
Konuralp Journal of Mathematics
Volume 5 No. 2 pp. 131–145 (2017) c©KJM

NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL

PROBLEM BY USING CHEBYSHEV POLYNOMIALS

ABDOLALI NEAMATY, EMRAH YILMAZ, SHAHRBANOO AKBARPOOR,
AND ABDOLHADI DABBAGHIAN

Abstract. In this study, we consider Sturm-Liouville problem in two cases:
the first case having no singularity and the second case having a singularity

at zero. Then, we calculate the eigenvalues and the nodal points and present

the uniqueness theorem for the solution of the inverse problem by using a
dense subset of the nodal points in two given cases. Also, we use Chebyshev

polynomials of the first kind for calculating the approximate solution of the

inverse nodal problem in these cases. Finally, we present the numerical results
by providing some examples.

1. Introduction

Inverse spectral problems mean recovering operators by using their spectral char-
acteristics as spectrum, norming constants and nodal points. The use of such prob-
lems in mathematical physics has led many researchers to study in this area. Inverse
spectral problems are divided into two parts. One of them is inverse eigenvalue
problem and the other one is inverse nodal problem. Inverse eigenvalue problem
has been studied for along time by many authors [1,8,16,21,22,23,29-30,33]. Inverse
nodal problem was first studied by J. R. McLaughlin in 1988 [24]. She obtained
some uniqueness results and showed that knowledge of the nodal points could alone
determine the potential function of Sturm-Liouville problem up to a constant on
an infinite interval. Independently, Shen studied the relation between the nodal
points and density function of the string equation [35]. Some numerical results
were given by Hald and McLaughlin [14] for reconstruction of the density function
of a vibrating string, the elastic modulus of a vibration rod, the potential function
in the Sturm-Liouville problem, and the impedance in the impedance equation.
Inverse nodal problems have been studied fairly by many authors [4,17,19,20,25-
27,36,37,38-40].
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In recent years, inverse Sturm-Liouville problems have been studied by many
authors. Some of them solved these type problems by applying numerical methods
as Numerov’s method, Newton type method, a finite difference method, Rayleigh-
Ritz method and other methods [2,5-7,9-10,13,15,31-32,34].

In this study, we consider the equation

−y′′(x) + (q(x) + V (x))y(x) = λy(x),(1.1)

with the boundary conditions

y(0, λ) = y(1, λ) = 0,(1.2)

under two following cases for V (x) where x ∈ [0, 1].

Case A. Suppose that V (x) = 0 i.e. consider Sturm-Liouville equation having
no singularity.

Case B. Suppose that V (x) = 1
xp , 0 < p < 1, i.e. consider Sturm-Liouville

equation having a singularity at zero.
These type singular problems have been studied by many authors [3,11-12,18,28].
In equation (1.1), λ = ρ2, ρ is the spectral parameter, q(x) ∈ L1[0, 1] is a real-
valued function and also, we suppose that q(1−x) = q(x). In this study, we obtain
the numerical values of the potential function q(x) in the given cases under the
boundary conditions (1.2) by applying Chebyshev interpolation method and a dense
subset of the nodal points. The method of Chebyshev interpolation was used in
[31] for calculating the solution of the integro-differential equations. We apply this
method to obtain the solution of the inverse nodal problem. The obtained results
in this work are original.

In section 2, we present the asymptotic form of the solution, the eigenvalues
and the nodal points of the equation (1.1) with the boundary conditions (1.2) in
two cases A and B and present the uniqueness theorem for the solution of the
inverse nodal problem. In section 3, we use Chebyshev interpolation method for
approximating the function q(x) in given cases under the boundary conditions (1.2)
by applying a dense subset of the nodal points and present a numerical algorithm
for solving the inverse Sturm-Liouville problem and the numerical results are shown
by providing some examples in section 4.

2. Preliminaries

In this section, our purpose is to present the asymptotic form of the eigenfunc-
tions, the eigenvalues and the nodal points of the equation (1.1) under the boundary
conditions (1.2) in two cases A and B and to express a uniqueness theorem for the
inverse Sturm-Liouville problem with the given boundary conditions. For this rea-
son, we study two cases A and B, separately.

