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COMMON FIXED POINTS IN METRICALLY CONVEX

PARTIAL METRIC SPACES

SANTOSH KUMAR, TERENTIUS RUGUMISA, AND M. IMDAD

Abstract. In this study, we extend some common fixed points theorems for

mappings in metrically convex metric spaces into partial metric spaces. We
generalize earlier results by Imdad et al. We also provide an illustrative ex-

ample.

1. Introduction and Preliminaries

The existing literature contains a number of fixed point theorems for self map-
pings in partial metric spaces. These include theorems by Mathews [7], Oltra and
Valero [8] and Karapinar et al. [6]. However fixed point theorems for non-self map-
pings in partial metric spaces are not often discussed.

The study of fixed point for non-self mappings in metrically convex metric spaces
was introduced by Assad and Kirk [1]. The concept of metrical convexivity has been
used by several authors including Gajić and Rakoc̆ević [2], Imdad and Kumar [5]
and Hadzić [3] to develop fixed point theorems for non-self mappings.

In the proofs of our main results, we require the following definitions and lemmas.
The partial metric space is a generalization of the metric space introduced by

Mathews [7] in 1994 as a part of a study of denotational semantics of dataflow
networks.. It is defined as follows:

Definition 1.1. [7] A partial metric on a nonempty set X is a function p : X×X →
R+ such that for all x, y, z ∈ X:
(P1)x = y ⇔ p(x, x) = p(x, y) = p(y, y),
(P2) p(x, x) ≤ p(x, y),
(P3) p(x, y) = p(y, x),
(P4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a
partial metric on X.
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From (P1) and (P2) we have

(1.1) p(x, y) = 0⇒ p(x, y) = p(x, x) = p(y, y)⇒ x = y.

From (P4) we have

(1.2) p(x, y) ≤ p(x, z) + p(z, y).

An example of a partial metric space (X, p) is when X = R+, the set of all non-
negative real numbers, and p(x, y) = max{x, y} for all x, y ∈ X.

Each partial metric p on X generates a T0 topology τp on X with a base being
the family of open balls {Bp(x, ε) : x ∈ X, ε > 0} where
Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Definition 1.2. [7]. Let (X, p) be a partial metric space and {xn} be a sequence
in X. Then

(i) {xn} converges to a point x ∈ X if and only if
p(x, x) = limn→+∞ p(x, xn).

(ii) {xn} is called a Cauchy sequence if only if there exists (and is finite)
limn,m→+∞ p(xn, xm).

(iii) A partial metric space (X, p) is said to be complete if every Cauchy
sequence {xn} in X converges, with respect to τp, to a point x ∈ X
such that p(x, x) = limn,m→+∞ p(xn, xm).

The metric derived from a partial metric is defined as follows:.

Lemma 1.1. [7] If p is a partial metric on X, then the function
ps : X ×X → R+ given by

(1.3) ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

defines a metric on X.

We take note of the following lemma.

Lemma 1.2. [7]. Let (X, p) be a partial metric space.
(i) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy

sequence in the metric space (X, ps).
(ii) (X, p) is complete if and only if the metric space (X, ps) is complete.

Furthermore limn→+∞ p(xn, x) = 0 if and only if
p(x, x) = limn→+∞ p(xn, x) = limn,m→+∞ p(xn, xm) = 0.

A metrically convex metric space is defined as follows:

Definition 1.3. [1].
A complete metric space (X, d) is said to be (metrically) convex if X has the
property that for each x, y ∈ X with x 6= y there exists z ∈ X,x 6= z 6= y, such that
d(x, z) + d(z, y) = d(x, y).

If (X, d) is a metrically convex metric space, and x, y ∈ X, we term

seg[x, y] := {z ∈ X : d(x, y) = d(x, z) + d(z, y)}.
The following lemma is obtained from Assad and Kirk [1].

Lemma 1.3. Let K be a closed subset of the complete and convex metric space X.
If x ∈ K and y /∈ K, then there exists a point z ∈ ∂K (the boundary of K) such
that

d(x, z) + d(z, y) = d(x, y).
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We introduce the metrically convex partial metric space.

Definition 1.4. A partial metric space (X, p) is said to be metrically convex if the
corresponding metric space (X, ps) is metrically convex in the sense of Lemma 1.1,
where ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) for all x, y ∈ X.

As an example, the partial metric space (R+, p) where p(x, y) = max{x, y} for
all x, y ∈ R+ is metrically convex because (X, ps) where ps(x, y) = |x − y| is the
metric derived from the partial metric p, is metrically convex.

Lemma 1.4. Let (X, p) be a metrically convex partial metric space. Let x, y ∈ X.
If z ∈ seg[x, y] then:
(i) p(x, y) + p(z, z) = p(x, z) + p(z, y),
(ii) p(x, y) ≥ p(x, z).

