
Konuralp Journal of Mathematics
Volume 5 No. 2 pp. 102–113 (2017) c©KJM

k−FIBONACCI AND k−LUCAS GENERALIZED QUATERNIONS

GÖKSAL BILGICI, ÜMIT TOKEŞER, AND ZAFER ÜNAL

Abstract. We investigate the properties of k−Fibonacci and k−Lucas quater-
nions over the generalized quaternion algebra. After presenting generating

functions and Binet’s formulas for these types of quaternions, we calculate
several well-known identities such as Catalan’s, Cassini’s and d’Ocagne’s iden-

tities for k−Fibonacci and k−Lucas generalized quaternions.

1. Introduction

The famous integer sequence, Fibonacci sequence {Fn}∞n=0, is defined by the
numbers which satisfy the second order recurrence relation Fn = Fn−1 +Fn−2 with
the initial conditions F0 = 0 and F1 = 1. Fibonacci numbers have many interesting
properties and applications in various research areas. The Lucas sequence {Ln}∞n=0

is defined with the Lucas numbers which are defined with the recurrence relation
Ln = Ln−1 + Ln−2 with the initial conditions L0 = 2 and L1 = 1. Sometimes,
Lucas numbers are defined with the well-known identity Ln = Fn−1 +Fn+1 between
Fibonacci and Lucas numbers.

Pell sequence {Pn}∞n=0 and Pell-Lucas sequence {PLn}∞n=0 are other well-known
sequences. They are defined by the recurrence relations Pn = 2Pn−1 + Pn−2 and
PLn = 2PLn−1 +PLn−2 where the initial conditions are P0 = 0 and P1 = 1,PL0 =
2 and PL1 = 2, respectively.

Generating functions for the sequences {Fn}∞n=0, {Ln}∞n=0, {Pn}∞n=0 and {PLn}∞n=0

are shown below:
∞∑

n=0

Fnx
n =

x

1− x− x2
,

∞∑
n=0

Lnx
n =

2− x
1− x− x2

,

∞∑
n=0

Pnx
n =

x

1− 2x− x2
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and
∞∑

n=0

PLnx
n =

2− 2x

1− 2x− x2

respectively. Binet’s formulas for the Fibonacci, Lucas, Pell and Pell-Lucas numbers
are

Fn =
αn − βn

α− β
,

Ln = αn + βn

Pn =
γn − δn

γ − δ
and

PLn = γn + δn

respectively, where α = 1+
√

5
2 , β = 1−

√
5

2 are the roots of the characteristic equation

x2 − x − 1 = 0, and γ = 1 +
√

2, δ = 1 −
√

2 are the roots of the characteristic
equation x2−2x−1 = 0. The positive roots α and γ are known as the golden ratio
and the silver ratio, respectively (see [12, 13] for details).

Many authors generalized these sequences by changing the initial conditions or
changing the recurrence relation slightly. One of the generalizations of the Fibonacci
sequence is k−Fibonacci sequence introduced by Falcon and Plaza [6]. For any
positive real number k, k−Fibonacci numbers are defined by the recurrence relation

Fk,n = kFk,n−1 + Fk,n−2

with the initial conditions Fk,0 = 0 and Fk,1 = 1. Falcon [7] defined k−Lucas
numbers by the recurrence relation

Lk,n = kLk,n−1 + Lk,n−2

with the initial conditions Lk,0 = 2, Lk,1 = k.
For k = 1, the k−Fibonacci and k−Lucas sequences reduce to the classical

Fibonacci and Lucas sequences. Similarly, for k = 2, the k−Fibonacci and k−Lucas
sequences reduce to the Pell and Pell-Lucas sequences.

Generating functions for the k−Fibonacci and k−Lucas sequences are respec-
tively

fk(x) =
x

1− kx− x2

and

lk(x) =
2− kx

1− kx− x2
.

