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ON α-KENMOTSU MANIFOLDS SATISFYING

SEMI-SYMMETRIC CONDITIONS

HAKAN ÖZTÜRK

Abstract. The main purpose of this paper is to study α-Kenmotsu mani-

folds satisfying some semi-symmetric conditions where α is a smooth function

defined by dα ∧ η = 0 on M2n+1. In particularly, projectively, conformally
and concircularly semi-symmetric tensor fields are considered. The results re-

lated to the effects of semi-symmetric conditions are given. Finally, illustrating
examples on α-Kenmotsu manifolds depending on α are constructed.

1. Introduction

A (2n+ 1)-dimensional differentiable manifold M of class C∞ is said to have an
almost contact structure if the structural group of its tangent bundle reduces to
U(n)× 1, (see [1], [5]); equivalently an almost contact structure is given by a triple
(φ, ξ, η) satisfying certain conditions. Many different types of almost contact struc-
tures are defined in the literature (cosymplectic, almost cosymplectic, Sasakian,
Quassi Sasakian, α-Kenmotsu, almost α-Kenmotsu,..., [4], [6]).

Manifolds known as Kenmotsu manifolds have been studied by K. Kenmotsu in
1972 [3]. The author set up one of the three classes of almost contact Riemannian
manifolds whose automorphism group attains the maximum dimension [8]. A Ken-
motsu manifold can be defined as a normal almost contact metric manifold such
that dη = 0 and dΦ = 2η ∧ Φ.

It is well known that Kenmotsu manifolds can be characterized through their
Levi-Civita connection, by (∇Xφ)Y = g(φX, Y )ξ − η(Y )φX, for any vector fields
X and Y . Kenmotsu defined a structure closely related to the warped product
which was characterized by tensor equations. He proved that such a manifold
M2n+1 is locally a warped product (−ε,+ε) ×f N2n being a Kaehlerian manifold
and f(t) = cet where c is a positive constant. Moreover, Kenmotsu showed locally
symmetric Kenmotsu manifolds are of constant curvature −1 that means locally
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symmetry is a strong restriction for Kenmotsu manifolds. Also, the author realized
that if Kenmotsu structure satisfies the Nomizu’s condition [9], i.e., R · R = 0,
then it has negative constant curvature and if Kenmotsu manifold is conformally
flat, then the manifold is a space of constant negative curvature −1 for dimension
greater than 3.

The notion of semi-symmetric manifold is defined by

(1.1) R(X,Y ) ·R = 0,

for all vector fields X,Y on M, where R(X,Y ) acts as a derivation on R [9]. Such
a space is called ”semi-symmetric space” since the curvature tensor of (M, g) at a
point p ∈ M, Rp; is the same as the curvature tensor of a symmetric space (that
can change with the point of p). Thus locally symmetric spaces are obviously semi-
symmetric, but the converse is not true [15], [16]. A complete intrinsic classification
of these spaces was given by Szabó [10]. However, it is interesting to investigate
the semi-symmetry of special Riemannian manifolds. Nomizu proved that if Mn is
a complete, connected semi-symmetric hypersurfaces of an Euclidean space Rn+1,
n > 3, i.e., R · R = 0, then Mn is locally symmetric, i.e., ∇R = 0. For the
case of a compact Kaehlerian manifold, Ogawa proved that if it is semi-symmetric
then it must be locally symmetric [11]. In the case of contact structures, Tanno
showed that there exists no proper semi-symmetric or Ricci semi-symmetric K-
contact manifold. These manifolds studied many authors [15], [16]. Furthermore,
the conditions R(X,Y ) · P = 0, R(X,Y ) · C = 0 and R(X,Y ) · C = 0 are called
projectively semi-symmetric, conformally (Weyl) semi-symmetric and concircularly
semi-symmetric respectively, where R(X,Y ) is considered as derivation of tensor
algebra at each point of the manifold.

In recent years, Pastore and Dileo studied locally symmetric almost Kenmotsu
manifolds. The authors showed that locally symmetric Kenmotsu manifold is a
Kenmotsu manifold with constant sectional curvature K = −1, equivalently; h = 0.
If the manifold M2n+1 does not have constant sectional curvature then, h 6= 0 and
the rank of the manifold must be greater than 1.

More recently almost contact metric manifolds such that η is closed and dΦ =
2αη ∧ Φ, where α is a smooth function on M2n+1 satisfying dα ∧ η = 0 have
been studied by Murathan et al. in [13], [14]. Such manifolds are called almost
α-cosymplectic. A normal almost α-cosymplectic manifold is an α-cosymplectic
manifold. As it will be remarked in further sections, one can obtain important
information on the geometry of the manifold by the tensor h = 1

2 (Lξφ) or also by
φ ◦ h.