Proof. Applying (1.3) to Definition 1.3, if z ∈ seg[x, y], then we have:

ps(x, y) = ps(x, z) + ps(z, y)

⇒ 2p(x, y)− p(x, x)− p(y, y) = 2p(x, z)− p(x, x)− p(z, z)
+ 2p(z, y)− p(z, z)− p(y, y)

⇒ p(x, y) = p(x, z) + p(z, y)− p(z, z)
⇒ p(x, y) + p(z, z) = p(x, z) + p(z, y).

As p(z, y)− p(z, z) ≥ 0, from (P2) of Definition 1.1 we have

p(x, y) ≥ p(x, z).

�

Lemma 1.5. Let K be a non-empty subset of a metrically convex partial metric
space (X, p) which is closed in (X, ps). If x ∈ K and y ∈ X\K, then there exists a
point z ∈ ∂K

(
the boundary of K with respect to (X, ps)

)
such that

p(x, y) + p(z, z) = p(x, z) + p(z, y).

Proof. From Definition 1.4, if the partial metric space (X, p) is metrically convex,
then (X, ps) is metrically convex. From Lemma 1.3 (ii), this means that if x ∈ K
and y ∈ X\K then there exists z in ∂K, (the boundary of K), such that ps(x, y) =
ps(x, z) + ps(z, y). Using (1.3), this means

ps(x, y) = ps(x, z) + ps(z, y)

⇒ 2p(x, y)− p(x, x)− p(y, y) = 2p(x, z)− p(x, x)− p(z, z)
+ 2p(z, y)− p(z, z)− p(y, y)

⇒ 2p(x, y) = 2p(x, z) + 2p(z, y)− 2p(z, z)

⇒ p(x, y) + p(z, z) = p(x, z) + p(z, y)

⇒ p(x, z) + p(z, y) = p(x, y) + p(z, z).

�

We now prove the following lemma, which is modified from Theorem 1 of Assad
and Kirk [1], and is necessary for our work.
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Lemma 1.6. Consider a sequence {wn}n∈N ∈ R+ such that, for all n ≥ 2 we have

(1.4) wn ≤ kmax{wn−2, wn−1}, k ∈ (0, 1),

then

(1.5) wn ≤ kn/2k−1/2 max{w0, w1}.

Proof. We prove the lemma by the induction. First we show that Lemma 1.6 holds
for n = 2.

We note that k ∈ (0, 1) implies k < k1/2. Hence if n = 2, then (1.4) leads to

(1.6) w2 ≤ kmax{w0, w1} ≤ k1/2 max{w0, w1} = k2/2k−1/2 max{w0, w1}.
We then show that the lemma holds for n = 3. If n = 3, then (1.4) leads to
w3 ≤ kmax{w1, w2}. If w1 ≥ w2, then we get

w3 ≤ kmax{w1, w2}
⇒ w3 ≤ kw1

≤ kmax{w0, w1}

= k3/2 · k−1/2 max{w0, w1}.
If however w1 < w2, we get

w3 ≤ kmax{w1, w2}
⇒ w3 ≤ kw2

⇒ w3 ≤ k × k2/2k−1/2 max{w0, w1}, from (1.6)

≤ k3/2 max{w0, w1}

≤ k3/2 · k−1/2 max{w0, w1}, because k−1/2 ≥ 1.

We now show that, if Lemma 1.6 holds for 1 ≤ n ≤ j where j ≥ 2, then it must be
hold for j + 1. Hence we have from (1.4)

(1.7) wj+1 ≤ kmax{wj−1, wj}.
We consider two cases.

Case (i): Suppose wj−1 ≤ wj . Then (1.7) becomes

wj+1 ≤ kwj

≤ k · kj/2k−1/2 max{w0, w1} from (1.5)

= k(j+2)/2k−1/2 max{w0, w1}.(1.8)

Case (ii): Suppose wj−1 > wj . Then (1.7) becomes

wj+2 ≤ kwj−1

≤ k · k(j−1)/2k−1/2 max{w0, w1} from (1.5)

= k(j+1)/2k−1/2 max{w0, w1}.(1.9)

We note that for j ≥ 2 and k ∈ (0, 1) we have k(j+1)/2 > k(j+2)/2. Hence (1.8)
and (1.9) imply that

wj+1 ≤ k(j+1)/2k−1/2 max{w0, w1}.
�

Here we introduce a relation that will be used in our proof.
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Remark 1.1. Let s, t, α ≥ 0 with s < t. Then

(1.10)
s

t
≤ s+ α

t+ α
.

We prove Remark 1.1 here:

s

t
− s+ α

t+ α
=
α(s− t)
t(t+ α)

≤ 0 because s < t

⇒ s

t
≤ s+ α

t+ α
.

We also note that if T : K → X is a continuous mapping and {xn} is a convergent
sequence with all xn ∈ K, where K is closed, then we have

T ( lim
n→∞

xn) = lim
n→∞

Txn.

The following definition is modified from Hadzić [3].

