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UNIQUENESS OF DIFFERENCE-DIFFERENTIAL

POLYNOMIALS OF ENTIRE FUNCTIONS SHARING ONE

SMALL FUNCTION

BISWAJIT SAHA

Abstract. In this paper, we investigate the uniqueness problem of difference-

differential polynomials sharing a small function with finite weight. The results

of the paper improve and generalize the recent results due to Pulak Sahoo and
the present author [Applied Mathematics E-Notes 16(2016), 33-44]

1. Introduction, Definitions and Results

In the paper, by a meromorphic function we shall always mean a meromorphic
function in the whole complex plane. We assume that the reader is familiar with
the basic notions of Nevanlinna value distribution theory [see [7, 10, 15]]. Let E
denote any set of positive real numbers of finite linear measure, not necessarily the
same at each occurrence. For a nonconstant meromorphic function f , we denote
by T (r, f) the Nevanlinna characteristic of f and by S(r, f) any quantity satisfying
S(r, f) = o{T (r, f)}(r → ∞, r 6∈ E). We denote by T (r) the maximum of T (r, f)
and T (r, g), by S(r) any quantity satisfying S(r) = o{T (r)} (r →∞, r 6∈ E).

Let f and g be two nonconstant meromorphic functions. We say that f and g
share the value a CM (counting multiplicities), if f − a and g − a have the same
zeros with the same multiplicities. Similarly, we say that f and g share the value
a IM, provided that f − a and g − a have the same zeros ignoring multiplicities.
A meromorphic function α(6≡ 0,∞) is called a small function with respect to f , if
T (r, α) = S(r, f)

Recently difference polynomials in the complex plane C become a subject of great
interest among the researcher around the world. With the development of difference
analogue of Nevanlinna theory[see [3, 4, 5, 6]], a large number of papers have focused
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on value distribution and uniqueness of difference polynomials. In 2007, I. Laine
and C.C. Yang [11] proved the following result for difference polynomials.

Theorem 1.1. Let f be a transcendental entire function of finite order and c be a
nonzero complex constant. Then for n ≥ 2, fn(z)f(z + c) assumes every nonzero
value a ∈ C infinitely often.

In 2010, X.G. Qi, L.Z. Yang and K. Liu [13] proved the following uniqueness
result which corresponded to Theorem 1.1.

Theorem 1.2. Let f and g be two transcendental entire functions of finite order
and c be a nonzero complex constant, and let n ≥ 6 be an integer. If fn(z)f(z + c)
and gn(z)g(z + c) share the value 1 CM, then either fg = t1 or f = t2g for some
constants t1 and t2 satisfying tn+1

1 = tn+1
2 = 1.

In 2012 L. Kai, L. Xin-ling, C. Ting-bin [8] considered the difference differential
polynomials and proved the following results.

Theorem 1.3. Let f(z) be a transcendental entire function of finite order. If
n ≥ k + 2, then the difference-differential polynomial [fn(z)f(z + c)](k) − α(z) has
infinitely many zeros.

Theorem 1.4. Let f and g be two transcendental entire functions of finite order
n ≥ 2k+6 and c is a nonzero complex constant. If [fn(z)f(z+c)](k) and [gn(z)g(z+
c)](k) share the value 1 CM, then either f(z) = c1e

Cz, g(z) = c2e
−Cz, where c1,

c2 and C are constant satisfying (−1)k(c1c2)n+1((n + 1)C)2k = 1, or f = tg for a
constant such that tn+1 = 1.

In the same direction J.L. Zhang [17] investigated the value distribution and
uniqueness of difference polynomials of entire functions and obtained the following
results.

Theorem 1.5. Let f be a transcendental entire function of finite order α(z)( 6≡
0,∞) be a small function with respect to f and c be a nonzero complex constant. If
n ≥ 2 is an integer, then fn(z)(f(z)− 1)f(z + c)− α(z) has infinitely many zeros.

In the same paper the author also proved the following uniqueness result which
corresponds to Theorem 1.5.

Theorem 1.6. Let f and g be two transcendental entire functions of finite order
and α(z)( 6≡ 0,∞) be a small function with respect to both f and g. Suppose that c
is a nonzero complex constant and n ≥ 7 is an integer. If fn(z)(f(z)− 1)f(z + c)
and gn(z)(g(z)− 1)g(z + c) share α(z) CM, then f = g.