This paper is devoted to obtain some results on α-Kenmotsu manifolds by choos-
ing a real value-function α instead of any real number α (constant function) with the
help of some certain curvature tensor fields. For this reason, we have an α-Kenmotsu
structure if there exists a normal almost contact metric structure (φ, ξ, η, g) such
that dη = 0 and dΦ = 2α (η ∧ Φ) for any vector fields X,Y on M2n+1, where α is
a smooth function defined by dα ∧ η = 0 on M2n+1.

In this paper, the semi-symmetric conditions of α-Kenmotsu manifolds are in-
vestigated where α is a smooth function defined by dα ∧ η = 0 on M2n+1. In par-
ticularly, projectively, conformally (Weyl) and concircularly semi-symmetric tensor
fields are considered. The results related to the effects of semi-symmetric conditions
are given. Finally, illustrating examples on α-Kenmotsu manifolds depending on α
are constructed.
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2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M2n+1 which carries
a field φ of endomorphisms of the tangent spaces, a vector field ξ, called character-
istic or Reeb vector field , and a 1-form η satisfying φ2 = −I + η ⊗ ξ and η(ξ) = 1,
where I : TM2n+1 → TM2n+1 is the identity mapping. From the definition it fol-
lows also that φξ = 0, η ◦φ = 0 and that the (1, 1)-tensor field φ has constant rank
2n [1]. An almost contact manifold (M2n+1, φ, ξ, η) is said to be normal when the
tensor field N = [φ, φ] + 2dη ⊗ ξ vanishes identically, [φ, φ] denoting the Nijenhuis
tensor of φ. It is known that any almost contact manifold (M2n+1, φ, ξ, η) admits
a Riemannian metric g such that

(2.1) g(φX, φY ) = g(X,Y )− η (X) η (Y ) ,

for any vector fields X,Y on M2n+1. This metric g is called a compatible metric
and the manifold M2n+1 together with the structure (M2n+1, φ, ξ, η, g) is called an
almost contact metric manifold. As an immediate consequence of (2.1), one has
η = g(., ξ). The 2-form Φ of M2n+1 defined by Φ(X,Y ) = g(φX, Y ), is called the
fundamental 2-form of the almost contact metric manifold M2n+1. Almost contact
metric manifolds such that both η and Φ are closed are called almost cosymplectic
manifolds and almost contact metric manifolds such that dη = 0 and dΦ = 2η ∧ Φ
are almost Kenmotsu manifolds.

An almost contact metric manifold M2n+1 is said to be almost α-Kenmotsu
if dη = 0 and dΦ = 2αη ∧ Φ, α being a non-zero real constant. Geometrical
properties and examples of almost α-Kenmotsu manifolds are studied in [4], [18],
[3] and [6]. Given an almost Kenmotsu metric structure (φ, ξ, η, g), consider the
deformed structure

ηp =
1

α
η, ξp = αξ, φp = φ, gp =

1

α2
g, α 6= 0, α ∈ R,

where α is a non-zero real constant. So we get an almost α-Kenmotsu structure
(φp, ξp, ηp, gp). This deformation is called a homothetic deformation [4], [6]. It is
important to note that almost α-Kenmotsu structures are related to some special
local conformal deformations of almost cosymplectic structures, [18].

The conformal (Weyl) curvature tensor is a measure of the curvature of spacetime
and differs from the Riemannian curvature tensor. It is the traceless component of
the Riemannian tensor which has the same symmetries as the Riemannian tensor.
The most important of its special property that it is invariant under conformal
changes to the metric. Namely, if g∗ = kg for some positive scalar functions k,
then the Weyl tensor satisfies the equation W ∗ = W. In other words, it is called
conformal tensor.

Let M be a (2n+1)-dimensional Riemannian manifold with metric g. The Ricci
operator Q of (M, g) is defined by g(QX,Y ) = S(X,Y ), where S denotes the Ricci
tensor of type (0, 2) on M. Weyl constructed a generalized curvature tensor of type
(1, 3) on a Riemannian manifold which vanishes whenever the metric is (locally)
conformally equivalent to a flat metric; for this reason he called it the conformal
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curvature tensor of the metric. The Weyl conformal curvature tensor is defined by

C(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y,Z)X − S(X,Z)Y(2.2)

+g(Y,Z)QX − g(X,Z)QY ]

+
r

(2n)(2n− 1)
[g(Y,Z)X − g(X,Z)Y ] ,

for any vector fields X,Y on M , where R, r are denoting the Riemannian curvature
tensor and scalar curvature of M , respectively [17].