Definition 1.5. Let K be a non-empty subset of a partial metric space (X, p) and
F, T : K → X. The pair (F, T ) is said to be weakly p-commuting if for every x ∈ K
with Fx, Tx ∈ K we have

p(TFx, FTx) ≤ p(Fx, Tx).

Let K be a non-empty subset of a partial metric space (X, p) and F, T : K → X.
The point v ∈ K is called a coincidence point of F and T if Fv = Tv = w. If
also v = w, then v is called a common fixed point of F and T . We say also that F
and T are coincidentally commuting if at every coincidence point v ∈ K, we have
FTv = TFv.

The following definition is found in Imdad et al. [4].

Definition 1.6. [4] Let K be a non-empty subset of a metric space (X, d) and let
F,G, S, T : K → X satisfy the condition

d(Fx,Gy) ≤ amax
{
d(Tx, Sy)/2, d(Tx, Fx), d(Sy,Gy)

}
+ b
[
d(Tx,Gy) + d(Fx, Sy)

]
.

for all x, y ∈ K with x 6= y, a, b ≥ 0 and a + 2b < 1. Then (F,G) is called a
generalized (S, T ) contraction on K.

The following result is established in Imdad et al. [4].

Theorem 1.1. [4] Let (X, d) be a complete metrically convex metric space and K a
non-empty closed subset of X and let F,G, S, T : K → X. If (F,G) is a generalized
(S, T ) contraction of K satisfying
(i) ∂K ⊆ SK ∩ TK, FK ∩K ⊆ SK, GK ∩K ⊆ TK,
(ii) Tx ∈ ∂K ⇒ Fx ∈ K, Sx ∈ ∂K ⇒ Gx ∈ K,
(iii) (F, T ) and (G,S) are weakly commuting pairs and
(iv) one of F,G, S and T is continuous in K.
Then there exists a unique point z ∈ K such that Fz = Gz = Sz = Tz = z.
Furthermore z remains a unique common fixed point of both pairs separately.

In this study, we seek to extend Theorem 1.1 from metric spaces into partial
metric spaces.
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2. Main Results

We begin with the following definition which is an extension of Definition 1.6
into partial metric spaces.

Definition 2.1. Let K be a non-empty subset of a partial metric space (X, p) and
let F,G, S, T : K → X satisfying the condition

p(Fx,Gy) ≤ amax
{
p(Tx, Sy)/2, p(Tx, Fx), p(Sy,Gy)

}
+ b
[
p(Tx,Gy) + p(Fx, Sy)

]
.

for all x, y ∈ K with x 6= y, a, b ≥ 0 and a + 2b <
1

2
. Then (F,G) is called a

generalized (S, T ) p-contraction on K.

The following relations for a, b ≥ 0 and a + 2b ≤ 1

2
will assist us in developing

our result.
Let

(2.1)
a+ b

1− 2b
= h <

1

2
.

From (2.1), we have

(2.2)
a+ b

1− b
<

a+ b

1− 2b
= h.

We now make use of (1.10) on (2.2), and get

b

1− a− b
≤ a+ b

1− b
< h.(2.3)

We intend to prove the following theorem.

Theorem 2.1. Let (X, p) be a complete metrically convex partial metric space and
K a non empty closed subset of X, the closure being with respect to (X, ps). Let
∂K, the boundary of K with respect to (X, ps), be non-empty. Also let F,G, S, T :
K → X. If (F,G) is a generalized (S, T ) p-contraction of K satisfying
(i) ∂K ⊆ SK ∩ TK, FK ∩K ⊆ SK, GK ∩K ⊆ TK,
(ii) Tx ∈ ∂K ⇒ Fx ∈ K, Sx ∈ ∂K ⇒ Gx ∈ K,
(iii) (F, T ) and (G,S) are weakly p-commuting pairs and
(iv) one of F,G, S and T is continuous in K.
Then there exists a unique point z ∈ K such that Fz = Gz = Sz = Tz = z and
p(z, z) = 0.

Proof. We form two sequences {xn} and {wn} in the following way.
We commence with an arbitrary point w0 ∈ ∂K. From assumption (i) there is

a point x0 ∈ K such that w0 = Tx0. From (ii), Fx0 ∈ K. According to (i), we
can choose x1 ∈ K such that w1 = Sx1 = Fx0. We locate Gx1. We consider the
following scenarios.

If Gx1 ∈ K, then, using (i), we can choose x2 ∈ K such that Tx2 = Gx1 = w2.
If however Gx1 /∈ K, by Lemma 1.5, we can choose w2 ∈ ∂K such that w2 ∈

seg[w1, Gx1]. As w2 ∈ ∂K, from (ii), we can find x2 ∈ K such that Tx2 = w2. We
then find Fx2.

We proceed inductively as follows:
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We set w2n = Tx2n. If Fx2n ∈ K, then by (i), we can choose x2n+1 ∈ K such
that Fx2n = Sx2n+1 = w2n+1.