Binet’s formulas for the k−Fibonacci and k−Lucas numbers are respectively

Fk,n =
αn − βn

α− β
and

Lk,n = αn + βn

where

(1.1) α =
k +
√
k2 + 4

2
and β =

k −
√
k2 + 4

2

are roots of the characteristic equation x2 − kx− 1 = 0.
Let λ, µ ∈ R and H(λ, µ) be the generalized quaternion algebra with the basis

{1, e1, e2, e3}. The multiplication table of this algebra is
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· 1 e1 e2 e3

1 1 e1 e2 e3

e1 e1 −λ e3 −λe2

e2 e2 −e3 −µ µe1

e3 e3 λe2 −µe1 −λµ.

The algebra H(1, 1) is the quaternion division algebra and H(1,−1) is the split-
quaternion algebra. A generalized quaternion, q, in the algebra H(λ, µ) is formu-
lated as q = a0 + a1e1 + a2e2 + a3e3 where a0, a1, a2 and a3 are real numbers.
The conjugate of q is given by q∗ = a0 − a1e1 − a2e2 − a3e3 and the norm of q is
n(q) = qq∗ = a2

0 + a2
1λ+ a2

2µ+ a2
3λµ.

Horadam [10] defined Fibonacci and Lucas quaternions as follows:

Qn = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3

and

Kn = Ln + Ln+1e1 + Ln+2e2 + Ln+3e3

respectively, where Fn is the nth Fibonacci number and Ln is the nth Lucas number.
He defined a generalization of the Fibonacci quaternions with the relation

Pn = Hn +Hn+1e1 +Hn+2e2 +Hn+3e3

where H1 = p, H2 = p+ q and Hn = Hn−1 +Hn−2.
A considerable amount of literature has focused on Fibonacci and Lucas quater-

nions. Iyer [11] investigated a number of relations of Fibonacci and Lucas quater-
nions. Halici [8] studied the Fibonacci and Lucas quaternions and introduced sev-
eral properties including the Binet’s formulas as follows:

Qn =
1√
5

(
α̂α− β̂β

)
and

Kn = α̂α+ β̂β

where α̂ = 1+αe1+α2e2+α3e3 and β̂ = 1+βe1+β2e2+β3e3 where α = (1+
√

5)/2

and β = (1−
√

5)/2.
Akyigit et al. [1] studied split Fibonacci and split Lucas quaternions on the alge-

bra H(1,−1). They obtained Binet’s formulas and focused on summation identities
for these quaternions. Akyigit et al. [2] generalized the quaternions Qn and Kn on
the algebra H(λ, µ).

Szynal-Liana & Wloch [18] and Cimen & Ipek [3] worked on Pell and Pell-Lucas
quaternions which are defined as follows:

Rn = Pn + Pn+1e1 + Pn+2e2 + Pn+3e3

and

Sn = PLn + PLn+1e1 + PLn+2e2 + PLn+3e3

where Pn and PLn are the nth Pell and Pell-Lucas numbers. Many properties of
these quaternions can be found in studies [3, 18].

Ramirez [16] introduced the k−Fibonacci and k−Lucas quaternions on the alge-
bra H(1, 1) as follows:

Dk,n = Fk,n + Fk,n+1e1 + Fk,n+2e2 + Fk,n+3e3
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and

Pk,n = Lk,n + Lk,n+1e1 + Lk,n+2e2 + Lk,n+3e3

respectively, where Fk,n and Lk,n are the nth k−Fibonacci and k−Lucas numbers.
He obtained generating functions, Binet’s formulas, Cassini’s identity and some
other identities. He also explained Catalan’s identity as a conjecture. Furthermore,
this conjecture was proved by Polatli and Kesim [15].

Polatli et.al. [14] idefined and studied split k−Fibonacci and k−Lucas Quater-
nions on the algebra H(1,−1)

Mk,r = Fk,r + Fk,r+1e1 + Fk,r+2e2 + Fk,r+3e3

and

Nk,r = Lk,r + Lk,r+1e1 + Lk,r+2e2 + Lk,r+3e3

respectively, where Fk,n and Lk,n are the nth k−Fibonacci and k−Lucas numbers
and gave many properties for these quaternions such as Binet’s formulas, generating
functions, Catalan’s and d’Ocagne’s identities, and several summation and binomial
formulas.