A necessary condition for a Riemannian manifold to be conformally flat is that
the Weyl curvature tensor vanish. The Weyl tensor vanish identically for 2 dimen-
sional case. In dimensions ≥ 4, it is generally nonzero. If the Weyl tensor vanishes
in dimensions ≥ 4, then the metric is locally conformally flat. So there exists a local
coordinate system in which the metric is proportional to a constant tensor. For the
dimensions greater than 3, this condition is sufficient as well. But in dimension 3
the vanishing of the equation c = 0, that is,

c(X,Y ) = (∇XQ)Y − (∇YQ)X − 1
2(2n−1) [(∇Xr)Y − (∇Y r)X] ,

is a necessary and sufficient condition for the Riemannian manifold being confor-
mally flat, where c is the divergence operator of C, for all vector fields X and Y
on M . It should be noted that if the manifold is conformally flat and of dimension
greater than 3, then C = 0 implies c = 0 [5].

Moreover, the concircular curvature tensor C and the projective curvature tensor
of (M2n+1, g) are defined as

(2.3) C(X,Y )Z = R(X,Y )Z − r

2n(2n+ 1)
(g(Y,Z)X − g(X,Z)Y )

(2.4) P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y, Z)X − S(X,Z)Y ] ,

respectively, where S is the Ricci tensor, r = tr(S) is the scalar curvature and
X,Y, Z ∈ χ(Mn), χ(Mn) being the Lie algebra of vector fields of M2n+1.

Moreover, an α-Kenmotsu manifold satisfies the following relations

(2.5) ∇Xξ = −αφ2X,

(2.6) (∇Xη)(Y ) = α [g(X,Y )− η(X)η(Y )] ,

(2.7) (5Xφ)Y = −α [g(X,φY )ξ + η (Y )φX] ,

for any vector fields X,Y on M2n+1.

3. Basic Curvature Properties

By using the properties of Riemannian curvature tensor, the following relations
are obtained on α-Kenmotsu manifolds

(3.1) R(X,Y )ξ =
[
α2 + ξ(α)

]
(η(X)Y − η(Y )X),

(3.2) R(X, ξ)ξ =
[
α2 + ξ(α)

]
(η(X)ξ −X),

(3.3) R(ξ,X)Y =
[
α2 + ξ(α)

]
(η(Y )X − g(X,Y )ξ),
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(3.4) g(R(ξ,X)Y, ξ) =
[
α2 + ξ(α)

]
(−g(X,Y ) + η(X)η(Y )),

(3.5) S(X, ξ) = −2n
[
α2 + ξ(α)

]
η(X),

(3.6) S(ξ, ξ) = −2n(α2 + ξ(α)),

(3.7) S(φX, φY ) = S(X,Y ) + 2n
[
α2 + ξ(α)

]
η(X)η(Y ),

where α is a smooth function such that dα ∧ η = 0, for any vector fields X,Y on
M2n+1. In these formulas, R is the Riemannian curvature tensor and S the Ricci
tensor of M2n+1.

Remark 3.1. In [7], the above curvature properties are obtained for α ∈ R, α 6= 0.

4. Semi-symmetric α-Kenmotsu manifolds

In this section, we give some results about α-Kenmotsu manifolds in the light of
[12] and [10]. Thus we have following:

Theorem 4.1. Let (M2n+1, φ, ξ, η, g) be an α-Kenmotsu manifold. If M2n+1 is
semi-symmetric, there exists no constant curvature on M2n+1.

Proof. Assume that M2n+1 is semi-symmetric, i.e., R · R = 0 which is equivalent
to

0 = R(X, ξ)R(U, V )W −R(R(X, ξ)U, V )W(4.1)

−R(U,R(X, ξ)V )W −R(U, V )R(X, ξ)W,

for all vector fields X,U, V and W on M2n+1. At first, let us define α as a constant
function on M2n+1. Then taking U = ξ in (4.1) with the help of (3.2) and (3.3),
we have

R(X, ξ)R(ξ, V )W = −α4η(X)g(V,W )ξ + α4g(V,W )X(4.2)

+α4η(W )g(X,V )ξ − α4η(V )η(W )X,

R(R(X, ξ)ξ, V )W = −α4η(X)g(V,W )ξ + α4η(X)η(W )V(4.3)

−α2R(X,V )W,

R(ξ,R(X, ξ)V )W = α2η(W )g(X,V )ξ − α2η(V )η(W )X(4.4)

−α2η(W )g(X,V )ξ + α2η(V )g(X,W )ξ

and

R(ξ, V )R(X, ξ)W = −α4η(V )g(X,W )ξ + α4η(W )g(X,V )ξ(4.5)

+α4g(X,W )V − α4η(X)η(W )V.

Taking into account (4.2), (4.3), (4.4), (4.5) and using (4.1) we obtain

0 = α4g(V,W )X + α2R(X,V )W − α4g(X,W )V

−α4η(V )η(W )X + α2η(V )η(W )X

−α2η(V )g(X,W )ξ + α4η(V )g(X,W )ξ.