If however Fx2n /∈ K, by Lemma 1.5, we can choose w2n+1 ∈ ∂K such that
w2n+1 ∈ seg[w2n, Fx2n]. As w2n+1 ∈ ∂K, then by (ii), we can find x2n+1 ∈ K such
that Sx2n+1 = w2n+1.

We then find Gx2n+1.
In a similar vein, we set w2n+1 = Gx2n+1. If Gx2n+1 ∈ K, then by (i), we

can choose x2n+2 ∈ K such that Gx2n+1 = Tx2n+2 = w2n+2. On the other hand,
if Gx2n+1 /∈ K, by Lemma 1.5, we can choose w2n+2 ∈ ∂K such that w2n+2 ∈
seg[w2n+1, Gx2n+1]. As w2n+2 ∈ ∂K, then by (ii), we can find x2n+2 ∈ K such that
Tx2n+2 = w2n+2.

We then find Fxn+2.
We define two sets, P and Q, forming a partition of the set {wn}.
Let P =

{
w2n ∈ {wn} : w2n = Gx2n−1

}
∪
{
w2n+1 ∈ {wn} : w2n+1 = Fx2n

}
and

Q =
{
w2n ∈ {wn} : w2n 6= Gx2n−1

}
∪
{
w2n+1 ∈ {wn} : w2n+1 6= Fx2n

}
. Note that

w2n ∈ P ⇒ w2n = Tx2n = Gx2n−1 for n ≥ 1 and
w2n+1 ∈ P ⇒ w2n+1 = Sx2n+1 = Fx2n. Note also that
w2n ∈ Q ⇒ w2n = Tx2n ∈ ∂K and w2n ∈ seg[w2n−1, Gx2n−1]. Similarly, w2n+1 ∈
Q⇒ w2n+1 = Sx2n+1 ∈ ∂K and w2n+1 ∈ seg[w2n, Fx2n].

We investigate three cases.
Case 1: Let (wm, wm+1) ∈ P ×P . Let us assume m is odd, meaning m = 2n+1

for some n ∈ N. Then

p(wm, wm+1) = p(w2n+1, w2n+2) = p(Sx2n+1, Tx2n+2) = p(Fx2n, Gx2n+1)

≤ amax

{
1

2
p(Tx2n, Sx2n+1), p(Tx2n, Fx2n), p(Sx2n+1, Gx2n+1)

}
+ b [p(Tx2n, Gx2n+1) + p(Fx2n, Sx2n+1)]

= amax

{
1

2
p(Tx2n, Sx2n+1), p(Tx2n, Sx2n+1), p(Sx2n+1, Tx2n+2)

}
+ b [p(Tx2n, Tx2n+2) + p(Sx2n+1, Sx2n+1)]

= amax

{
1

2
p(w2n, w2n+1), p(w2n, w2n+1), p(w2n+1, w2n+2)

}
+ b[p(w2n, w2n+2) + p(w2n+1, w2n+1)].

We note that from (P4) of Definition 1.1, we have

p(w2n, w2n+2) + p(w2n+1, w2n+1) ≤ p(w2n, w2n+1) + p(w2n+1, w2n+2).

Hence we have

p(wm, wm+1) = p(w2n+1, w2n+2)

≤ amax

{
1

2
p(w2n, w2n+1), p(w2n, w2n+1), p(w2n+1, w2n+2)

}
+ b[p(w2n, w2n+1) + p(w2n+1, w2n+2)]

= amax {p(w2n, w2n+1), p(w2n+1, w2n+2)}(2.4)

+ b[p(w2n, w2n+1) + p(w2n+1, w2n+2)].
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If p(w2n, w2n+1) ≤ p(w2n+1, w2n+2), then (2.4) becomes

p(wm, wm+1) = p(w2n+1, w2n+2)

≤ ap(w2n+1, w2n+2) + b[p(w2n, w2n+1) + p(w2n+1, w2n+2)]

≤ b

1− a− b
p(w2n, w2n+1)

≤ h p(w2n, w2n+1), (in view of (2.3)).

This is a contradiction because h <
1

2
. Hence

p(w2n, w2n+1) > p(w2n+1, w2n+2). Thus (2.4) becomes

p(wm, wm+1) = p(w2n+1, w2n+2)

≤ ap(w2n, w2n+1) + b[p(w2n, w2n+1) + p(w2n+1, w2n+2)]

≤ a+ b

1− b
p(w2n, w2n+1)

=
a+ b

1− b
p(wm−1, wm)

≤ h p(wm−1, wm), (in view of (2.2)).

A similar argument shows that when m = 2n, we have

p(w2n, w2n+1) ≤ hp(w2n−1, w2n).

Thus, in general, if (wm, wm+1) ∈ P × P , then

(2.5) p(wm, wm+1) ≤ hp(wm−1, wm), h <
1

2
.

