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SOME PROPERTIES ASSOCIATED WITH THE BESSEL

MATRIX FUNCTIONS

AYMAN SHEHATA

Abstract. The main aim of this work is the development of some interest-
ing properties which are associated with the Bessel matrix functions and its

relationship with the hypergeometric matrix functions.

1. Introduction

There has been a significant development in the study of special matrix functions
since, in the recent years, the theory of special matrix functions has been a major
area of study for mathematicians. These theories have a large study area in terms
of both theory and application. By the motivation of such analogues, Bessel matrix
functions are discussed by the various authors such as [3, 4, 9, 10, 14, 15, 16, 17,
18, 19]. Our aim here is to present and study of some properties associated with
the Bessel matrix functions which we call the matrix functions R(A,B,C, z) and to
derive several other interesting results involving the matrix functions R(A,B,C, z).
We derive a relationship between the hypergeometric matrix function and Bessel
matrix functions and are believed to be new. Some of the formulae known so far
have been shown to be the necessary consequences of the results of this paper.

In the scalar case, the function R(λ, µ, ν, z) associated with the Bessel functions
which may be called a generalization of the Bessel functions (see [1, 2, 5, 20]) is
defined as

R(λ, µ, ν, z) =

∞∑
k=0

(−1)k(λ+ k + 1)kz
k

k!Γ(µ+ k + 1)Γ(ν + k + 1)
.

1.1. Preliminaries. In this subsection, we will give some useful theorems, defini-
tions and lemmas. Throughout this work, for a matrix A in CN×N , σ(A) denotes
the set of all the eigenvalues of A and is called its spectrum. Furthermore, I and
O will denote the identity matrix and the null matrix in CN×N , respectively.
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Theorem 1.1. (Dunford and Schwartz [7]) If f(z) and g(z) are holomorphic func-
tions defined in an open set Ω of the complex plane, and A, B are matrices in
CN×N with σ(A) ⊂ Ω and σ(B) ⊂ Ω, such that AB = BA, then

f(A)g(B) = g(B)f(A).

Definition 1.1. (Jódar and Cortés [12]) For A ∈ CN×N such that σ(A) does not
contain 0 or a negative integer (σ(A) ∩ Z− = ∅ where ∅ is an empty set), the
Pochhammer symbol or shifted factorial is defined by

(A)n = A(A+ I)(A+ 2I) . . . (A+ (n− 1)I);n ≥ 1, (A)0 = I.(1.1)

Definition 1.2. (Jódar and Cortés [11]) Let A be a matrix in CN×N . We say that
A is a positive stable matrix if

Re(µ) > 0 ∀ µ ∈ σ(A).(1.2)

Definition 1.3. (Jódar and Cortés [12]) Let A be a positive stable matrix in CN×N ,
then the Gamma matrix functions Γ(A) is defined by

Γ(A) =

∫ ∞
0

e−ttA−Idt; tA−I = exp

(
(A− I) ln t

)
.(1.3)

Let A be a matrix in CN×N such that A+ nI is an invertible matrix in CN×N for
every integer n ≥ 0, then it follows that (see [13])

(A)n = Γ(A+ nI)Γ−1(A); n ≥ 1, (A)0 = I,(1.4)

where Γ(A) is an invertible matrix in CN×N .

Definition 1.4. (Sastre and Jódar [14]) Let us take A ∈ CN×N satisfying the
condition

µ is not a negative integer for all eigenvalues µ ∈ σ(A).(1.5)

Then the Bessel matrix functions JA(z) of the first kind of order A is defined as
follows:

JA(z) =

∞∑
k=0

(−1)k

k!
Γ−1(A+ (k + 1)I)

(
z

2

)A+2kI

=

(
z

2

)A

Γ−1(A+ I) 0F1

(
−;A+ I;−z

2

4

)
; |z| <∞; |arg(z)| < π,

(1.6)

and the modified Bessel matrix functions IA(x) has been defined in the form:

IA(z) =

∞∑
k=0

1

k!
Γ−1(A+ (k + 1)I)

(
z

2

)A+2kI

=

(
z

2

)A

Γ−1(A+ I) 0F1

(
−;A+ I;

z2

4

)
; |z| <∞; |arg(z)| < π.