Therefore, there exists no real constant k depending on α such that

R(X,V )W = k [−g(X,W )V + g(V,W )X] .
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Now, suppose that α is a smooth function defined by dα∧ η = 0 on M2n+1. In this
case, (4.1) takes the form

F 2(α)g(V,W )X + F (α)R(X,V )W − F 2(α)g(X,W )V

= F 2(α)η(V )η(W )X − F (α)η(V )η(W )X(4.6)

+F (α)η(V )g(X,W )ξ − F 2(α)η(V )g(X,W )ξ,

for all vector fields X,V and W on M2n+1where F (α) =
[
α2 + ξ(α)

]
.

Then simplifying (4.6) we have

R(X,V )W = F (α) [g(X,W )V − g(V,W )X]

+(F 2(α)− F (α))η(V ) [η(W )X − g(X,W )ξ] .

Thus we find that M2n+1 exists no constant curvature. Consequently, we have the
following results: �

Corollary 4.1. Let (M2n+1, φ, ξ, η, g) be an semi-symmetric α-Kenmotsu mani-
fold. If α is parallel along the vector field ξ, i.e., F (α) = α2, there exists no constant
curvature on M2n+1 where α is a real constant for α 6= 0.

Corollary 4.2. Let (M2n+1, φ, ξ, η, g) be a semi-symmetric Kenmotsu manifold.
Then M2n+1 is of constant curavture −1.

Theorem 4.2. Let (M2n+1, φ, ξ, η, g) be an α-Kenmotsu manifold and α is parallel
along the vector field ξ. If M2n+1 is locally symmetric, then M2n+1 is of a space of
negative constant curvature with −α2.

Proof. With the help of the hypothesis, we have

R(X,Y )ξ = α2 [η(X)Y − η(Y )X] .

Taking covariant derivative of both sides of the above equation with respect to the
vector field Z, then we obtain
(4.7)

= ∇ZR(X,Y )ξ −R(∇ZX,Y )ξ −R(X,∇ZY )ξ −R(X,Y )∇Zξ
(∇ZR)(X,Y )ξ = α2 [η(∇ZX)Y + g(X,∇Zξ)Y + η(X)∇ZY − η(∇ZY )X

−g(Y,∇Zξ)X − η(Y )∇ZX]− α2 [η(∇ZY )X − η(Y )∇ZX]
−α2 [η(X)∇ZY − η(∇ZY )X] + αR(X,Y )φ2Z

= α3 [g(X,Z)Y − g(Y.Z)X]− αR(X,Y )Z.

Then (4.7) holds

R(X,Y )Z = −α2 [g(Y,Z)X − g(X,Z)Y ]

under the locally symmetry condition for α 6= 0. This means that the manifold is
of negative constant curvature defined by k = −α2. This completes the proof. �

Corollary 4.3. For a Kenmotsu manifold the following conditions are equivalent:

i) M2n+1 is of constant curvature −1,
ii) M2n+1 is locally symmetric,
iii) M2n+1 is semi-symmetric,
iv) R(X, ξ) ·R = 0 for any vector field X on M2n+1.
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5. Semi-Ricci symmetric α-Kenmotsu manifolds

In this section, we suppose that α-Kenmotsu manifolds which satisfy the follow-
ing condition

(5.1) (R(X,Y ) · S)(Z,U) = 0.

defined by

(R(X,Y ) · S)(Z,U) = R(X,Y )S(Z,U)− S(R(X,Y )Z,U)

−S(Z,R(X,Y )U),(5.2)

for any vector fields X,Y, Z and U on M2n+1.

Theorem 5.1. Let (M2n+1, φ, ξ, η, g) be an α-Kenmotsu manifold. If M2n+1 holds
R · S = 0, then M2n+1 is an Einstein space with S = −2nα2g.

Proof. Our assumption is equivalent to

S(R(X, ξ)Z,U) + S(Z,R(X, ξ)U) = 0,

for all vector fields X,Z and U on M2n+1.
Putting U = ξ we get

(5.3) F (α) [g(X,Z)S(ξ, ξ)− η(Z)S(X, ξ) + η(X)S(Z, ξ)− S(X,Z)] = 0,

where F (α) =
[
α2 + ξ(α)

]
. Taking into account (3.5) and (3.6) in (5.3) we obtain

2nF 2(α)g(X,Z) + F (α)S(X,Z) = 0.

It follows that

S(X,Z) = −2nF (α)g(X,Z).

Therefore M2n+1 is an Einstein space with S = −2nα2g. �

Remark 5.1. It is note that R ·R = 0 ⊂ R ·S = 0. Thus R ·R = 0 implies R ·S = 0
for α = 1. Then we can state the following result:

Corollary 5.1. A semi-symmetric Kenmotsu manifold is an Einstein space with
S = −2ng.

