Let f be a meromorphic function and g be an entire function such
that 0 < λf ≤ ρf <∞ and 0 < ρg <∞ . If fn = {f (z + n)} and gn = {g (z + n)}
for n ∈ N, then

ρg
ρf
≤ lim sup

r→∞

log[2] T (r, fn ◦ gn)

log T (r, fn)
≤ ρg
λf
.

Proof. In view of ρfn = ρf and λfn = λf , let us choose that 0 < ε < min {ρfn , λfn}
= min {ρf , λf} .

Since T (r, gn) ≤ log+M (r, gn) , by Lemma 2.2 we obtain for all sufficiently large
values of r,

T (r, fn ◦ gn) ≤ {1 + o (1)}T (M (r, gn) , fn)

i.e., log T (r, fn ◦ gn) ≤ log T (M (r, gn) , fn) +O (1)

i.e., log T (r, fn ◦ gn) ≤ (ρfn + ε) logM (r, gn) +O (1)

i.e., log[2] T (r, fn ◦ gn) ≤ log[2]M (r, gn) +O (1)

i.e., log[2] T (r, fn ◦ gn) ≤ (ρgn + ε) log r +O (1)

i.e., log[2] T (r, fn ◦ gn) ≤ (ρg + ε) log r +O (1) .(3.8)

Again in the view of Lemma 2.4, we get for a sequence of values of r tending to
infinity on taking µ = ρgn − ε < ρgn that

log T (r, fn ◦ gn) ≥ log T
(
exp

(
rρgn−ε

)
, fn
)

i.e., log T (r, fn ◦ gn) ≥ (λfn − ε) log
(
exp

(
rρgn−ε

))
i.e., log T (r, fn ◦ gn) ≥ (λf − ε) rρg−ε.(3.9)

i.e., log[2] T (r, fn ◦ gn) ≥ (ρgn − ε) log r +O (1)

i.e., log[2] T (r, fn ◦ gn) ≥ (ρg − ε) log r +O (1) .(3.10)

Also from the definition of ρfn = ρf and λfn = λf , we have for all sufficiently
large values of r,

log T (r, fn) ≤ (ρfn + ε) log r

i.e., log T (r, fn) ≤ (ρf + ε) log r(3.11)
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and

log T (r, fn) ≥ (λfn − ε) log r

i.e., log T (r, fn) ≥ (λf − ε) log r.(3.12)

From (3.10) and (3.11) , it follows for a sequence of values of r tending to infinity,

log[2] T (r, fn ◦ gn)

log T (r, fn)
≥ (ρgn − ε) log r +O (1)

(ρfn + ε) log r

i.e.,
log[2] T (r, fn ◦ gn)

log T (r, fn)
≥ (ρg − ε) log r +O (1)

(ρf + ε) log r
.

As ε (> 0) is arbitrary, it follows from above that

(3.13) lim sup
r→∞

log[2] T (r, fn ◦ gn)

log T (r, fn)
≥ ρg
ρf
.

From (3.8) and (3.12) it follows for all sufficiently large values of r

log[2] T (r, fn ◦ gn)

log T (r, fn)
≤ (ρg + ε) log r +O (1)

(λf − ε) log r
.

As ε (> 0) is arbitrary, it follows from above that

(3.14) lim sup
r→∞

log[2] T (r, fn ◦ gn)

log T (r, fn)
≤ ρg
λf
.

Thus the theorem follows from (3.13) and (3.14) . �

Remark 3.1. In addition to the conditions of Theorem 3.5, if fn is of regular growth
i.e., λfn = ρfn , equivalently λf = ρf then

lim sup
r→∞

log[2] T (r, fn ◦ gn)

log T (r, fn)
=
ρg
ρf
.

Remark 3.2. Under the same conditions of Theorem 3.5,

lim sup
r→∞

log[2] T (r, fn ◦ gn)

log T (r, gn)
≥ 1.

Theorem 3.6. Let f be a meromorphic function and g be a non constant entire
function such that 0 < λf ≤ ρf < ∞ and 0 < ρg < ∞ . If fn = {f (z + n)} and
gn = {g (z + n)} for n ∈ N, then

λg
ρg
≤ lim inf

r→∞

log[3] T (r, fn ◦ gn)

log T
(
r, g

(k)
n

) ≤ lim sup
r→∞

log[3] T (r, fn ◦ gn)

log
(
r, g

(k)
n

) ≤
ρg
λg

where k = 0, 1, 2, ...

Proof. In view of ρfn = ρf and λfn = λf , let us choose that 0 < ε < min {ρfn , λfn}
= min {ρf , λf} .

For large values of r

logM (r, fn) ≥ rλfn−ε

i.e., logM (r, fn) ≥ rλf−ε.(3.15)
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We know for all values of r that

T (r, fn ◦ gn) ≥ 1

3
logM

{
1

8
M
(r

4
, gn

)
+O (1) , fn

}
.