(1.7)

Definition 1.5. (Jódar and Cortés [12]) Let A and B be positive stable matrices
in CN×N , then the Beta matrix functions B(A,B) is defined as:

B(A,B) =

∫ 1

0

tA−I(1− t)B−Idt.(1.8)
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Lemma 1.1. [11] If A, B and A + B are positive stable matrices in CN×N such
that AB = BA and A+ nI, B + nI and A+B + nI are invertible matrices for all
n ≥ 0, then we have

B(A,B) = Γ(A)Γ(B)Γ−1(A+B).(1.9)

Theorem 1.2. [4] If A and B are matrices in CN×N satisfying the conditions
Re(µ) /∈ Z− for µ ∈ σ(A), Re(ν) /∈ Z− for ν ∈ σ(B), Re(α) /∈ Z− for α ∈ σ(A−B)
and AB = BA, then we have

JA(z) = 2Γ−1(A−B)

(
z

2

)A−B ∫ 1

0

(1− t2)A−B−ItB+I JB(zt)dt.(1.10)

Theorem 1.3. [8] Let A and B be matrices in CN×N such that A, B and B − A
are positive stable matrices with AB = BA and B + kI is an invertible matrix for
all k ≥ 0. Then, for all natural number n the following identity holds

2F1

(
− nI,A;B; 1

)
= (B −A)n[(B)n]−1.(1.11)

Lemma 1.2. For n ≥ 0 and k ≥ 0, the following relation is given by Defez and
Jódar in [6]:

∞∑
n=0

∞∑
k=0

A(k, n) =

∞∑
n=0

n∑
k=0

A(k, n− k)(1.12)

where A(k, n) is a matrix in CN×N .

2. Some properties of the Bessel matrix functions

In this section, we give some new properties and formulas for the Bessel matrix
functions.

Theorem 2.1. Let A, B, C1, C2 and C3 be commutative matrices CN×N such
that C1 + kI, C2 + kI and C3 + kI are invertible matrices for all integers k ≥ 0
and Re(µ) > 0 for all µ ∈ σ(A). Then

2F3

(
A,B;C1, C2, C3;

w

z

)
=zAΓ−1(A)

∫ ∞
0

e−zttA−I

× 1F3

(
B;C1, C2, C3;wt

)
dt, z 6= 0.

(2.1)

Proof. Taking A = A+ kI and t = zt in (1.3), we get the integral

Γ(A+ kI)z−A−kI =

∫ ∞
0

e−z ttA+(k−1)Idt; z 6= 0.(2.2)

Using (2.2), into the right side of equation (2.1), we can write

zAΓ−1(A)

∞∑
k=0

wk

k!
(B)k[(C1)k]−1[(C2)k]−1[(C3)k]−1Γ(A+ kI)z−A−kI

=

∞∑
k=0

wk

k!
(A)k(B)k[(C1)k]−1[(C2)k]−1[(C3)k]−1z−k = 2F3

(
A,B;C1, C2, C3;

w

z

)
.

This completes the proof. �
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In a similar manner as in the proof of Theorem 2.1, one can easily obtain the
next result.

Theorem 2.2. Let A, C1, C2 and C3 be commutative matrices CN×N such that
C1 + kI, C2 + kI and C3 + kI are invertible matrices for all integers k ≥ 0 and
Re(µ) > 0 for all µ ∈ σ(A) and Re(z) > 0, then

2F3

(
A,A+

1

2
I;C1, C2, C3;

w2

z2

)
=z2AΓ−1(2A)

∫ ∞
0

e−ztt2A−I

× 0F3

(
−;C1, C2, C3;

1

4
w2t2

)
dt, z 6= 0.

(2.3)

The expression to be derived here are the relationship between the hypergeo-
metric and Bessel matrix functions and are believed to be new.

Theorem 2.3. Let 2A−I and 2A−2I be matrices in CN×N satisfying the condition
(1.5), then the hypergeometric matrix function 0F3 and Bessel matrix functions
satisfy the interesting results

0F3(−;
1

2
I, A,A+

1

2
I; z) =

1

2
Γ(2A)(2 4

√
z)I−2A

×
[
I2A−I(4 4

√
z) + J2A−I(4 4

√
z)

]
,

(2.4)

and

0F3(−;
3

2
I, A,A+

1

2
I; z) =

1

2
Γ(2A)(2 4

√
z)−2A

×
[
I2A−2I(4 4

√
z)− J2A−2I(4 4

√
z)

]
.

(2.5)

Proof. The series 0F1(−;A; z) converges absolutely and can therefore be separated
into two series consisting of even and add terms:

0F1(−;A; z) =

∞∑
n=0

[(A)n]−1
zn

n!