Case 2: Let (wm, wm+1) ∈ P ×Q. If m is odd, then m = 2n+1 for some n ∈ N.
As wm+1 = w2n+2 ∈ Q, it means w2n+2 ∈ seg[w2n+1, Gx2n+1]. From Lemma 1.4
(ii), this means p(w2n+1, w2n+2) ≤ p(w2n+1, Gx2n+1). We note that, in this case,
w2n+1 = Sx2n+1 = Fx2n. Hence

p(wm, wm+1) ≤ p(w2n+1, Gx2n+1)

= p(Fx2n, Gx2n+1)

≤ hp(w2n, w2n+1)

= hp(wm−1, wm),

using an argument similar to that of Case 1.
We obtain a similar result when m is even. Hence, when (wm, wm+1) ∈ P ×Q,

we have

(2.6) p(wm, wm+1) ≤ hp(wm−1, wm), h <
1

2
.

Case 3: Let (wm, wm+1) ∈ Q× P .
We show that wm ∈ Q,m ≥ 1 implies that wm−1 ∈ P .
Now suppose wm−1 ∈ Q. This means wm−1 ∈ ∂K. By (ii), this implies that

wm ∈ P which is a contradiction. Hence wm−1 ∈ P .
Suppose m is odd, implying m = 2n+ 1 for some n ∈ N.
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As w2n+1 ∈ seg[w2n, Fx2n], we have

p(wm, wm+1) = p(w2n+1, w2n+2)

≤ p(w2n+1, Fx2n) + p(Fx2n, w2n+2), from (1.2)

≤ p(w2n, Fx2n) + p(Fx2n, w2n+2), from Lemma 1.4.(2.7)

We note that, from the construction of proof, w2n = Gx2n−1 and w2n+2 = Gx2n+1.
Thus (2.7) becomes

p(wm, wm+1) ≤ p(Gx2n−1, Fx2n) + p(Fx2n, Gx2n+1)

= p(Fx2n, Gx2n−1) + p(Fx2n, Gx2n+1)

⇒ p(wm, wm+1) ≤ 2 max{p(Fx2n, Gx2n−1), p(Fx2n, Gx2n+1)}(2.8)

We consider two subcases.
Subcase 3.1 Suppose p(Fx2n, Gx2n−1) ≤ p(Fx2n, Gx2n+1). Then (2.8) becomes

p(wm, wm+1) ≤ 2p(Fx2n, Gx2n+1)

≤ 2amax

{
1

2
p(Tx2n, Sx2n+1), p(Tx2n, Fx2n), p(Sx2n+1, Gx2n+1)

}
+ 2b [p(Tx2n, Gx2n+1) + p(Fx2n, Sx2n+1)]

≤ 2amax

{
1

2
p(Tx2n, Sx2n+1), p(Tx2n, Fx2n), p(Sx2n+1, Tx2n+2)

}
(2.9)

+ 2b [p(Tx2n, Tx2n+2) + p(Fx2n, Sx2n+1)] .

We note that as Sx2n+1 ∈ seg{Tx2n, Fx2n}, we have from Lemma 1.4 (ii)

p(Tx2n, Fx2n) ≥ p(Tx2n, Sx2n+1) ≥ 1

2
p(Tx2n, Sx2n+1).

We also have from (P4) of Definition 1.1

p(Tx2n, Tx2n+2) + p(Fx2n, Sx2n+1)

≤ p(Tx2n, Sx2n+1) + p(Sx2n+1, Tx2n+2)− p(Sx2n+1, Sx2n+1)

+ p(Fx2n, Sx2n+1)

= p(Sx2n+1, Tx2n+2) + p(Tx2n, Fx2n),by Lemma 1.4 (i).

From the construction of sequence, we have (wm, wm+1) = (Sx2n+1, Tx2n+2).
Hence (2.9) becomes

(2.10)

p(wm, wm+1) = p(Sx2n+1, Tx2n+2)

≤ 2amax {p(Tx2n, Fx2n), p(Sx2n+1, Tx2n+2)}
+ 2b [p(Sx2n+1, Tx2n+2) + p(Tx2n, Fx2n)] .
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If p(Tx2n, Fx2n) ≤ p(Sx2n+1, Tx2n+2) then (2.10) becomes

p(wm, wm+1) = p(Sx2n+1, Tx2n+2)

≤ 2ap(Sx2n+1, Tx2n+2)

+ 2b [p(Sx2n+1, Tx2n+2) + p(Tx2n, Fx2n)]

≤ 2ap(Sx2n+1, Tx2n+2)

+ 2b [p(Sx2n+1, Tx2n+2) + p(Sx2n+1, Tx2n+2)] ,

because p(Tx2n, Fx2n) ≤ p(Sx2n+1, Tx2n+2)

≤ 2(a+ 2b)p(Sx2n+1, Tx2n+2)

< p(Sx2n+1, Tx2n+2) because 2(a+ 2b) < 1.