Catarino [4] introduced the Modified Pell and Modified k−Pell quaternions as
follows:

MPn =

3∑
s=0

qn+ses

and

MPk,n =

3∑
s=0

qk,n+ses

where qn is the nth Modified Pell number and qk,n is the nth Modified k−Pell
number. She also presented a number of properties of these quaternions.

Catarino and Vasco [5] studied on dual k−Pell and dual k−Pell–Lucas quater-
nions which defined by the following relations:

R̂k,n = Rk,n + εRk,n+1

and

Ŝk,n = Sk,n + εSk,n+1

where Rk,n and Sk,n are the k−Pell and k−Pell–Lucas quaternions respectively,
and ε is the dual unit which satisfies ε2 = 0. They gave several properties of these
quaternions including generating functions, Binet’s formulas and some identities.

In this paper, we present a generalization of all the studies mentioned above on
the algebra H(λ, µ). Firstly, we introduce the definitions of the k−Fibonacci and
k−Lucas generalized quaternions.

Definition 1.1. For any integer r, the k−Fibonacci and k−Lucas generalized
quaternions are

(1.2) Gk,r = Fk,r + Fk,r+1e1 + Fk,r+2e2 + Fk,r+3e3

and

(1.3) Hk,r = Lk,r + Lk,r+1e1 + Lk,r+2e2 + Lk,r+3e3

respectively, where Fk,n and Lk,n are the nth k−Fibonacci and k−Lucas numbers.
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We abbreviate the k−Fibonacci and k−Lucas generalized quaternions to kFGQ
and kLGQ respectively. The following table presents how Gk,r and Hk,r generalize
the quaternions mentioned above.

(λ, µ) (1, 1) (1,−1)
k = 1 Fibonacci quaternions [10] Split Fibonacci quaternions [1]
k = 2 Pell quaternions [3, 18] Split Pell quaternions [17]
k k−Fibonacci quaternions [16] Split k−Fibonacci quaternions [14]

Furthermore, the k−Fibonacci and k−Lucas Quaternions have the following re-
currence relations.

Corollary 1.1. For any integer r, we have

(1.4) Gk,r = kGk,r−1 +Gk,r−2

and

(1.5) Hk,r = kHk,r−1 +Hk,r−2.

We give generalizations of some well-known identities in next sections.

2. Generating Functions and Binet’s Formulas for the k−Fibonacci
and k−Lucas Generalized Quaternions

The following theorem states generating functions for kFGQ and kLGQ.

Theorem 2.1. The generating functions for kFGQ and kLGQ are

G(x) =

∞∑
n=0

Gk,nx
n =

x+ e1 + (k + x)e2 + (k2 + 1 + kx)e3

1− kx− x2

and

H(x) =

∞∑
r=0

Hk,rx
r

=
2− kx+ (k + 2x)e1 + (k2 + 2 + kx)e2 + [k3 + 3k + (k2 + 2)x]e3

1− kx− x2

respectively.

The proof can be completed following similar steps as in [16]. Binet’s formulas
for kFGQ and kLGQ are given in the following theorem.

Theorem 2.2. For any integer r, the rth kFGQ and kLGQ are, respectively,

(2.1) Gk,r =
α̂αr − β̂βr

α− β
and

(2.2) Hk,r = α̂αr + β̂βr

where α̂ = 1 + αe1 + α2e2 + α3e3 and β̂ = 1 + βe1 + β2e2 + β3e3.
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Proof. For the first equation, we have by Eq.(1.2)

αGk,r +Gk,r−1 =

αFk,r + Fk,r−1 + (αFk,r+1 + Fk,r)e1 + (αFk,r+2 + Fk,r+1)e2

+(αFk,r+3 + Fk,r+2)e3.

Using the identity αr = αFk,r + Fk,r−1, we obtain

(2.3) αGk,r +Gk,r−1 = α̂αr.

Similarly, we have

(2.4) βGk,r +Gk,r−1 = β̂βr.

After substraction Eq. (2.4) from Eq. (2.3), we get the Eq. (2.1). Moreover, Eq.
(2.2) can be obtained similarly. �

Using the Binet’s formulas for kFGQ and kLGQ, we investigate the properties
of these quaternions.