=

∞∑
n=0

[(
1

2
A)n]−1[(

1

2
(A+ I))n]−1[(

1

2
I)n]−1

1

n!

(
z2

16

)n

+ zA−1
∞∑

n=0

[(
1

2
A+ I)n]−1[(

1

2
(A+ I))n]−1[(

3

2
I)n]−1

1

n!

(
z2

16

)n

,

where A is an invertible matrix in CN×N for all integers n ≥ 0.
Hence

0F1(−;A; z) = 0F3

(
−;

1

2
I,

1

2
A,

1

2
(A+ I);

z2

16

)
+ zA−1 0F3

(
−;

3

2
I,

1

2
(A+ I),

1

2
A+ I;

z2

16

)
.

(2.6)
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Adding or subtracting the same equation with z replaced by −z

0F1(−;A;−z) = 0F3

(
−;

1

2
I,

1

2
A,

1

2
(A+ I);

z2

16

)
− zA−1 0F3

(
−;

3

2
I,

1

2
(A+ I),

1

2
A+ I;

z2

16

)
and making suitable change or notation, we find

0F3

(
−;

1

2
I, A,A+

1

2
I; z

)
=

1

2
0F1(−; 2A; 4

√
z) +

1

2
0F1(−; 2A;−4

√
z),(2.7)

and

0F3

(
−;

3

2
I, A,A+

1

2
I; z

)
=

1

8
√
z

(2A− I)

[
0F1(−; 2A− I; 4

√
z)

− 0F1(−; 2A− I;−4
√
z)

]
.

(2.8)

Nota that the right hand side of the equation (2.8) has singularities at z = 0 and
at A = 1

2I which are removed by requiring continuity at these values.
From (2.6), we obtain the Bessel matrix functions representations

JA(z) =

(
z

2

)A

Γ−1(A+ I) 0F3

(
−;

1

2
I,

1

2
(A+ I),

1

2
A+ I;

z4

256

)
−
(
z

2

)A+2I

Γ−1(A+ 2I) 0F3

(
−;

3

2
I,

1

2
A+ I,

1

2
(A+ 3I);

z4

256

)
,

(2.9)

and

IA(z) =

(
z

2

)A

Γ−1(A+ I) 0F3

(
−;

1

2
I,

1

2
(A+ I),

1

2
A+ I;

z4

256

)
+

(
z

2

)A+2I

Γ−1(A+ 2I) 0F3

(
−;

3

2
I,

1

2
A+ I,

1

2
(A+ 3I);

z4

256

)(2.10)

Adding and subtracting these equations, we find the inverse relations

0F3

(
−;

1

2
I, A,A+

1

2
I; z

)
=

1

2
Γ(2A)(2 4

√
z)I−2A

[
I2A−I(4 4

√
z) + J2A−I(4 4

√
z)

]
,

and

0F3

(
−;

3

2
I, A,A+

1

2
I; z

)
=

1

2
Γ(2A)(2 4

√
z)−2A

[
I2A−2I(4 4

√
z)− J2A−2I(4 4

√
z)

]
.

Thus proof of the theorem is completed. �

Theorem 2.4. If A and B are matrices in CN×N satisfying the condition (1.5),
then we have the product of a series representing Bessel matrix functions

JA(z)JB(z) =
∞∑

m=0

(−1)m

m!

(
z

2

)A+B+2mI

Γ−1(A+ (m+ 1)I)

× Γ−1(B + (m+ 1)I)(A+B + (m+ 1)I)m.

(2.11)
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Proof. The coefficient of (−1)m
(

1
2z

)A+B+2mI

in the product of the two absolutely

convergent series

∞∑
m=0

(−1)m

m!
Γ−1(A+ (m+ 1)I)

(
z

2

)A+2mI ∞∑
n=0

(−1)n

n!
Γ−1(B + (n+ 1)I)

(
z

2

)B+2nI

is

m∑
n=0

Γ−1(A+ (n+ 1)I)Γ−1(B + (m− n+ 1)I)

n!(m− n)!

=
(−1)m

m!
Γ−1(A+ (m+ 1)I)Γ−1(B + (m+ 1)I)

m∑
n=0

m!(−A−mI)m−n(−B −mI)n
n!(m− n)!