In 2013, S.S. Bhoosnurmath and S.R. Kabbur [2] considered the zeros of dif-
ference polynomial of the form fn(z)(fm(z)− 1)f(z + c); where n, m are positive
integers and c is a nonzero complex constant and obtained the following theorem.

Theorem 1.7. Let f be an entire function of finite order and α(z)( 6≡ 0,∞) be a
small function with respect to f. Suppose that c is a nonzero complex constant and
n, m are positive integers. If n ≥ 2, then fn(z)(fm(z) − 1)f(z + c) − α(z) has
infinitely many zeros.

The following two theorems are the uniqueness results corresponding to Theorem
1.7 proved by S.S. Bhoosnurmath and S.R. Kabbur [2].
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Theorem 1.8. Let f and g be two transcendental entire functions of finite order
and α(z)( 6≡ 0,∞) be a small function with respect to f and g. Suppose that c is a
nonzero complex constant and n, m are positive integers such that n ≥ m + 6. If
fn(z)(fm(z)−1)f(z+ c) and gn(z)(gm(z)−1)g(z+ c) share α(z) CM, then f = tg
where tm = 1.

Theorem 1.9. Let f and g be two transcendental entire functions of finite order
and α(z)( 6≡ 0,∞) be a small function with respect to f and g. Suppose that c is a
nonzero complex constant and n, m are positive integers satisfying n ≥ 4m+ 12. If
fn(z)(fm(z)− 1)f(z+ c) and gn(z)(gm(z)− 1)g(z+ c) share α(z) IM, then f = tg
where tm = 1.

An increment to uniqueness theory has been considering weighted sharing instead
of sharing IM or CM, this implies a gradual change from sharing IM to sharing CM.
This notion of weighted sharing has been introduced by I. Lahiri around 2001, which
measure how close a shared value is to being shared CM or to being shared IM.
The definition are as follows.

Definition 1.1. ([9]) Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞}
we denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity
m is counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we
say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only
if it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to
n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

If α is a small function of f and g, then f, g share α with weight k means that
f − α, g − α share the value 0 with weight k.

In 2016, Pulak Sahoo and the present author [14] considered the differential
polynomial of the form (fn(z)(fm(z) − 1)f(z + c))(k) and proved the following
results.

Theorem 1.10. Let f be a transcendental entire function of finite order and α(z)( 6≡
0) be a small function with respect to f . Suppose that c is a nonzero complex
constant, n(≥ 1), m(≥ 1) and k(≥ 0) are integers. If n ≥ k + 2, then

(fn(z)(fm(z)− 1)f(z + c))
(k) − α(z)

has infinitely many zeros.

Theorem 1.11. Let f and g be two transcendental entire functions of finite order
and α(z)( 6≡ 0) be a small function with respect to f and g. Suppose that c is
a nonzero complex constant, n(≥ 1), m(≥ 1) and k(≥ 0) are integers satisfying

n ≥ 2k+m+6. If (fn(z)(fm(z)− 1)f(z + c))
(k)

and (gn(z)(gm(z)− 1)g(z + c))
(k)

share (α, 2) then f = tg where tm = 1.

Theorem 1.12. Let f and g be two transcendental entire functions of finite order
and α(z)( 6≡ 0) be a small function with respect to f and g. Suppose that c is a
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nonzero complex constant, n(≥ 1), m(≥ 1) and k(≥ 0) are integers satisfying n ≥
5k + 4m + 12. If (fn(z)(fm(z)− 1)f(z + c))

(k)
and (gn(z)(gm(z)− 1)g(z + c))

(k)

share α(z) IM then f = tg where tm = 1.

Regarding Theorems 1.10, 1.11 and 1.12 the following questions are inevitable
which is the motive of the author.

Question. What can be said if we consider the difference-differential polynomials
of the form (fn(z)P (f)f(z+c))(k), where P (z) = amz

m+am−1z
m−1+...+a1z+a0,

where a0(6= 0), a1, ... , am−1, am( 6= 0) are complex constants and k(≥ 0) is an
integer ?