Remark 5.2. For a Kenmotsu manifold the following conditions are equivalent:

i) M2n+1 is an Einstein space with S = −2ng,
ii) M2n+1 is locally Ricci-symmetric,
iii) M2n+1 is semi-Ricci symmetric,
iv) R(X, ξ) · S = 0 for any vector field X on M2n+1.

6. α-Kenmotsu manifolds with R(X,Y ) · C = 0

In this section, we consider conformally semi-symmetric condition on α-Kenmotsu
manifolds. Kenmotsu proved that Kenmotsu manifolds is conformallt flat if and
only if the manifold is of constant curvature −1.

Now, we give some results satisfying R · C = 0 on α-Kenmotsu manifolds:

Theorem 6.1. Let (M2n+1, φ, ξ, η, g) be a semi-conformally symmetric α-Kenmotsu
manifold. Then M2n+1 is conformally flat if and only if it is cosymplectic manifold
(α = 0).
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Proof. Assume that M2n+1 is semi-conformally symmetric. Then it is equivalent
to

0 = R(X, ξ)C(U, V )W − C(R(X, ξ)U, V )W(6.1)

−C(U,R(X, ξ)V )W − C(U, V )R(X, ξ)W.

By the help of (2.2) we have

g(C(X,Y )Z, ξ) =

[
−F (α) +

2nF (α)

2n− 1
+

r

2n(2n− 1)

]
η(X)g(Y,Z)

+

[
F (α)− 2nF (α)

2n− 1
− r

2n(2n− 1)

]
η(Y )g(X,Z)

+
1

2n− 1
[η(Y )S(X,Z)− η(X)S(Y,Z)] .(6.2)

Hereafter we take G = −F (α) + 2nF (α)
2n−1 + r

2n(2n−1) for shortening. Then putting

X = ξ in (6.2) we obtain

g(C(ξ, Y )Z, ξ) = G [g(Y, Z)− η(Y )η(Z)](6.3)

+
1

2n− 1
[−2nF (α)η(Y )η(Z)− S(Y,Z)] .

Applying (6.2) and (6.3) to (6.1) by the help of (3.3), it follows that

g(R(X, ξ)C(U, V )W, ξ) = F (α)g(C(U, V )W,X)

−F (α)η(X) [G (η(U)g(V,W )− η(V )g(U,W ))

+ 1
2n−1 (η(V )S(U,W )− η(U)S(V,W ))

]
,(6.4)

g(C(R(X, ξ)U, V )W, ξ) = −F (α)η(U) [G (η(X)g(V,W )− η(V )g(X,W ))

+ 1
2n−1 (η(V )S(X,W )− η(X)S(V,W ))

]
+F (α)g(X,U) [G (g(V,W )− η(V )η(W ))(6.5)

− 1
2n−1 (2nF (α)η(V )η(W ) + S(V,W ))

]
,

g(C(U,R(X, ξ)V )W, ξ) = F (α)η(V ) [G (η(X)g(U,W )− η(U)g(X,W ))

+ 1
2n−1 (η(U)S(X,W )− η(X)S(U,W ))

]
−F (α)g(X,V ) [G (g(U,W )− η(U)η(W ))(6.6)

− 1
2n−1 (2nF (α)η(U)η(W ) + S(U,W ))

]
,

and

g(C(U, V )R(X, ξ)W, ξ) = −F (α)η(W ) [G (η(U)g(X,V )− η(V )g(X,U))

+ 1
2n−1 (η(V )S(X,U)− η(U)S(V,X))

]
,(6.7)

where g(C(X,Y )ξ, ξ) = 0.
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Then taking into account (6.4-6.7) in (6.1) yield
(6.8)
F (α)g(C(U, V )W,X)− F (α)η(X) [G (η(U)g(V,W )− η(V )g(U,W ))

+ 1
2n−1 (η(V )S(U,W )− η(U)S(V,W ))

]
+ F (α)η(U) [G (η(X)g(V,W )− η(V )g(X,W ))

+ 1
2n−1 (η(V )S(X,W )− η(X)S(V,W ))

]
− F (α)g(X,U) [G (g(V,W )− η(V )η(W ))

− 1
2n−1 (2nF (α)η(V )η(W ) + S(V,W ))

]
− F (α)η(V ) [G (η(X)g(U,W )− η(U)g(X,W ))

+ 1
2n−1 (η(U)S(X,W )− η(X)S(U,W ))

]
+ F (α)g(X,V ) [G (g(U,W )− η(U)η(W ))

− 1
2n−1 (2nF (α)η(U)η(W ) + S(U,W ))

]
+ F (α)η(W ) [G (η(U)g(X,V )− η(V )g(X,U))

+ 1
2n−1 (η(V )S(X,U)− η(U)S(V,X))

]
= 0

Let {Ei, i = 1, 2, . . . , 2n+ 1} be an orthonormal basis of the tangent space at the
points of M2n+1. Thus using (2.2) we get

(6.9)

2n+1∑
i=1

g(C(Ei, Y )Z,Ei) = 0.