=
(−1)m

m!
Γ−1(A+ (m+ 1)I)Γ−1(B + (m+ 1)I)(−A−B − 2mI)m

=
1

m!
Γ−1(A+ (m+ 1)I)Γ−1(B + (m+ 1)I)(A+B + (m+ 1)I)m,

the proof is completed. �

Theorem 2.5. If A and B are matrices in CN×N satisfying condition (1.5), then
we have the product of Bessel matrix functions

JA(az)JB(bz) =

(
bz

2

)B

Γ−1(B + I)

∞∑
m=0

(−1)m

m!

(
az

2

)A+2mI

× Γ−1(A+ (m+ 1)I) 2F1

(
−mI,−A−mI;B + I;

b2

a2

)
,

(2.12)

where a, b are arbitrary constants and a 6= 0.

Proof. If we multiply the series for JA(az) and JB(bz), we obtain an expansion in

which the coefficient of (−1)maAbB
(

1
2z

)A+B+2mI

is

m∑
n=0

a2m−2nb2nΓ−1(B + (n+ 1)I)Γ−1(A+ (m− n+ 1)I)

n!(m− n)!

=
a2m

m!
Γ−1(A+ (m+ 1)I)Γ−1(B + I) 2F1

(
−mI,−A−mI;B + I;

b2

a2

)
.

Then, the proof is finished. �

Corollary 2.1. For the special case a = b = 2 in Theorem 2.5, we have the interest
relation

JA(2z)JB(2z) =

∞∑
m=0

(−1)m

m!
zA+B+2mI(B +A+ (m+ 1)I)m

× Γ−1(A+ (m+ 1)I)Γ−1(B + (m+ 1)I).

(2.13)
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Proof. If we take a = b = 2 in (2.12) and using (1.11), we obtain

JA(2z)JB(2z) = Γ−1(B + I)

∞∑
m=0

(−1)m

m!
zA+B+2mIΓ−1(A+ (m+ 1)I)

× 2F1

(
−mI,−A−mI;B + I; 1

)
= Γ−1(B + I)

∞∑
m=0

(−1)m

m!
zA+B+2mI

× Γ−1(A+ (m+ 1)I)(B +A+ (m+ 1)I)m[(B + I)m]−1 =

∞∑
m=0

(−1)m

m!

zA+B+2mIΓ−1(A+ (m+ 1)I)Γ−1(B + (m+ 1)I)(B +A+ (m+ 1)I)m.

Hence, the proof is finished. �

3. Some properties associated with the Bessel matrix functions

In this section, we define the associated with the Bessel matrix functions and
obtain some of their significant properties.

Definition 3.1. Let A, B and C be matrices in CN×N satisfying the condition

A+ (k + 1)I,B + (k + 1)I and C + (k + 1)I are invertible

matrices for all integers k ≥ −1,
(3.1)

and these matrices are commutative, we define the associated with the Bessel matrix
functions R(A,B,C, z) by the series

R(A,B,C, z) =

∞∑
k=0

(−1)kzk

k!
(A+ (k + 1)I)k

× Γ−1(B + (k + 1)I)Γ−1(C + (k + 1)I).

(3.2)

Theorem 3.1. The matrix functions R(A,B,C, z) given by (3.2) have the hyper-
geometric matrix functions representation

R(A,B,C, z) =Γ−1(B + I)Γ−1(C + I)

× 2F3

(
1

2
(A+ I),

1

2
A+ I;A+ I,B + I, C + I;−4z

)
.

(3.3)

Proof. From (1.4), we can rewrite the formula

(A+ (k + 1)I)k = (A+ I)2k[(A+ I)k]−1(3.4)

and

(A+ I)2k = 22k
(

1

2
(A+ I)

)
k

(
1

2
A+ I

)
k

.(3.5)

On using (3.4), (3.5) and (3.2) in (3.3) the desired result follows directly. �

From (3.3), we have the following result.

Theorem 3.2. Let A, B and C be matrices in CN×N such that A + (k + 1)I,
B+(k+1)I and C+(k+1)I are invertible matrices for all integers k ≥ −1. Then,
the associated with the Bessel matrix functions R(A,B,C, z) is an entire function.

The connection between the matrix functions R(A,B,C, z) and Bessel matrix
functions is evident from the following formulas:
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Corollary 3.1. Let B and C be matrices in CN×N satisfying the condition (1.5),
then we have the identity

zB+CR(B + C,B,C, z2) = JB(2z)JC(2z).(3.6)

where B, C and B + C are matrices in CN×N satisfying the condition (3.1).