Case A.: Let V (x) = 0 and Y (x, λ) be solution of (1.1) under the initial
conditions Y (0, λ) = 0 and Y ′(0, λ) = 1. Therefore, Y (x, λ) is the solution
of the integral equation (see [7])

Y (x, λ) =
sin ρx

ρ
+

∫ x

0

sin ρ(x− t)
ρ

q(t)Y (t, λ)dt,(2.1)
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and more precisely, for ρ→∞

Y (x, λ) =
sin ρx

ρ
+O(

1

ρ2
).(2.2)

Substituting (2.2) into the right-hand side of (2.1), one can get

Y (x, λ) =
sin ρx

ρ
− 1

ρ2
q1(x) cos ρx+

1

2ρ2

∫ x

0

q(t) cos ρ(x− 2t)dt(2.3)

+ O(
1

ρ3
),

where q1(x) = 1
2

∫ x
0
q(t)dt.

Since the eigenvalues {λn}n≥1 of the boundary value problem (1.1), (1.2)
coincide with the zeros of the characteristic function

∆(λ) := Y (1, λ), λ = ρ2,

then, we formulate the following theorem by using (2.3).

Theorem 2.1. The boundary value problem (1.1),(1.2) has a countable set
of the eigenvalues {λn}n≥1 in the form of

ρn =
√
λn = nπ +

ω

nπ
+ o(

1

n
), n→∞,

where ω = 1
2

∫ 1

0
q(t)dt.

Proof. See [8]. �

Let λ1 < λ2 < ... → ∞ be the eigenvalues of the problem (1.1),(1.2)
and 0 < xn1 < ... < xnj < 1, j = 1, n− 1, be the nodal points of the n-th
eigenfunction. Then, we can express the following theorem for calculating
the nodal points.

Theorem 2.2. Let the equation (1.1) with the initial conditions

Y (0, λ) = 0, Y ′(0, λ) = 1,(2.4)

be given. Then, the nodal points of the problem (1.1),(2.4) with V (x) = 0
are formulated in the form of

xnj =
jπ

ρn
+

1

ρ2n
q1(xnj )− 1

2ρ2n

∫ xn
j

0

q(t) cos(2ρnt)dt+O(
1

ρ3n
),(2.5)

where q1(xnj ) = 1
2

∫ xn
j

0
q(t)dt.

Proof. See [40]. �

Now, we present the following uniqueness theorem.

Theorem 2.3. Suppose that q is integrable. Then, q −
∫ 1

0
q is uniquely

determined by any dense set of the nodal points.

Proof. See [17,40]. �

Corollary 2.1. The potential function q of the problem (1.1),(1.2) is uniquely
determined by a dense set of the nodal points and the constant

ω =
1

2

∫ 1

0

q(t)dt.
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Proof. Let us consider two Sturm-Liouville equations with the potential
functions q, q̃ under the boundary conditions (1.2) be given as xnj = x̃nj ,

j = 1, n− 1, n > 1. Also suppose that ω = ω̃. Then,
∫ 1

0
q =

∫ 1

0
q̃ and

consequently by using Theorem 2.3, we get q = q̃ almost everywhere on
(0,1) (also see [17]). �

Case B.: Let V (x) = 1
xp , 0 < p < 1, and Y (x, λ) be solution of (1.1) under

the initial conditions Y (0, λ) = 0 and Y ′(0, λ) = 1. Therefore, Y (x, λ) is
the solution of the integral equation

Y (x, λ) =
sin ρx

ρ
+

∫ x

0

sin ρ(x− t)
ρ

(q(t) +
1

tp
)Y (t, λ)dt,(2.6)

and more precisely, for ρ→∞

Y (x, λ) =
sin ρx

ρ
+O(

1

ρ2
).(2.7)

Substituting (2.7) into the right-hand side of (2.6), we get

Y (x, λ) =
sin ρx

ρ
− 1

ρ2
q1(x) cos ρx+

1

2ρ2

∫ x

0

(q(t) +
1

tp
) cos ρ(x− 2t)dt(2.8)

+ O(
1

ρ3
),

where q1(x) = 1
2

∫ x
0

(q(t) + 1
tp )dt. Since

∆(λ) := Y (1, λ), λ = ρ2,

then, using (2.8), we can get

ρn =
√
λn = nπ +

ω

nπ
+ o(

1

n
), n→∞,

where ω = 1
2

∫ 1

0
(q(t) + 1

tp )dt.
Similar to Case A, we can present the following theorem for calculating

the nodal points.