Putting X = U = Ei in (6.8), summarizing for 1 ≤ i ≤ 2n + 1 and taking into
consideration (6.9), we obtain

(6.10) S(V,W ) = (2n− 1)Gg(V,W )− Eη(V )η(W ),

where E is a function defined by E =
(
r
2n + F (α)(2n+ 1)

)
.

At last, using (6.10), (6.8) reduces to

g(C(U, V )W,X) =

(
E − 2nF (α)

2n− 1
−G

)
g(X,U)η(V )η(W )

+

(
G− E + 2nF (α)

2n− 1

)
g(X,V )η(U)η(W ).(6.11)

Then contracting with respect to U and X, we have

0 = (2n+ 1)

(
E − 2nF (α)

2n− 1
−G

)
η(V )η(W )

+

(
G− E + 2nF (α)

2n− 1

)
η(V )η(W ),

which implies F (α) = 0. It follows that α is constant and α = 0 (cosymplectic
case). This completes the proof. �

7. α-Kenmotsu manifolds with R(X,Y ) · P = 0

In this section, we study projectively semi-symmetric condition on α-Kenmotsu
manifolds. First we consider projectively flat α-Kenmotsu manifolds. Then we
investigate the effects of the tensor products R · P = 0 on α-Kenmotsu manifolds.

Thus we obtain the following results:

Theorem 7.1. A projectively flat α-Kenmotsu manifold is an Einstein space.

Proof. Suppose that P = 0. Then from (2.4), we have

(7.1) R(X,Y )Z =
1

2n
[S(Y, Z)X − S(X,Z)Y ] .
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From (7.1), we get

(7.2) R(X,Y, Z,W ) =
1

2n
[S(Y,Z)g(X,W )− S(X,Z)g(Y,W )] ,

where R(X,Y, Z,W ) = g(R(X,Y )Z,W ).
Putting W = ξ in (7.2), we obtain

(7.3) η(R(X,Y )Z) =
1

2n
[S(Y,Z)η(X)− S(X,Z)η(Y )] .

Again taking X = ξ in (7.3) and using (3.2) and (3.5), we have

(7.4) S(Y, Z) = −2nF (α)g(Y,Z).

According to the assumption, using (7.4), the manifold is an Einstein space with
S = −2nα2g. �

Theorem 7.2. If in an α-Kenmotsu manifold M2n+1, n > 0, the relation R(X,Y )·
P = 0 holds, then the manifold is projectively flat.

Proof. Using (2.1) and (3.1) in (2.4), we get

η(P (X,Y )Z) = −F (α)η(X)g(Y, Z) + F (α)η(Y )g(X,Z)

− 1

2n
[η(X)S(Y,Z)− η(Y )S(X,Z)] .(7.5)

Putting Z = ξ in (7.5), we obtain

(7.6) η(P (X,Y )ξ) = 0

Again taking X = ξ in (7.5), we have

(7.7) η(P (ξ, Y )Z) = −F (α)g(Y,Z)− 1

2n
S(Y,Z)

Now, we consider the condition R(X,Y ) · P which is defined as

(R(X,Y )P )(U, V )Z = R(X,Y ) · P (U, V )Z − P (R(X,Y )U, V )Z

−P (U,R(X,Y )V )Z − P (U, V )R(X,Y )Z.(7.8)

As it has been supposed that R(X,Y ) · P = 0, thus we have

0 = R(X,Y ) · P (U, V )Z − P (R(X,Y )U, V )Z

−P (U,R(X,Y )V )Z − P (U, V )R(X,Y )Z.(7.9)

Putting X = ξ and applying inner product with respect to ξ in (7.9). From this, it
follows that

0 = −P (U, V, Z, Y ) + η(Y )η(P (U, V )Z)− η(U)η(P (Y, V )Z)

+g(Y,U)η(P (ξ, V )Z)− η(V )η(P (U, Y )Z)(7.10)

+g(Y, V )η(P (U, ξ)Z)− η(Z)η(P (U, V )Y ),

where P (U, V, Z, Y ) = g(P (U, V )Z, Y ).
Putting Y = U in (7.10), we get

0 = −P (U, V, Z, U) + g(U,U)η(P (ξ, V )Z)− η(V )η(P (U,U)Z)

+g(U, V )η(P (U, ξ)Z)− η(Z)η(P (U, V )U).(7.11)
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Let {Ei} , i = 1, . . . , 2n+ 1 be an orthonormal basis of the tangent space at any
point. Then the sum for 1 ≤ i ≤ 2n+ 1 of the relation (7.11) for U = Ei yields

η(P (ξ, V )Z) = −
(

1

2n(2n+ 1)

)
S(V,Z)−

(
F (α)

2n+ 1

)
g(V,Z)

+

(
F (α) +

r

2n(2n+ 1)

)
η(V )η(Z)(7.12)

From (7.7) and (7.12), we have

(7.13) S(V,Z) = −2nF (α)g(V,Z)−
(

(2n+ 1)F (α) +
r

2n

)
η(V )η(Z).