Proof. In Theorem 3.1, putting A = B + C, z = z2 and using definition (3.2), and
properties of hypergeometric matrix functions (1.6), we have the desired identity.

�

Corollary 3.2. Let 2A be a matrix in CN×N satisfying the condition (1.5). Then
we can deduce as follows:

R

(
2A,A,A− 1

2
I, z2

)
=

1√
π
z−2AJ2A(4z).(3.7)

where 2A, A and A 1
2I are matrices in CN×N satisfying the condition (3.1).

Proof. In Theorem 3.1, replacing A by 2A and taking B = A, C = A − 1
2I and

z = z2 with the help of (1.6), we obtain (3.7). �

Theorem 3.3. Let A, B and C be matrices in CN×N satisfying the condition (3.1),
then the R(A,B,C, z) is a solution of the matrix differential equation of the fourth
order [

θ(θI +A)(θI +B)(θI + C)

+ z(2θ I +A+ I)(2θ I +A+ 2I)

]
R(A,B,C, z) = 0,

(3.8)

where θ = z d
dz is the differential operator.

Proof. The proof of this theorem follows immediately on using the definition and
properties of the hypergeometric matrix functions. �

Now we give various types of integral representations for the matrix functions
R(A,B,C, z). For this purpose, we state the following results.

Theorem 3.4. Let A, B and C be matrices in CN×N satisfying the condition (3.1)
with Re(µ) > −1 for all µ ∈ σ(A) and if these matrices be commutative, we have
the formula

R(A,B,C, z) =Γ−1
(

1

2
(A+ I)

)
Γ−1(B + I)Γ−1(C + I)

∫ ∞
0

e−tt
1
2A−

1
2 I

× 1F3

(
1

2
A+ I;A+ I,B + I, C + I;−4zt

)
dt.

(3.9)

Proof. Starting from the right hand side of (3.9) and using (2.1), (2.2) and (3.2),
this theorem can be easily proved. �

Theorem 3.5. Suppose that A, B and C are matrices in CN×N satisfying the
condition (3.1) and Re(µ) > −1 for all µ ∈ σ(A), the integral representation for
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the matrix functions R(A,B,C, z) holds:

R(A,B,C, z2) =Γ−1(A+ I)Γ−1(B + I)Γ−1(C + I)

∫ ∞
0

e−ttA

× 0F3

(
−;A+ I,B + I, C + I;−z2t2

)
dt.

(3.10)

Proof. Applying (3.2) and (2.3) and using the Gamma matrix function (1.3), we
get (3.10). �

Corollary 3.3. Let A be a matrix in CN×N satisfying the condition Re(µ) > −1
for every µ ∈ σ(A), we have

R

(
A,

1

2
(A− I),

1

2
A, z2

)
=

1√
π

2AΓ−1(A+ I)Γ−1(A+ I)

∫ ∞
0

e−ttA

× 0F1

(
−;A+ I; 2zt

)
0F1

(
−;A+ I;−2zt

)
dt.

(3.11)

where A, 12 (AI) and 1
2A are matrices in CN×N satisfying the condition (3.1).

Proof. By (1.3) and (1.12) into the equation (3.11) follows directly. �

Corollary 3.4. If A is a matrix in CN×N satisfying the condition Re(µ) /∈ Z− for
µ ∈ σ(A), then we obtain

R

(
2A,A,A− 1

2
I, z2

)
=

2√
π

Γ−1(A)

(
1

2
z

)−A
×
∫ 1

0

(1− t2)A−ItA+I JA(4zt)dt.

(3.12)

where 2A,A and A− 1
2I are matrices in CN×N satisfying the condition (3.1).

Proof. Applying (1.6) to (3.3), the proof follows. �

Theorem 3.6. If A, B and C are matrices in CN×N satisfying the condition (3.1).
Then it can be also established that

R(A,B,C, z) =
1

2π i

∫ 0

−∞
ett−C−I 2F2

(
1

2
A+

1

2
I,

1

2
A+ I;

A+ I,B + I;−4z

t

)
dt; |arg(t)| ≤ π.

(3.13)

Proof. From (1.3), we have

Γ−1(C + (k + 1)I) =
1

2π i

∫ 0

−∞
t−C−(k+1)Ietdt.(3.14)

By using (3.14) and (3.2), we can prove (3.13). �

Next, we discuss some infinite integrals involving the matrix functions R(A,B,C, z).