Theorem 2.4. Let the equation (1.1) with the initial conditions

Y (0, λ) = 0, Y ′(0, λ) = 1,(2.9)

be given. Then, the nodal points of the problem (1.1),(2.9) with V (t) =
1
tp , 0 < p < 1, are formulated in the form of

xnj =
jπ

ρn
+

1

ρ2n

∫ xn
j

0

sin2(ρnt)(q(t) +
1

tp
)dt+O(

1

ρ3n
).(2.10)

Proof. See [40]. �

Now, we present the following uniqueness theorem for this case.

Theorem 2.5. Suppose that q is integrable. Then, q −
∫ 1

0
q is uniquely

determined by any dense set of the nodal points.

Proof. See [40]. �
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Corollary 2.2. The potential function q of the problem (1.1),(1.2) is uniquely
determined by a dense set of the nodal points and the constant

ω =
1

2

∫ 1

0

(q(t) +
1

tp
)dt.

3. Main results

In this section, we describe a numerical method based on Chebyshev interpo-
lation method for solving the inverse Sturm-Liouville problem in two cases A and
B by using a dense subset of the nodal points. We consider the following inverse
nodal problem.

Inverse problem. Given the nodal points {xnj }, j = 1, 2, ..., n − 1, n > 1,
construct the potential function q(x).

Since the nodal points {xnj }, j = 1, 2, ..., n − 1 are the zeroes of the n-th eigen-
function Y (x, λn), then, we can write

Y (xnj , λn) = 0, j = 1, 2, ..., n− 1, n > 1.

Thus, using (2.1) and (2.6), we get∫ xn
j

0

sin ρn(xnj − t)
ρn

q(t)Y (t, λn)dt = −
sin ρnx

n
j

ρn
(3.1)

−
∫ xn

j

0

sin ρn(xnj − t)
ρn

V (t)Y (t, λn)dt,

where V (x) = 0 in Case A and V (x) = 1
xp , 0 < p < 1, in Case B. In the above

integral equation, q is unknown function and Y can be obtained from (2.2).
In order to obtain the solution of inverse nodal problem, it is sufficient that we

get the solution of the integral equation (3.1). For this reason, we use Chebyshev
polynomials of the first kind as the basic functions for approximating the function
q and convert the integral equation (3.1) to the system of linear equations.

The first few Chebyshev polynomials in [0, 1] are given by

T0(x) = 1,

T1(x) = 2x− 1,

T2(x) = 2(2x− 1)2 − 1,

T3(x) = 4(2x− 1)3 − 3(2x− 1),

T4(x) = 8(2x− 1)4 − 8(2x− 1)2 + 1,

T5(x) = 16(2x− 1)5 − 20(2x− 1)3 + 5(2x− 1),

.

.

.
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By using Chebyshev interpolation method for the function q(t), one can show
that (see [31])

q(t) ∼=
N∑
i=0

qili,N (t), t ∈ [0, 1],(3.2)

where

li,N (t) =
2δi
N

N∑
k=0

′′

Tk(2t− 1) cos(
kiπ

N
),

δi =

 0.5 i = 0, N ,

1 0 < i < N ,

the numbers qi, i = 0, 1, ..., N are the values of the function q(t) in the points
ti = (cos( iπN ) + 1)/2 and the functions Tk(t), k = 0, 1, ..., N are Chebyshev polyno-

mials of the first kind. Also,
∑′′

is the sum of all terms except the first and last
two sentences so that the sum of half of the two sentences is considered.

Substituting (3.2) into (3.1), we obtain

N∑
i=0

R(xnj , ti)qi = g(xnj ), j = 1, 2, ..., n− 1, n > 1,

where

R(xnj , ti) =
2δi
N

N∑
k=0

′′

Ik(xnj ) cos(
kiπ

N
),

Ik(xnj ) =

∫ xn
j

0

sin ρn(xnj − t)
ρn

Y (t, λn)Tk(2t− 1)dt,

g(xnj ) = −
sin ρnx

n
j

ρn
, in Case A,

and

g(xnj ) = −
sin ρnx

n
j

ρn
+

1

2(1− p)ρ2n
(xnj )1−p cos ρnx

n
j

− 1

2ρ2n
cos ρnx

n
j

∫ xn
j

0

t−p cos 2ρntdt

− 1

2ρ2n
sin ρnx

n
j

∫ xn
j

0

t−p sin 2ρntdt, in Case B.