Taking Z = ξ in (7.13) and using (3.5) we get

(7.14) r = −2n(2n+ 1)F (α).

Now using (7.5), (7.12), (7.13) and (7.14) in (7.10), we obtain

(7.15) P (U, V, Z, Y ) = 0.

From (7.15) it follows that

(7.16) P (U, V )Z = 0.

Therefore, an α-Kenmotsu manifold under consideration is projectively flat. Hence,
we can state the next theorem: �

Theorem 7.3. An α-Kenmotsu manifold M2n+1, n > 0, satisfying R(X,Y )·P = 0
is an η-Einstein manifold and also it is a manifold of constant curvature

r = −2n(2n+ 1)F (α),

where F (α) =
[
α2 + ξ(α)

]
.

8. α-Kenmotsu manifolds with R(X,Y ) · C = 0

In this section, we study concircularly semi-symmetric condition on α-Kenmotsu
manifolds. At first, we examine concircularly flat α-Kenmotsu manifolds. Next, we
investigate the tensor products R · C = 0 on α-Kenmotsu manifolds.

Thus we obtain the following results:

Theorem 8.1. If an α-Kenmotsu manifold is concircularly flat, then it is a man-
ifold of constant curvature r = −2n(2n+ 1)F (α).

Proof. Assume that C = 0. Then from (2.3), we have

(8.1) R(X,Y )Z =
r

2n(2n+ 1)
[g(Y,Z)X − g(X,Z)Y ] .

From (8.1), we get

R(X,Y, Z,W ) =
r

2n(2n+ 1)
[g(Y,Z)g(X,W )

− g(X,Z)g(Y,W )] ,(8.2)

where R(X,Y, Z,W ) = g(R(X,Y )Z,W ).
Putting W = ξ in (8.2), we obtain

(8.3)

(
r

2n(2n+ 1)
+ F (α)

)
[η(X)g(Y, Z)− η(Y )g(X,Z)] = 0.
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Then using (8.3), we have

(8.4)
r

2n(2n+ 1)
+ F (α) = 0.

From (8.4), the proof is completed. It is note that the cosymplectic case (α = 0)
exists if and only if r = 0. �

Theorem 8.2. If in an α-Kenmotsu manifold M2n+1, n > 0, the relation R(X,Y )·
C = 0 holds, then the manifold is concircularly flat.

Proof. In view of (2.1) and (3.1) in (2.3), we get

(8.5) η(C(X,Y )Z) =

(
F (α) +

r

2n(2n+ 1)

)
(η(Y )g(X,Z)− η(X)g(Y, Z)).

Putting Z = ξ in (8.5), we obtain

(8.6) η(C(X,Y )ξ) = 0

Again taking X = ξ in (8.5), we have

(8.7) η(C(ξ, Y )Z) =

(
F (α) +

r

2n(2n+ 1)

)
(η(Y )η(Z)− g(Y,Z)).

Now, we consider the tensor product R(X,Y ) · C which is defined by

(R(X,Y )C)(U, V )Z = R(X,Y ) · C(U, V )Z − C(R(X,Y )U, V )Z

−C(U,R(X,Y )V )Z − C(U, V )R(X,Y )Z.(8.8)

Assume that R(X,Y ) · C = 0. Thus we have

0 = R(X,Y ) · C(U, V )Z − C(R(X,Y )U, V )Z

−C(U,R(X,Y )V )Z − C(U, V )R(X,Y )Z.(8.9)

Then putting X = ξ and applying inner product with respect to ξ in (8.9).
From this, it follows that

0 = −C(U, V, Z, Y ) + η(Y )η(C(U, V )Z)− η(U)η(C(Y, V )Z)

+g(Y,U)η(C(ξ, V )Z)− η(V )η(C(U, Y )Z)(8.10)

+g(Y, V )η(C(U, ξ)Z)− η(Z)η(C(U, V )Y ),

where C(U, V, Z, Y ) = g(C(U, V )Z, Y ).
Putting Y = U in (8.10), we get

0 = −C(U, V, Z, U) + g(U,U)η(C(ξ, V )Z)− η(V )η(C(U,U)Z)

+g(U, V )η(C(U, ξ)Z)− η(Z)η(C(U, V )U).(8.11)

Let {Ei} , i = 1, . . . , 2n+ 1 be an orthonormal basis of the tangent space at any
point. Then the sum for 1 ≤ i ≤ 2n+ 1 of the relation (8.11) for U = Ei yields

η(P (ξ, V )Z) =
1

(2n+ 1)
S(V,Z)−

(
2F (α)n+ r

2n(2n+ 1)

)
g(V,Z)

+

(
F (α) +

r

2n(2n+ 1)

)
η(V )η(Z)(8.12)

From (8.7) and (8.12), we have

(8.13) S(V,Z) = −2nF (α)g(V,Z).
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Taking into account (8.4), (8.5), (8.7) and (8.13) in (8.10), we obtain

(8.14) C(U, V, Z, Y ) = 0.