Theorem 3.7. If A, B, C and C+D are matrices in CN×N satisfying the condition
(3.1) and let D be a positive stable matrix in CN×N . The integral representation
for the matrix functions R(A,B,C, zt) is valid:∫ 1

0

R(A,B,C, zt)tC(1− t)D−Idt = Γ(D)R(A,B,C +D, z),(3.15)
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where Re(α) > −1 for all the eigenvalues of α ∈ σ(C) and Re(β) > 0 for every
eigenvalue of β ∈ σ(D).

Proof. Let us consider the left hand side of (3.15). From (1.8) and (1.9), we have∫ 1

0

tC+kI(1− t)D−Idt = B(C + (k + 1)I,D)

= Γ(C + (k + 1)I)Γ(D)Γ−1(C +D + (k + 1)I),

(3.16)

from (3.16) and (3.2), we find

Γ(D)

∞∑
k=0

(−1)kzk

k!
(A+ (k + 1)I)kΓ−1(B + (k + 1)I)Γ−1(C +D + (k + 1)I)

= Γ(D) R(A,B,C +D, z),

which gives (3.15). Hence the proof is established. �

Theorem 3.8. Let A, B and C be matrices in CN×N satisfying the condition (3.1).
The associated with the Bessel matrix functions satisfy the properties:

(i)

∫ ∞
0

e−PttDR(A,B,C, zt)dt = Γ(D + I)Γ−1(B + I)Γ−1(C + I)

× P−D−I 3F3

(
1

2
(A+ I),

1

2
A+ I,D + I;A+ I,B + I, C + I;−4z

P

)
,

(3.17)

where Re(α) > 0 for all the eigenvalues of α ∈ σ(P ) and Re(β) > −1 for every
eigenvalue of β ∈ σ(D).

(ii)

∫ ∞
0

e−Ptt2D−IR(A,B,C, z2t2)dt = Γ(2D)Γ−1(B + I)Γ−1(C + I)

× P−2D 4F3

(
1

2
(A+ I),

1

2
A+ I,D,D +

1

2
I;A+ I,B + I, C + I;

− 16z2

P 2

)
; Re(P ) > 4|Re(z)| and Re(D) > 0,

(3.18)

where Re(α) > 4|Re(z)| for all the eigenvalues of α ∈ σ(P ) and Re(β) > 0 for
every eigenvalue of β ∈ σ(D).

Proof. (i) To prove (i), take A = D + kI and tI = Pt in equation (1.3) and use
(3.2).

(ii) Take A = 2D + 2kI and tI = Pt in equation (1.3) and use (3.2), which
completes of proof of (ii). �

Theorem 3.9. Suppose that A, 1
2A, 1

2 (A − I), A + B and B + C are matrices

in CN×N satisfying the condition (3.1). The integral representation for the matrix
functions R(A,B,C, z) also holds:∫ 1

0

R

(
A,

1

2
A,

1

2
(A− I),

1

4
zt

)
R

(
B,

1

2
B,

1

2
(B − I),

1

4
zt

)
tB(1− t)C−Idt

=
1√
π

Γ(C)2A+BR(A+B,A,B + C, z),

(3.19)

where Re(β) > −1 for every eigenvalue of β ∈ σ(B) and Re(α) > 0 for all the
eigenvalues of α ∈ σ(C).
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Proof. Starting from the left hand side of the equation in (3.19) and using Beta
matrix function (3.16), (1.12) and (3.2), theorem can be proved. �

Finally, let A, B and C are matrices in CN×N satisfying the condition (3.1). The
relationship to be derived is of further interest for the extended modified Bessel and
the extended Tricomi matrix functions by the relations link with extended Bessel
matrix functions:

I(A,B,C, z) = i−A R(A,B,C, iz)(3.20)

and

C(A,B,C, z) = z−
1
2A R(A,B,C, 2

√
z).(3.21)

This is an open problem for future studies. Further applications will be discussed
in a forthcoming paper.
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[4] Çekim, B. and Erkuş-Duman, E.: Integral representations for Bessel matrix functions. Gazi
Univ. J. Sci., Vol. 27, No. 1 (2014), 663-667.

[5] Chatterjea, S.K.: On a function with the Bessel functions. Ann. Univ. Ferrara Sez. VII Sci.

Mat., Vol. 10, No. 1 (1961), 13-16.
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