Lemma 2.1. We have

α̂β̂ = u1 +Hk,0 + u2

√
k2 + 4,(2.5)

β̂α̂ = u1 +Hk,0 − u2

√
k2 + 4,(2.6)

(α̂)2 = v1 +Hk,0 +
√
k2 + 4(v2 +Gk,0),(2.7)

(β̂)2 = v1 +Hk,0 −
√
k2 + 4(v2 +Gk,0)(2.8)

where

u1 = λµ+ λ− µ− 1,

u2 = −µe1 − λke2 + e3,

v1 = −λµ
2
k6 −

(
3λµ+

µ

2

)
k4

−
(

9

2
λµ+ 2µ+

λ

2

)
k2 − λµ− λ− µ− 1,

and

v2 = −λµ
2
k5 −

(
2λµ+

µ

2

)
k3 −

(
3

2
λµ+

λ

2
+ µ

)
k.

Proof. From the definition of α̂ and β̂, we have

α̂β̂ = (1 + αe1 + α2e2 + α3e3)(1 + βe1 + β2e2 + β3e3)

= λµ+ λ− µ+ 1 + ke1 + (k2 + 1)e2 + (k3 + 3k)e3

+
√
k2 + 4(−µe1 − kλe2 + e3)

= u1 +Hk,0 + u2

√
k2 + 4.

The others can be proved similarly. �
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This lemma gives us the following useful properties:

α̂β̂ + β̂α̂ = 2(u1 +Hk,0),(2.9)

α̂β̂ − β̂α̂ = 2u2

√
k2 + 4,(2.10)

(α̂)2 + (β̂)2 = 2(v1 +Hk,0),(2.11)

(α̂)2 − (β̂)2 = 2
√
k2 + 4(v2 +Gk,0).(2.12)

We can give negative indices for kFGQ and kLGQ. Using the identities F−r =
(−1)r+1Fr and L−r = (−1)rLr, we have

Gk,−r = (−1)r
[
− Fr + Fr+1e1 − Fr+2e2 + Fr+3e3

]
and

Hk,−r = (−1)r
[
Lr − Lr+1e1 + Lr+2e2 − Lr+3e3

]
.

3. Cassini’s, Catalan’s and d’Ocagne’s Identities

In this section, we introduce Catalan’s, Cassini’s and d’Ocagne’s identities for
kFGQ and kLGQ. The following theorem provides the Catalan’s identities.

Theorem 3.1. For any integers r and s, we have

(3.1) Gk,r+sGk,r−s −G2
k,r = (−1)r+s+1

[
(Hk,0 + u1)F 2

k,s + u2Fk,2s

]
and

(3.2) Hk,r+sHk,r−s −H2
k,r = (−1)r+s(k2 + 4)

[
(Hk,0 + u1)F 2

k,s + u2Fk,2s

]
.

Proof. By using the Binet formula for kFGQ, we have

Gk,r+sGk,r−s −G2
k,r =

1

k2 + 4

[ (
α̂αr+s − β̂βr+s

)(
α̂αr−s − β̂βr−s

)
−
(
α̂αr − β̂βr

)2 ]
=

1

k2 + 4

[
−α̂β̂αr+sβr−s − β̂α̂βr+sαr−s

+β̂α̂αrβr + α̂β̂αrβr
]

=
1

k2 + 4

[
−αr−sβr−s

(
α̂β̂α2s + β̂α̂β2s

)
+ (−1)

r
2 (Hk,0 + u1)] .

Substituting Eqs. (2.5) and (2.6) into the last equation and making some ele-
mentary operations, we obtain

Gk,r+sGk,r−s −G2
k,r = (−1)r+s+1u2Fk,2s

+
1

k2 + 4
(−1)r (Hk,0 + u1) [2− (−1)sLk,2s].

The identity (k2 + 4)F 2
k,2s = Lk,2s − 2(−1)s gives the Eq. (3.1). Accordingly, Eq.