This is a contradiction. Hence p(Tx2n, Fx2n) > p(Sx2n+1, Tx2n+2). Thus (2.10)
becomes

p(wm, wm+1) = p(Sx2n+1, Tx2n+2)

≤ 2ap(Tx2n, Fx2n)

+ 2b [p(Sx2n+1, Tx2n+2) + p(Tx2n, Fx2n)]

≤ 2
a+ b

1− 2b
p(Tx2n, Fx2n)

≤ 2hp(Tx2n, Fx2n)

≤ 2hp(Gx2n−1, Fx2n) because Gx2n−1 = Tx2n

≤ 2h× hp(wm−1, wm), as per Case 2

⇒ p(wm, wm+1) ≤ hp(wm−1, wm) as 2h < 1.(2.11)

Subcase 3.2 Now let us consider when p(Fx2n, Gx2n−1) > p(Fx2n, Gx2n+1).
Then (2.8) becomes

p(wm, wm+1) ≤ 2p(Fx2n, Gx2n−1)

≤ 2hp(w2n, w2n−1)

= 2hp(w2n−1, w2n), by Case 2

⇒ p(wm, wm+1) = 2hp(wm−2, wm−1), because m = 2n+ 1.(2.12)

From (2.11), and (2.12), we conclude that when m is an odd natural number, and
(wm, wm+1) ∈ Q× P , we have

(2.13) p(wm, wm+1) ≤ 2hmax{p(wm−2, wm−1), p(wm−1, wm)}.

We get the same result (2.13) when m is an even number.

The case p(wm, wm+1) ∈ Q×Q is not possible.

Referring to (2.5), (2.6) and (2.13), we conclude that for all possible cases: Case
1, Case 2 and Case 3, we have

(2.14) p(wm, wm+1) ≤ 2hmax{p(wm−2, wm−1), p(wm−1, wm)}.
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We note that for h ≥ 0, we have

2h < 1⇒ 2(a+ b)

1− 2b
< 1

⇒ 2a+ 2b < 1− 2b

⇒ a+ 2b <
1

2
,

as required by the assumption.
We apply Lemma 1.6 to (2.14) and get

(2.15) p(wn, wn+1) < (2h)n/2δ,

where δ = (2h)1/2 max{p(w0, w1), p(w1, w2)}.
Suppose n,m ∈ N, n > m. Using (1.2) inductively, we have

p(wm, wn) ≤
n−1∑
i=m

p(wi, wi+1)

≤
n−1∑
i=m

(2h)i/2δ from (2.15),

≤ δ(2h)m/2 1− (2h)(n−m)/2

1− (2h)1/2

≤ δ(2h)m/2 1

1− (2h)1/2
.

Taking n,m→∞ we get

lim
n,m→∞

p(wm, wn) = 0 < +∞.

This makes {wn} ∈ K a Cauchy sequence.
From the assumption, K is a closed in (X, ps). This makes K complete in (X, ps)

and hence complete in (X, p),
(
see Lemma 1.2 (ii)

)
. This means that there is z ∈ K

such that
lim

m,n→∞
p(wm, wn) = lim

m,n→∞
p(wn, z) = p(z, z) = 0.

This means wn → z in (X, p).
Consider a subsequence {w2nk

} of {wn} which is contained in P . For all k ∈ N
we have

w2nk
= Tx2nk

= Gx2nk−1.

Hence

lim
k→∞

w2nk
= z

⇒ lim
k→∞

Tx2nk
= lim

k→∞
Gx2nk−1 = z

⇒ lim
n→∞

Tx2n = lim
n→∞

Gx2n−1 = z.

Let us now consider the subsequence {w2nk+1} of {wn} which is contained in P .
Using a similar argument, we get

lim
n→∞

Sx2n+1 = lim
n→∞

Fx2n = z.

Thus we have shown that

(2.16) lim
n→∞

Tx2n = lim
n→∞

Gx2n−1 = lim
n→∞

Sx2n+1 = lim
n→∞

Fx2n = z.
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Let us now consider the subsequence {w2nk
} = {Tx2nk

} of {wn} which is con-
tained in P . If we assume that S is continuous, then
limk→∞ STx2nk

= Sz. As the pair {G,S} are weakly p-commutative, we have

p(STx2nk
, GSx2nk−1) = p(SGx2nk−1, GSx2nk−1)

≤ p(Gx2nk−1, Sx2nk−1).

Taking k →∞ and applying (2.16), we get

(2.17) p(Sz,Γ) ≤ p(z, z) = 0⇒ p(Sz,Γ) = 0⇒ Γ = Sz,

where Γ := limk→∞GSx2nk−1.
To show that Sz = z, we consider

p(Fx2nk
, GSx2nk−1)

≤ amax {p(Tx2nk
, SSx2nk−1)/2, p(Tx2nk

, Fx2nk
), p(SSx2nk−1, GSx2nk−1)}

+ b[p(Tx2nk
, GSx2nk−1) + p(Fx2nk

, SSx2nk−1)].