We will concentrate our attention to the above question and provide an affirma-
tive answer in this direction. Indeed the following theorems which are the main
results of the paper justify our claim.

Theorem 1.13. Let f be a transcendental entire function of finite order and
α(z)( 6≡ 0,∞) be a small function with respect to f . Suppose that c is a nonzero
complex constant, n(≥ 1), m(≥ 1) and k(≥ 0) are integers and let P (z) = amz

m +
am−1z

m−1 + ... + a1z + a0, where a0(6= 0), a1, ... , am−1, am(6= 0) are complex

constants. If n ≥ k + 2, then (fn(z)P (f)f(z + c))
(k) − α(z) has infinitely many

zeros.

Theorem 1.14. Let f and g be two transcendental entire functions of finite order
and α(z)( 6≡ 0,∞) be a small function with respect to f and g and let P (z) =
amz

m + am−1z
m−1 + ... + a1z + a0, where a0(6= 0), a1, ... , am−1, am( 6= 0) are

complex constants. Suppose that c is a nonzero complex constant, n(≥ 1), m(≥ 1)

and k(≥ 0) are integers satisfying n ≥ 2k + m + 6. If (fn(z)P (f)f(z + c))
(k)

and

(gn(z)P (g)g(z + c))
(k)

share (α, 2) then f = tg for a constant t such that td = 1,
where d = gcd(n+m+ 1, ..., n+m+ 1− i, ..., n+ 1) and i = 0, 1, 2, ...,m.

Remark 1.1. Theorem 1.14 improves and generalizes Theorem 1.11.

Theorem 1.15. Let f and g be two transcendental entire functions of finite order
and α(z)( 6≡ 0,∞) be a small function with respect to f and g and let P (z) =
amz

m + am−1z
m−1 + ... + a1z + a0, where a0(6= 0), a1, ... , am−1, am( 6= 0) are

complex constants. Suppose that c is a nonzero complex constant, n(≥ 1), m(≥ 1)

and k(≥ 0) are integers satisfying n ≥ 5k+ 4m+ 12. If (fn(z)P (f)f(z + c))
(k)

and

(gn(z)P (g)g(z + c))
(k)

share α(z) IM then f = tg for a constant t such that td = 1,
where d = gcd(n+m+ 1, ..., n+m+ 1− i, ..., n+ 1) and i = 0, 1, 2, ...,m.

Remark 1.2. Theorem 1.15 improves and generalizes Theorem 1.12.

2. Lemmas

Let F and G be two nonconstant meromorphic functions defined in the open,
complex plane C. We denote by H the function as follows:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 2.1. [3] Let f(z) be a transcendental meromorphic function of finite order
then

T (r, f(z + c)) = T (r, f) + S(r, f).
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Lemma 2.2. [15] Let f be a nonconstant meromorphic function and let an(z)( 6≡ 0),
an−1(z), ... , a0(z) be small functions of f . Then

T (r, anf
n + an−1f

n−1 + ...+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.3. [3, 4] Let f(z) be a meromorphic function of finite order and c is a
nonzero complex constant. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Lemma 2.4. [7, 16] Let f(z) be a nonconstant meromorphic function and a1(z),
a2(z) be two meromorphic functions such that T (r, ai) = S(r, f), i = 1, 2. Then

T (r, f) ≤ N(r, f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 2.5. [12] Let f be a meromorphic function of finite order and let c( 6= 0)
be a fixed nonzero complex constant. Then

N(r,∞, f(z + c)) ≤ N(r,∞, f) + S(r, f),

outside a possible exceptional set of finite logarithmic measure.

Lemma 2.6. [18] Let f be a nonconstant meromorphic function and p, k be two
positive integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f).(2.1)

and

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).(2.2)

Lemma 2.7. [9] Let f and g be two nonconstant meromorphic functions sharing
(1, 2). Then one of the following three cases hold:

(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),
(ii) f = g,
(iii) fg = 1,
Where T (r) = max{T (r, f), T (r, g)} and S(r) = o{T (r)}.

Lemma 2.8. [1] Let F and G be two nonconstant meromorphic functions sharing
the value 1 IM and H 6≡ 0. Then

T (r, F ) ≤ N2(r, 0;F ) + N2(r, 0;G) + N2(r,∞;F ) + N2(r,∞;G) + 2N(r, 0;F ) +
N(r, 0;G) + 2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G),
and the same inequality holds for T (r,G).