(3.2) can be proved similarly. �

If we take s = 1, we obtain Cassini’s identities for kFGQ and kLGQ as in the
following result.
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Corollary 3.1. For any integer r, we have

(3.3) Gk,r+1Gk,r−1 −G2
k,r = (−1)r [Hk,0 + u1 + ku2]

and

(3.4) Hk,r+1Hk,r−1 −H2
k,r = (−1)r+1(k2 + 4) [Hk,0 + u1 + ku2] .

In the next theorem, d’Ocagne’s identities for the kFGQ and kLGQ are given.

Theorem 3.2. For any integers r and s, we have

(3.5) Gk,rGk,s+1 −Gk,r+1Gk,s = (−1)s[(Hk,0 + u1)Fk,r−s + u2Lk,r−s]

and

(3.6) Hk,rHk,s+1 −Hk,r+1Hk,s = (−1)s+1(k2 + 4)[(Hk,0 + u1)Fk,r−s + u2Lk,r−s].

Proof. The Binet’s formula for kFGQ gives

Gk,rGk,s+1 −Gk,r+1Gk,s =

1

k2 + 4

[(
α̂αr − β̂βr

)(
α̂αs+1 − β̂βs+1

)
−
(
α̂αr+1 − β̂βr+1

)(
α̂αs − β̂βs

)]
=

√
k2 + 4

k2 + 4
(−1)

s
[
α̂β̂αr−s − β̂α̂βr−s

]
.

Substituting the Eqs. (2.5) and (2.6) into the last equation and making some
operations, we get Eq. (3.5). The Eq. (3.6) can be handled in the same way. �

4. Some Identities for the k−Fibonacci and k−Lucas Generalized
Quaternions

In this section, we present adaptations of some well-known identities between
Fibonacci and Lucas numbers for kFGQ and kLGQ. The following identity explains
the summation and subtraction of squares of kFGQ and kLGQ.

Theorem 4.1. For any integer r, we have

H2
k,r +G2

k,r =
k2 + 5

k2 + 4

[
(v1 +Hk,0)Lk,2r + (k2 + 4)(v2 +Gk,0)Fk,2r

]
+

2(−1)r(k2 + 3)

k2 + 4
(u1 +Hk,0)

and

H2
k,r −G2

k,r =
k2 + 3

k2 + 4

[
(v1 +Hk,0)Lk,2r + (k2 + 4)(v2 +Gk,0)Fk,2r

]
+

2(−1)r(k2 + 5)

k2 + 4
(u1 +Hk,0).

Proof. By using the Binet formulas for kFGQ and kLGQ, we have

H2
k,r +G2

k,r =
1

k2 + 4

(
α̂αr − β̂βr

)2

+
(
α̂αr + β̂βr

)2

=
1

k2 + 4

[
(α̂)2α2r + (β̂)2β2r − α̂β̂αrβr − β̂α̂αrβr

]
+
[
(α̂)2α2r + (β̂)2β2r + α̂β̂αrβr + β̂α̂αrβr

]
.
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By substituting (α̂)2, (β̂)2 from Lemma 2.1 and α̂β̂+β̂α̂ from Eq. (2.9) into the last
equation and simplifying the result with some elementary operations, we obtain the
first identity in theorem. The second identity can be proved in a similar way. �

Now, we provide several interesting identities in the following theorems.

Theorem 4.2. For any integer r, we have
r∑

i=0

(
r

i

)
kiGk,i = Gk,2r

and
r∑

i=0

(
r

i

)
kiHk,i = Hk,2r.

Proof. For kFGQ, we have

r∑
i=0

(
r

i

)
kiGk,i =

r∑
i=0

(
r

i

)
ki

[
α̂αr − β̂βr

α− β

]

=
α̂

α− β

r∑
i=0

(
r

i

)
kiαi − β̂

α− β

r∑
i=0

(
r

i

)
kiβi

=
α̂

α− β
(1 + kα)r − β̂

α− β
(1 + kβ)r.

Since α and β are roots of the equation x2 − kx− 1 = 0, we have 1 + kα = α2 and
1 + kβ = β2. Using these two equations, we obtain

r∑
i=0

(
r

i

)
kiGk,i =

α̂α2r − β̂β2r

α− β
= Gk,2r.