Therefore, the solution of inverse nodal problem is calculated by using the fol-
lowing algorithm.

Algorithm. Let the numbers {xnj }, j = 1, 2, ..., n− 1, n > 1, be given.
1. Choose N .
2. Find the coefficients qi, i = 0, 1, ..., N by applying the following linear system:
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AN q̂ = BN ,

where

AN = [R(xnj , ti)], j = 1, 2, ..., n− 1, n = N + 2, i = 0, 1, ..., N,

BN = [g(xnj )], j = 1, 2, ..., n− 1, n = N + 2,

q̂T = [qi], i = 0, 1, ..., N.

4. Numerical examples

In this section, we provide some numerical examples for inverse nodal problem
in two cases A and B implemented by the given algorithm. We use Matlab software
program for drawing the figures. The convergence of the proposed method and the
stability of the inverse problem solution are seen in these examples.

Example 4.1. Let q(x) = cos(2πx) be given. Then, the nodal points of the
equation (1.1) under the boundary conditions (1.2) in the case A and also in the
case B with p = 1/2 obtained from the relations (2.5) and (2.10), respectively, are
formulated in the following forms

xnj =
j

n
+

1

4π3(n2 − 1)
sin(

2jπ

n
), j = 1, n− 1, n > 1, in Case A,

and

xnj =
j

n
+

1

4π3(n2 − 1)
sin(

2jπ

n
) +

1

n3π2

√
nj −

√
n

2n3π2
FresnelC(2

√
j),

j = 1, n− 1, n > 1, in Case B.

Now, we suppose that q is the unknown function and the nodal points given in
the above forms are the input data in two cases A and B, separately. We want to
get the approximations of the potential q as the solution of inverse problem for two
cases A and B by the presented algorithm.

Applying the described algorithm, we obtain the numerical values of the potential
function q(x) = cos(2πx) with N ∈ {6, 7, 8} in two Cases A and B and calculate the
approximate solutions of inverse problem by substituting the obtained numerical
values into (3.2). The exact solution and the numerical approximations obtained
with N ∈ {6, 7, 8} in two Cases A and B for no noise in the nodal points are seen
in Figure 1 (see (a),(c)). In Figure 1, it can be seen that the best solution can be
obtained for the small values of N .



138 A. NEAMATY, E. YILMAZ, S. AKBARPOOR, AND A. DABBAGHIAN

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

q(
x)

(a) Exact and approximate solutions of the po-
tential function q(x) = cos(2πx) for no noise in

the nodal points in Case A: (- . -) for N = 6,
(- - -) for N = 7, (o o o) for N = 8 and (***)

for exact solution.
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(b) Exact and approximate solutions of the po-
tential function q(x) = cos(2πx) with N = 8

in Case A: (- . -) for P = 5% noise, (—) for
P = 2% noise, (- - -) for P = 0 noise and (***)

for exact solution.
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(c) Exact and approximate solutions of the po-

tential function q(x) = cos(2πx) for no noise in

the nodal points in Case B: (- . -) for N = 6, (-
- -) for N = 7, (o o o) for N = 8 and (***) for

exact solution.
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(d) Exact and approximate solutions of the po-

tential function q(x) = cos(2πx) with N = 8

in Case B: (- . -) for P = 5% noise, (—) for
P = 2% noise, (- - -) for P = 0 noise and (***)

for exact solution.

Figure 1. Solution of inverse problem in Example 4.1.

Also, we solve inverse nodal problem by using the noisy data xnj (1+Pε), instead
of xnj , where P and ε are the amount of noise and the random real number, respec-
tively, in the interval [−1, 1]. The exact solution and the numerical approximations
of the function q obtained with N = 8 and P = 0, 2% and 5% in two cases A and B
are seen in Figure 1 (see (b),(d)). In Figure 1, it can be shown that the calculated
numerical solutions are stable and also become more accurate as the amount of
noise P decreases.