Lemma 2.9. Let f(z) be a transcendental entire function of finite order and let
P (z) = amz

m + am−1z
m−1 + ...+ a1z+ a0, where a0(6= 0), a1, ... , am−1, am( 6= 0)

are complex constants. Let F = f(z)nP ((f))f(z + c). Then

T (r, F ) = (n+m+ 1)T (r, f) + S(r, f).(2.3)

Proof. Since f is entire function of finite order. We deduce from Lemma 2.3 and
the standard Valiron Mohon’ko theorem that,

(n+m+ 1)T (r, f(z)) = T (r, f(z)n+1P (f)) + S(r, f)

= m(r, f(z)n+1P (f)) + S(r, f)
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or,

(n+m+ 1)T (r, f(z)) = m

(
r,

f(z)n+1P (f)

f(z)nP ((f))f(z + c)

)
+m(r, F ) + S(r, f)

= m

(
r,

f(z)

f(z + c)

)
+m(r, F ) + S(r, f)

= T (r, F ) + S(r, f)

Therefore we have

(n+m+ 1)T (r, f(z)) ≤ T (r, F ) + S(r, f)(2.4)

On the other hand, by Lemma 2.1 and the fact that f is a transcendental entire
function of finite order we get

T (r, F ) ≤ T (r, f(z)nP (f)) + T (r, f(z + c)) + S(r, f)

= (n+m)T (r, f(z)) + T (r, f(z + c)) + S(r, f)

≤ (n+m+ 1)T (r, f(z)) + S(r, f)

i.e., T (r, F ) ≤ (n+m+ 1)T (r, f(z)) + S(r, f).(2.5)

Thus (2.3) follows from (2.4) and (2.5).
�

Lemma 2.10. Let f(z) and g(z) be two transcendental entire functions, let n, k
be two positive integers with n > k + 2 and α(z)( 6≡ 0,∞) be a small function with
respect to f and g and let P (z) = amz

m + am−1z
m−1 + ...+ a1z+ a0, where a0, a1,

... , am−1, am are complex constants. If

(fn(z)P (f)f(z + c))
(k)

(gn(z)P (g)g(z + c))
(k) ≡ α2,

then P (z) is reduced to a nonzero monomial, that is P (z) = aiz
i 6= 0 for some

i = 0, 1, 2, ...,m.

Proof. If P (z) is not reduced to a nonzero monomial, then without loss of generality,
we assume that P (z) = amz

m + am−1z
m−1 + ...+ a1z+ a0, where a0( 6= 0), a1, ... ,

am−1, am( 6= 0) are complex constants. Since

(fn(z)P (f)f(z + c))
(k)

(gn(z)P (g)g(z + c))
(k) ≡ α2.(2.6)

From n > k + 2 and the assumption that f(z) and g(z) are two transcendental
entire functions we deduce by (2.6) that

f(z) 6= 0, g(z) 6= 0.

Let f(z) = eβ(z), where β(z) is an entire function. Thus, by induction we have

(2.7)

[aif
i+nf(z + c)](k) = Pi

(
β

′
, ....β(k), β

′
(z + c), ....β(k)(z + c)

)
e(i+n)βeβ(z+c).

where Pi (i = 1, 2, ...,m) are difference-differential polynomials. Obviously P0 6=
0, ..., Pm 6= 0, where if ai 6= 0 for some i ∈ {0, 1, ...,m− 1}, then Pi 6≡ 0. Since g(z)

is an entire function, we get from (2.6) that (fn(z)P (f)f(z + c))
(k) 6= 0. Thus by

(2.7) we have

Pme
mβ + ...+ P0 6≡ 0.(2.8)
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Since β(z) and β(z + c) are entire function, we obtain

T (r, Pi) = S(r, f)(2.9)

and

N(r, 0;Pme
mβ + ...+ P0) = S(r, f).(2.10)

Thus by (2.8), (2.9), (2.10) and Lemma 2.2 and Lemma 2.4, we get

mT (r, f) = T (r, Pme
mβ + ...+ P1e

β) + S(r, f)