Taking k →∞ and making use of (2.8) (with Γ = Sz), we get

p(z, Sz) ≤ amax {p(z, Sz)/2, p(z, z), p(Sz, Sz)}
+ b[p(z, Sz) + p(z, Sz)]

≤ amax {p(z, Sz), p(Sz, Sz)}+ 2bp(z, Sz)

= ap(z, Sz) + 2bp(z, Sz)

⇒ p(z, Sz) ≤ (a+ 2b)p(z, Sz).(2.18)

From the assumption, we have a+ 2b <
1

2
. Hence (2.18) implies

p(z, Sz) = 0⇒ Sz = z.

Now consider

p(Fx2n, Gz) ≤ amax {p(Tx2n, Sz)/2, p(Tx2n, Fx2n), p(Sz,Gz)}
+ b[p(Tx2n, Gz) + p(Fx2n, Sz].

Taking k →∞ and noting that p(z, Sz) = 0, we get

p(z,Gz) ≤ amax {p(z, Sz)/2, p(z, z), p(z,Gz)}
+ b[p(z,Gz) + p(z, Sz)]

= ap(z,Gz) + bp(z,Gz)

= (a+ b)p(z,Gz).

From the assumption a+ 2b <
1

2
implying a+ b ≤ 1

2
. This means

(2.19) p(z,Gz) = 0⇒ Gz = z.

If we expand p(Fz,Gx2n−1) and use a similar argument, we will arrive at

(2.20) Fz = z.
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As Gz = z ∈ K, by (i) in the assumption, there is u ∈ K such that
Tu = Gz = z. Hence

p(Fu, z) = p(Fu,Gz)

≤ amax {p(Tu, Sz)/2, p(Tu, Fu), p(Sz,Gz)}
+ b[p(Tu,Gz) + p(Fu, Sz]

= amax {p(z, z)/2, p(z, Fu), p(z, z)}+ b[p(z, z) + p(Fu, z)]

= (a+ b)p(Fu, z)

⇒ p(Fu, z) ≤ p(Fu, z), because a+ b < 1

⇒ p(Fu, z) = 0

⇒ Fu = z = Gz = Tu.(2.21)

Using the weak p-compatibility of (F, T ), together with (2.21), we have

p(FTu, TFu) ≤ p(Fu, Tu) = p(z, z) = 0

⇒ p(Fz, Tz) = 0

⇒ Fz = Tz = z.

Hence we have proved that

Fz = Gz = Sz = Tz = z, p(z, z) = 0.

To prove that z is unique, suppose z′ is also a common fixed point v of F,G, S and
T . Then

p(z′, z) = p(Fz′, Gz)

≤ amax{p(Tz′, Sz)/2, p(Tz′, Fz′), p(Sz,Gz)}
+ b[p(Tz′, Gz) + p(Fz′, Sz)]

= amax{p(z′, z)/2, p(z′, z′), p(z, z)}+ b[p(z′, z) + p(z′, z)]

≤ amax{p(z′, z), p(z′, z′), p(z, z)}+ 2b p(z′, z)

= ap(z′, z) + 2bp(z′, z)

= (a+ 2b)p(z′, z).

As a+ 2b <
1

2
, this leads to

p(z′, z) = 0⇒ z′ = z.

We have shown that z is unique and proved Theorem 2.1 for S being a continuous
mapping. A similar argument applies for continuity in at least one of the mappings
F, T or G. �

Remark 2.1. We get special cases of Theorem 2.1 if Definition 2.1 is adjusted by
putting

(i) S = T ;
(ii) S = T = I, where I is the identity mapping;
(iii) S = I;
(iv) a = 0 or
(v) b = 0.
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Theorem 2.1 remains true if the condition of weak p-commutativity and conti-
nuity of one of the mappings is replaced by closedness of TK and SK (or FK and
GK), together with coincidental commutativity of (F, T ) (or (G,S)). Doing so, we
get the following theorem:

Theorem 2.2. Let (X, p) be a complete metrically convex partial metric space
and let K be a closed non-empty subset of X, the closure being with respect to
(X, ps). Let K, the boundary of K with respect to (X, ps), be non-empty. Also let
F,G, S, T : K → X. If (F,G) is a generalized (S, T ) p-contraction of K satisfying

(i) ∂K ⊂ SK ∩ TK, FK ∩K ⊆ SK, GK ∩K ⊆ TK,
(ii) Tx ∈ ∂K ⇒ Fx ∈ K, Sx ∈ ∂K ⇒ Gx ∈ K,

(iii) TK and SK (or FK and GK) are closed,
(iv) (F, T ) and (G,S) have coincidence points and
(v) the pairs (F, T ) and (G,S) are coincidentally commuting.
Then there exists a point z ∈ K such that Fz = Gz = Sz = Tz = z. Furthermore

z remains a unique common fixed point of both pairs separately and p(z, z) = 0.