In the same manner, we can see the second identity. �

Theorem 4.3. For any integers r, s and t, we have

Hk,r+sGk,r+t −Hk,r+tGk,r+s = 2(−1)r+s(u1 +Hk,0)Ft−s.

Proof. Using Binet’s formulas for kFGQ and kLGQ, we have

Hk,r+sGk,r+tHk,r+tGk,r+s

=
1√

k2 + 4

[ (
α̂αr+s + β̂βr+s

)(
α̂αr+t − β̂βr+t

)
−
(
α̂αr+t + β̂βr+t

)(
α̂αr+s − β̂βr+s

) ]
=

1√
k2 + 4

[
− α̂β̂αr+sβr+t + β̂α̂βr+sαr+t

+α̂β̂αr+tβr+s − β̂α̂αr+sβr+t
]

=
(α̂β̂ + β̂α̂)√

k2 + 4

[
− αr+sβr+t + αr+tβr+s

]
.

After we substitute Eq. (2.9) into the last equation, we obtain the result of the
theorem. �
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Theorem 4.4. For any integers r and s, we have

Gk,r+s + (−1)sGk,r−s = Gk,rLk,s.

Proof. Binet’s formulas for kFGQ and kLGQ give

Gk,r+s + (−1)sGk,r−s =
1√

k2 + 4

[
α̂αr+s − β̂βr+s

+ (−1)
s
(
α̂αr−s − β̂βr−s

) ]
=

1√
k2 + 4

[
α̂αr+s − β̂βr+s

+
(
α̂αrβs − β̂αsβr

) ]
=

1√
k2 + 4

[
α̂αr (αs + βs)− β̂βr (αs + βs)

]
= Gk,rLk,s.

�

We know that H(λ, µ) is non-commutative. It can be seen what happens when
any two kFGQs or kLGQs are displaced.

Theorem 4.5. For any integers r and s, we have

Gk,rGk,s = Gk,sGk,r + 2(−1)s+1u2Fk,r−s

and

Hk,rHk,s = Hk,sHk,r + 2(−1)s(k2 + 4)u2Fk,r−s.

Proof. For the first equation in theorem, from the Binet formula for kFGQ, we have

Gk,rGk,s −Gk,sGk,r =
1

k2 + 4

[ (
α̂αr − β̂βr

)(
α̂αs − β̂βs

)
−
(
α̂αs − β̂βs

)(
α̂αr − β̂βr

) ]
=

1

k2 + 4

[
− α̂β̂αrβs − β̂α̂αsβr + α̂β̂αsβr + β̂α̂αsβr

]
.

Substituting Eqs. (2.5) and (2.6) into the last equation and making some simplifi-
cations get the first equation in theorem. Taking similar steps, the second identity
in theorem can be obtained. �

In the next theorem, we give some interesting identities for kFGQ and kLGQ
without proof.
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Theorem 4.6. We have the followings

Gk,rHk,s = Gk,sHk,r + 2(−1)r+1(u1 +Hk,0)Fk,s−r,

Gk,rHk,s = Hk,rGk,s + 2(−1)r+1
[
(u1 +Hk,0)Fk,s−r − u2Lk,s−r

]
,

Gk,r+sFr+s −Gk,r−sFr−s = Fk,2sGk,2r,

Hk,r+sLr+s −Hk,r−sLr−s = (k2 + 4)Fk,2sGk,2r,

Gk,r = kGk,r−1 +Gk,r−2,

Hk,r = kHk,r−1 +Hk,r−2,

Hk,r = Gk,r−1 +Gk,r+1,
∞∑

n=0

Gk,n+mx
n =

Gk,m + xGk,m−1

1− kx− x2
,

∞∑
n=0

Hk,n+mx
n =

Hk,m + xHk,m−1

1− kx− x2
,

Gk,r − e1Gk,r+1 − e2Gk,r+2 − e3Gk,r+3

=
[
1 + λ+ (k2 + 1)µ+ (k4 + 3k2 + 1)λµ

]
Fk,r

+
[
kλ+ (k3 + 2k)µ+ (k5 + 4k3 + 3k)λµ

]
Fk,r+1.
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