≤ N(r, 0;Pme
mβ + ...+ P1e

β) +N(r, 0;Pme
mβ + ...+ P1e

β + P0)

+S(r, f)

≤ N(r, 0;Pme
(m−1)β + ...+ P2e

β + P1) + S(r, f)

≤ (m− 1)T (r, f) + S(r, f)

which is a contradiction. This shows that P (z) is reduced to a nonzero monomial,
that is P (z) = aiz

i 6= 0 for some i = 0, 1, 2, ...,m. This completes the proof of the
lemma. �

Lemma 2.11. Let f and g be two entire functions and let P (z) = amz
m +

am−1z
m−1 + ... + a1z + a0, where a0(6= 0), a1, ... , am−1, am(6= 0) are com-

plex constants and k(≥ 0), be integer. let F = (fn(z)P (f)f(z + c))
(k)

, G =

(gn(z)P (g)g(z + c))
(k)

. If there exists nonzero constants c1 and c2 such that
N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) = N(r, 0;F ), then n ≤ 2k +m+ 3.

Proof. We put F1 = fn(z)P (f)f(z + c), G1 = gn(z)P (g)g(z + c). By the second
fundamental theorem of Nevanlinna we have

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) + S(r, F )(2.11)

≤ N(r, 0;F ) +N(r, 0;G) + S(r, F ).

Using (2.11), Lemmas 2.6 and 2.9, we obtain

(n+m+ 1)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0;F1)(2.12)

+S(r, f)

≤ N(r, 0;G) +Nk+1(r, 0;F1) + S(r, f)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1)

+S(r, f) + S(r, g)

≤ (k +m+ 2)(T (r, f) + T (r, g))

+S(r, f) + S(r, g).

Similarly,

(n+m+ 1)T (r, g) ≤ (k +m+ 2)(T (r, f) + T (r, g))(2.13)

+S(r, f) + S(r, g).

Combining (2.12) and (2.13) we obtain

(n− 2k −m− 3)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g),

which gives n ≤ 2k +m+ 3. This proves the lemma. �
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Lemma 2.12. Let f(z) and g(z) be two transcendental entire functions of finite
order. let n, m be two positive integers with n ≥ m + 5 and P (z) = amz

m +
am−1z

m−1 + ...+ a1z + a0, where a0, a1, ... , am−1, am are complex constants. If

(fn(z)P (f)f(z + c)) = (gn(z)P (g)g(z + c))(2.14)

then f(z) = tg(z) for a constant t such that td = 1, where d = gcd(n+m+1, ..., n+
m+ 1− i, ..., n+ 1) and i = 0, 1, 2, ...,m.

Proof. Let h(z) = f(z)
g(z) . If h(z)n+mh(z + c) 6= 1 then from (2.14) we have

(gh)n[am(gh)m + am−1(gh)m−1 + ...+ a0]g(z + c)h(z + c)

= gn(amg
m + ...+ a0)g(z + c)

i.e.,

gn+m[am(hm+n(z)h(z + c)− 1)] + ...+ gn[a0(hn(z)h(z + c)− 1)] = 0

i.e.,

(2.15)

gm =
−[gm−1[am−1(hm+n−1(z)h(z + c)− 1)] + ...+ [a0(hn(z)h(z + c)− 1]]

am(hm+n(z)h(z + c)− 1)
.

Denote,

h(z)n+mh(z + c) = H.(2.16)

We have

T (r,H) = (n+m+ 1)T (r, h) + S(r, h).

If 1 is a Picard exceptional value of H, applying the Nevanlinna second main the-
orem with Lemma 2.1, we get

T (r,H) ≤ N(r,∞;H) +N(r, 0;H) +N(r, 1;H) + S(r,H)

≤ 2T (r, h) + 2T (r, h) + S(r, h)

i.e.,

(n+m+ 1)T (r, h) ≤ 4T (r, h) + S(r, h),

which is contradiction to n ≥ m+ 5.
Therefore 1 is not a Picard exceptional value of H. Thus there exists z0 such

that h(z0)n+mh(z0 + c) = 1 then by (2.15), we have hd(z0) = 1, where d = gcd(n+
m+ 1, ..., n+m+ 1− i, ..., n+ 1) and i = 0, 1, 2, ...,m. Then