So from (3.15), we get for all large values of r

T (r, fn ◦ gn) ≥ 1

3

{
1

8
M
(r

4
, gn

)
+O (1)

}λfn−ε

≥ 1

3

{
1

9
M
(r

4
, gn

)}λf−ε

.

We obtain for all sufficiently large values of r,

(3.16)
log[3] T (r, fn ◦ gn)

log T
(
r, g

(k)
n

) ≥
log[3]M

(
r
4 , gn

)
log r

4

log r
4

log T
(
r, g

(k)
n

) +O (1) .

Also from the definition of ρfn = ρf and λfn = λf , we have for all sufficiently
large values of r,

log T
(
r, g(k)n

)
≤ (ρgn + ε) log r

i.e., log T
(
r, g(k)n

)
≤ (ρg + ε) log r(3.17)

and

log T
(
r, g(k)n

)
≥ (λgn − ε) log r

i.e., log T
(
r, g(k)n

)
≥ (λg − ε) log r.(3.18)

Since ε (> 0) is arbitrary, we get from (3.16) and (3.17)

lim inf
r→∞

log[3] T (r, fn ◦ gn)

log T
(
r, g

(k)
n

) ≥ λgn
ρgn

i.e., lim inf
r→∞

log[3] T (r, fn ◦ gn)

log T
(
r, g

(k)
n

) ≥ λg
ρg
.(3.19)

Again for given ε (0 < ε < λg) , and for all large values of r

T (r, fn ◦ gn) ≤ logM {M (r, gn) , fn} ≤ {M (r, gn)}ρfn+ε

or

log[3] T (r, fn ◦ gn)

log T
(
r, g

(k)
n

) ≤ log[3]M (r, gn)

log T
(
r, g

(k)
n

) +O (1)

log[3] T (r, fn ◦ gn)

log T
(
r, g

(k)
n

) ≤ log[3]M (r, gn)

log r

log r

log T
(
r, g

(k)
n

) +O (1) .(3.20)
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Since ε (> 0) is arbitrary, we get from (3.18) and (3.20)

lim sup
r→∞

log[3] T (r, fn ◦ gn)

log T
(
r, g

(k)
n

) ≤
ρgn
λgn

i.e., lim sup
r→∞

log[3] T (r, fn ◦ gn)

log T
(
r, g

(k)
n

) ≤
ρg
λg
.(3.21)

Thus the theorem follows from (3.19) and (3.21) . �

Theorem 3.7. Let f (z) be meromorphic and g (z) be an entire function such that
0 < ρg < ∞ and λf > 0. If fn (z) = {f (z + n)} and gn (z) = {g (z + n)} for
n ∈ N.Then

lim
r→∞

sup
log T (r, fn ◦ gn)

log T (exp (r)
µ
, gn)

=∞

where 0 < µ < ρg.

Proof. Let 0 < µ < µ′ < ρg. By the Lemma 2.4 we get for a sequence of values of
r tending to infinity

T (r, fn ◦ gn) ≥ T
(

exp (r)
µ′
, fn

)
>

(
exp (r)

µ′)λfn−ε
.

i.e., log T (r, fn ◦ gn) > (λfn − ε) log
(

exp (r)
µ′)

= (λfn − ε) rµ
′

i.e., log T (r, fn ◦ gn) > δrµ
′
.(3.22)

where 0 < δ = λfn − ε < λfn i.e., 0 < δ = λf − ε < λf .
Again for all sufficiently large values of r, we have

log T (exp (r)
µ
, gn) < log (exp (r)

µ
)
ρgn+ε

= (ρgn + ε) rµ

i.e., log T (exp (r)
µ
, gn) < (ρg + ε) rµ.(3.23)

From (3.22) and (3.23) it follows for a sequence of values of r tending to infinity

log T (r, fn ◦ gn)

log T (exp (r)
µ
, gn)

>
δrµ

′

(ρg + ε) rµ
.

As ε (> 0) is arbitrary, it follows from the above that

lim
r→∞

sup
log T (r, fn ◦ gn)

log T (exp (r)
µ
, gn)

=∞.

This proves the theorem. �

Corollary 3.1. Under the assumptions of Theorem 3.7

lim
r→∞

sup
T (r, fn ◦ gn)

T (exp (r)
µ
, gn)

=∞, where 0 < µ < ρg.

Proof. From Theorem 3.7 we see that for K (> 1) there exist a sequence of values
of r tending to infinity such that

log T (r, fn ◦ gn) > K log T (exp (r)
µ
, gn)

i.e., T (r, fn ◦ gn) > T (exp (r)
µ
, gn)

K
.
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It follows that

lim
r→∞

sup
T (r, fn ◦ gn)

T (exp (r)
µ
, gn)

=∞.

�
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