Proof: The proof sequence is the same as that used for proving Theorem 2.1
until we reach the equation (2.16). From there we proceed as follows. Let us
consider the subsequence w2nk

= {Tx2nk
} contained in P . Assuming TK is closed,

we have z as defined in (2.16) being an element of TK. Hence, there is u ∈ K such
that Tu = z. Now consider

p(Fu, Tx2nk
) = p(Fu,Gx2nk−1)

≤ amax{p(Tu, Sx2nk−1)/2, p(Tu, Fu), p(Sx2nk−1, Gx2nk−1)}
+ b[p(Tu,Gx2nk−1) + p(Fu, Sx2nk−1)].

Taking k →∞, we get

p(Fu, z) ≤ amax{p(z, z)/2, p(z, Fu), p(z, z)}
+ b[p(z, z) + p(Fu, z)]

= ap(Fu, z) + b[p(z, z) + p(Fu, z)]

≤ b

1− a− b
p(z, z)

≤ p(z, z).

This implies p(Fu, z) = 0 and hence, Fu = z = Tu, so that u is a coincidence point
of F and T . Because (F, T ) are coincidentally commuting, we have FTu = TFu⇒
Fz = Tz.

Similarly, we consider the subsequence w2nk+1 = {Sx2nk+1} contained in P. As
SK is closed, there is v ∈ K such that Sv = z. Expanding p(Sx2nk+1, Gv), then
taking k → ∞, and using the coincidental commutativity of (S,G), we get the
similar result that

Sv = z = Gv and Sz = Gz.
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To show that Fz = z, we proceed as follows:

p(Fz, z) = p(Fz,Gv)

≤ amax{p(Tz, Sv)/2, p(Tz, Fz), p(Sv,Gv)}
+ b[p(Tz,Gv) + p(Fz, Sv)]

= amax{p(Fz, z)/2, p(Fz, Fz), p(z, z)}
+ b[p(Fz, z) + p(Fz, z)]

≤ amax{p(Fz, z), p(Fz, Fz), p(z, z)}
+ b[p(Fz, z) + p(Fz, z)]

= ap(Fz, z) + 2bp(Fz, z)

= (a+ 2b)p(Fz, z).

As (a+ 2b) <
1

2
, this means

p(Fz, z) = 0⇒ Fz = z = Tz.

If we consider p(z,Gz) and use the same argument as above, we reach a similar
conclusion that Gz = z = Sz. The uniqueness of z follows easily.

Thus we have z as a unique common fixed point of F,G, S and T and
p(z, z) = 0.

We get the same result if we consider FK and GK as closed. We have completed
the proof of Theorem 2.2.

Remark 2.2. We get special cases of Theorem 2.2 if Definition 2.1 is adjusted by
putting

(i) S = T ;
(ii) S = T = I, where I is the identity mapping;
(iii) S = I;
(iv) a = 0 or
(v) b = 0.

We provide an example on the use of Theorem 2.2.

Example 2.1. Consider the metrically complete convex partial metric space
(R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+. The derived metric for p is
ps(x, y) = |x− y|, and it is metrically convex. This makes the partial metric space
(R+, p) also metrically convex by Definition 1.4.

Let K = [0, 2], a closed subset of R+. Let the mappings F, T,G, S : K → R+ be
defined as

Fx = x, Tx = 3x, Gx = 2x, Sx = 10x.

We have ∂K = {0, 2}, SK = [0, 20], TK = [0, 6] implying ∂K ⊂ SK ∩TK. We also
FK = [0, 2], GK = [0, 4] implying FK ∩K ⊂ SK and GK ∩K ⊂ TK.

When Tx ∈ ∂K, we have x = 0 or x =
2

3
. This makes Fx ∈

{
0,

2

3

}
implying

Fx ∈ K. Similarly, when Sx ∈ ∂K, we have x = 0 or x =
2

10
. This makes

Gx ∈
{

0,
2

5

}
implying Fx ∈ K.
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We have the pairs F, T and G,S coincidentally commuting at their coincidence
point z = 0 because FT (0) = TF (0) and GS(0) = SG(0). Finally z = 0 is a
common fixed point of all the four mappings and p(z, z) = 0.

We set a =
1

4
, b =

1

32
and note that a+ 2b =

5

16
<

1

2
.

We consider the case of x ≤ y which leads to

p(Fx,Gy) = p(x, 2y) = max{x, 2y} = 2y

≤ 1

4
× 10y =

1

4
max{10y, 2y} =

1

4
max{Sy,Gy}

=
1

4
p(Sy,Gy).

Hence

p(Fx,Gy) ≤ 1

4
max

{
p(Tx, Sy)/2, p(Tx, Fx), p(Sy,Gy)

}
+

1

32

[
p(Tx,Gy) + p(Fx, Sy)

]
.
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