N(r, 1;H) ≤ N(r, 1;hd(z)) ≤ dT (r, h) + O(1) ≤ dT (r, h) + O(1)(2.17)

Applying the second fundamental theorem to H and using lemma 2.1 and (2.16)
and (2.17), we get

T (r,H) ≤ N(r,H) +N(r, 0;H) +N(r, 1;H) + S(r, h)

≤ N(r,H) +N(r, 0;H) +mT (r,H) + S(r, h)

≤ (4 +m)T (r, h) + S(r, h)
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Regarding this we have

(n+m)T (r, h) = T (r, hn+m(z)) = T

(
r,

H

h(z + c)

)
≤ T (r,H) + T (r, h(z + c)) + O(1)

≤ (4 +m)T (r, h) + T (r, h) + S(r, h)

= (5 +m)T (r, h) + S(r, h)

which contradicts our hypothesis, n ≥ m+ 5. Therefore, h(z)n+mh(z+ c) ≡ 1, then
from (2.15), we get h(z)nh(z + c) ≡ 1⇒ hd(z) ≡ 1. Hence, we get f(z) = tg(z) for
a constant t such that td = 1, where d = gcd(n+m+ 1, ..., n+m+ 1− i, ..., n+ 1)
and i = 0, 1, 2, ...,m. This completes the proof of the Lemma 2.12.

�

3. Proof of the Theorems

Proof of Theorem 1.13. Let F1 = fn(z)P (f)f(z+ c)). Then F1 is a transcendental

entire function. If possible, we assume that F
(k)
1 −α(z) has only finitely many zeros.

Then we have

N(r, α;F
(k)
1 ) = O{logr} = S(r, f).(3.1)

Using (2.1), (3.1) and Nevanlinna’s three small function theorem we obtain

T (r, F
(k)
1 ) ≤ N(r, 0;F

(k)
1 ) +N(r, α;F

(k)
1 ) + S(r, f)(3.2)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+1(r, 0;F1) + S(r, f).

Applying Lemma 2.6 we obtain from (3.2)

(n+m+ 1)T (r, f) ≤ Nk+1(r, 0;F1) + S(r, f)

≤ (k +m+ 2)T (r, f) + S(r, f).

This gives

(n− k − 1)T (r, f) ≤ S(r, f),

a contradiction with the assumption that n ≥ k + 2. This proves the theorem
1.13. �

Proof of Theorem 1.14. Let F1 = fn(z)P (f)f(z + c), G1 = gn(z)P (g)g(z + c),

F =
F

(k)
1

α(z) and G =
G

(k)
1

α(z) . Then F and G are transcendental meromorphic functions

that share (1, 2) except the zeros and poles of α(z). Using (2.1) and Lemma 2.9 we
get

N2(r, 0;F ) ≤ N2(r, 0; (F1)(k)) + S(r, f)

≤ T (r, (F1)(k))− (n+m+ 1)T (r, f) +Nk+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n+m+ 1)T (r, f) +Nk+2(r, 0;F1) + S(r, f).

From this we get

(n+m+ 1)T (r, f) ≤ T (r, F ) +Nk+2(r, 0;F1)−N2(r, 0;F )(3.3)

+S(r, f).
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Again by (2.2) we have

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)(3.4)

≤ Nk+2(r, 0;F1) + S(r, f).

Suppose, if possible, that (i) of Lemma 2.7 holds. Then using (3.4) we obtain from
(3.3)

(3.5)

(n+m+ 1)T (r, f) ≤ N2(r, 0;G) +N2(r, 1;F ) +N2(r, 1;G) +Nk+2(r, 0;F1)

+S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g)

≤ (k +m+ 3){T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

In a similar manner we obtain

(n+m+ 1)T (r, g) ≤ (k +m+ 3){T (r, f) + T (r, g)}(3.6)

+S(r, f) + S(r, g).

(3.5) and (3.6) together gives (n−2k−m−5){T (r, f)+T (r, g)} ≤ S(r, f)+S(r, g),
contradicting with the fact that n ≥ 2k+m+ 6. Therefore, by Lemma 2.7 we have
either FG = 1 or F = G. Let FG = 1. By assumption that am 6= 0, an 6= 0, we can
arrive at a contradiction by Lemma 2.10.