Finally, we obtain the absolute errors between the exact and approximate solu-
tions of q for no noise in the nodal points with N ∈ {6, 7, 8} for two cases A and
B which are seen in Figure 2. In Figure 2, it can be shown that by increasing the
amount of N , the errors are reduced.
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(a) Absolute errors for no noise in the nodal points in
Case A: (� � �) for N = 6, (o o o) for N = 7 and (* *

*) for N = 8.
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(b) Absolute errors for no noise in the nodal points in
Case B: (� � �) for N = 6, (o o o) for N = 7 and (* *

*) for N = 8.

Figure 2. Absolute errors between the exact and approximate
solutions in Example 4.1.

Example 4.2. Let the nodal points {xnj }, j = 1, n− 1, n > 1 obtained from
the formulae (2.5) and (2.10) with q(x) = sin(πx) in the case A and also in the
case B with p = 1/4 be given. In these cases, we obtain the approximations of
the potential function q by the described algorithm. The exact solution and the
numerical approximations obtained with N ∈ {3, 4, 5, 6} in two Cases A and B for
no noise in the nodal points are seen in Figure 3 (see (a),(c)). Also in Figure 3,
the approximate solutions obtained with N = 6 and P = 0, 2% and 5% are shown
(see (b),(d)). Similar to Example 4.1, it can be seen that the numerical solutions
become more accurate as N increases and P decreases.
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(a) Exact and approximate solutions of the po-
tential function q(x) = sin(πx) for no noise in

the nodal points in Case A: (- . -) for N = 3,
(- - -) for N = 4, (—) for N = 5, (o o o) for

N = 6 and (***) for exact solution.
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(b) Exact and approximate solutions of the po-
tential function q(x) = sin(πx) with N = 6

in Case A: (- . -) for P = 5% noise, (—) for
P = 2% noise, (- - -) for P = 0 noise and (***)

for exact solution.
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(c) Exact and approximate solutions of the po-
tential function q(x) = sin(πx) for no noise in

the nodal points in Case B: (- . -) for N = 3,

(- - -) for N = 4, (—) for N = 5, (o o o) for
N = 6 and (***) for exact solution.
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(d) Exact and approximate solutions of the po-
tential function q(x) = sin(πx) with N = 6

in Case B: (- . -) for P = 5% noise, (—) for

P = 2% noise, (- - -) for P = 0 noise and (***)
for exact solution.

Figure 3. Solution of inverse problem in Example 4.2.
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(a) Absolute errors for no noise in the nodal points in
Case A: (� � �) for N = 4, (o o o) for N = 5 and (* *

*) for N = 6.
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(b) Absolute errors for no noise in the nodal points in
Case B: (� � �) for N = 4, (o o o) for N = 5 and (* *

*) for N = 6.

Figure 4. Absolute errors between the exact and approximate
solutions in Example 4.2.

Finally, we obtain the absolute errors between the exact and approximate solu-
tions of q for no noise in the nodal points with N ∈ {4, 5, 6} in two Cases A and B
which are seen in Figure 4.

Example 4.3. Let the nodal points {xnj }, j = 1, n− 1, n > 1 obtained from the

formulae (2.5) and (2.10) with q(x) = (x − 1
2 )2 in the case A and also in the case

B with p = 1/8 be given. The exact solution and the numerical approximations
obtained with N ∈ {3, 4, 5, 6} in two Cases A and B for no noise in the nodal points
and also the approximate solutions obtained with N = 6 and P = 0, 2% and 5%
are shown in Figure 5.
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Figure 5. Solution of inverse problem in Example 4.3.

Also, the absolute errors between the exact and approximate solutions of q for
no noise in the nodal points with N ∈ {4, 5, 6} in two Cases A and B are seen in
Figure 6.
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*) for N = 6.

Figure 6. Absolute errors between the exact and approximate
solutions in Example 4.3.

5. Conclusion

In this study, we obtained the approximate solution of inverse problem by using
Chebyshev interpolation method and a dense subset of the nodal points for Sturm-
Liouville equation under the separated boundary conditions in two cases A and
B that in Case A, the equation did not have any singularity and in Case B, the
equation was contained a singularity at zero. For this reason, we used Chebyshev
polynomials of the first kind as the basic functions for approximating the function
q. Also, we provided some numerical examples and showed stable numerical results
in these examples.
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