Therefore, we must have F = G, and then

(fn(z)P (f)f(z + c))(k) = (gn(z)P (g)g(z + c))(k),

Integrating above we obtain

(fn(z)P (f)f(z + c))(k−1) = (gn(z)P (g)g(z + c))(k−1) + ck−1,

where ck−1 is a constant. If ck−1 6= 0, using Lemma 2.11 it follows that n ≤
2k + m + 1, a contradiction. Hence ck−1 = 0. Repeating the process k-times, we
deduce that

fn(z)P (f)f(z + c) = gn(z)P (g)g(z + c),

which by Lemma 2.12 gives f(z) = tg(z) for a constant t such that td = 1, where
d = gcd(n + m + 1, ..., n + m + 1 − i, ..., n + 1) and i = 0, 1, 2, ...,m. This proves
Theorem 1.14.

�

Proof of Theorem 1.15. Let F, G, F1 and G1 be defined as in the proof of Theorem
1.14. Then F and G are transcendental meromorphic functions that share the value
1 IM except the zeros and poles of α(z). We assume, if possible, that H 6≡ 0. Using
Lemma 2.8 and (3.4) we obtain from (3.3)

(3.7)
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(n+m+ 1)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F )

+N(r, 0;G) +Nk+2(r, 0;F1) + 2N(r,∞;F ) +N(r,∞;G)

+S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1)

+Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (3k + 3m+ 7)T (r, f) + (2k + 2m+ 5)T (r, g)

+S(r, f) + S(r, g)

≤ (5k + 5m+ 12)T (r) + S(r).

Similarly,

(n+m+ 1)T (r, g) ≤ (5k + 5m+ 12)T (r) + S(r).(3.8)

(3.7) and (3.8) together yields

(n− 5k − 4m− 11)T (r) ≤ S(r),

which is a contradiction with the assumption that n ≥ 5k + 4m + 12. We now
assume that H ≡ 0. Then(

F ′′

F ′
− 2F ′

F − 1

)
−

(
G′′

G′
− 2G′

G− 1

)
= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B,(3.9)

where A( 6= 0) and B are constants. From (3.9) it is obvious that F, G share the
value 1 CM and hence they share (1, 2). Therefore n ≥ 2k+m+ 6. We now discuss
the following three cases separately.
Case 1. Suppose that B 6= 0 and A = B. Then from (3.9) we obtain

1

F − 1
=

BG

G− 1
.(3.10)

If B = −1, then from (3.10) we obtain

FG = 1,

which is a contradiction by Lemma 2.10.
If B 6= −1, from (3.10), we have 1

F = BG
(1+B)G−1 and so N(r, 1

1+B ;G) = N(r, 0;F ).

Using (2.1), (2.2) and the second fundamental theorem of Nevanlinna, we deduce
that

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

B + 1
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)

−(n+m+ 1)T (r, g) + S(r, g).

This gives

(m+ n+ 1)T (r, g) ≤ (k +m+ 2){T (r, f) + T (r, g)}+ S(r, g).

In a similar manner we can get

(m+ n)T (r, f) ≤ (k +m+ 2)T (r, f) + (2k +m+ 1)T (r, g) + S(r, g).
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Thus we obtain

(n− 2k −m− 3){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction as n ≥ 2k +m+ 6.
Case 2. Let B 6= 0 and A 6= B. Then from (3.9) we get F = (B+1)G−(B−A+1)

BG(A−B) and

so N(r, B−A+1
B+1 ;G) = N(r, 0;F ). Proceeding in a manner similar to case 1 we can

arrive at a contradiction.
Case 3. Let B = 0 and A 6= 0. Then from (3.9) we get F = G+A−1

A and G =

AF−(A−1). If A 6= 1, it follows thatN(r, A−1A ;F ) = N(r, 0;G) andN(r, 1−A;G) =

N(r, 0;F ). Now applying Lemma 2.11 it can be shown that n ≤ 2k+m+ 3, which
is a contradiction. Thus A = 1 and then F = G. Now the result follows from the
proof of Theorem 1.14. This completes the proof of Theorem 1.15.

�
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