From (8.14) it follows that

(8.15) C(U, V )Z = 0.

Therefore, an α-Kenmotsu manifold is projectively flat with R(X,Y ) · C = 0. As
we know, in general, a concircularly flat Riemannian manifold is Einstein and so, in
particular, a concircularly α-Kenmotsu manifold is Einstein. Hence, we can state
the next theorem: �

Theorem 8.3. An α-Kenmotsu manifold M2n+1, n > 0, satisfying R(X,Y )·C = 0
is an Einstein manifold and also a manifold of constant curvature

r = −2n(2n+ 1)F (α),

where F (α) =
[
α2 + ξ(α)

]
.

9. Examples

9.1. Example in Three Dimensional when α is a constant function

We consider the 3-dimensional manifold M3 =
{

(x, y, z) ∈ R3
}
, where (x, y, z)

are the standart coordinates in R3. The vector fields are

e1 = f1(z)
∂

∂x
+ f2(z)

∂

∂y
,

e2 = −f2(z)
∂

∂x
+ f1(z)

∂

∂y
,

e3 =
∂

∂z
,

where f1, f2 are given by

f1(z) = c2e
−αz,

f2(z) = c1e
−αz,

with c21 + c22 6= 0, α 6= 0 for constants c1, c2 and α. It is obvious that {e1, e2, e3} are
linearly independent at each point of M3. Let g be the Riemannian metric defined
by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e1, e3) = g(e2, e3) = 0

and given by the tensor product

g = (f21 + f22 )−1(dx⊗ dx+ dy ⊗ dy) + dz ⊗ dz.

Let η be the 1-form defined by η(X) = g(X, e3) for any vector field X on M3 and
φ be the (1, 1) tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then
using linearity of g and φ, we have

φ2X = −X + η(X)e3, η(e3) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields on M3.
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we get

[e1,e3] = αe1, [e2,e3] = αe2, [e1,e2] = 0.
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It follows that the structure of (φ, ξ, η, g) can easily be obtained. So it is sufficient
to check that the only non-zero components of the second fundamental form Φ are

Φ(
∂

∂x
,
∂

∂y
) = −Φ(

∂

∂y
,
∂

∂x
) = − 1

f21 + f22
= − e2αz

c21 + c22
.

Thus, we get

Φ = − 2e2αz

c21 + c22
(dx ∧ dy),

and the exterior derivation of Φ is given by

dΦ = −4αe2αz

c21 + c22
(dx ∧ dy ∧ dz).

Since η = dz, it implies dΦ = 2αη ∧ Φ on M3 and it is also note that Nijenhuis
torsion tensor of φ vanishes.

9.2. Example in Three Dimensional when α is a smooth function

Let us denote the standart coordinates of R3(x, y, z) and consider 3-dimensional
manifold M ⊂ R3 defined by

M =
{

(x, y, z) ∈ R3 : z 6= 0
}
.

The vector fields are

e1 = ez
3 ∂

∂x
, e2 = ez

3 ∂

∂y
, e3 =

∂

∂z
.

It is clear that {e1, e2, e3} are linearly independent at each point of M. Let g be
the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e2) = g(e1, e3) = g(e2, e3) = 0,

and given by the tensor product

g =
1

e2z3
(dx⊗ dx+ dy ⊗ dy) + dz ⊗ dz.

Let η be the 1-form defined by η(X) = g(X, e3) for any vector field X on M and
φ be the (1, 1) tensor field defined by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then
using linearity of g and φ, we have

φ2X = −X + η(X)e3, η(e3) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields on M.
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we get

[e1,e3] = −3z2e1, [e2,e3] = −3z2e2, [e1,e2] = 0.

It follows that the structure of (φ, ξ, η, g) can easily be obtained. So it is sufficient
to check that the only non-zero components of the second fundamental form Φ are

Φ(
∂

∂x
,
∂

∂y
) = −Φ(

∂

∂y
,
∂

∂x
) = − 1

e2z3
,

and hence

(9.1) Φ = − 1

e2z3
(dx ∧ dy),

where Φ(e1,e2) = −1and otherwise Φ(ei,ej) = 0 for i ≤ j. Thus the exterior deriva-
tion of Φ is given by

(9.2) dΦ = 6z2e−2z
3

(dx ∧ dy ∧ dz).
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Since η = dz, by the help of 9.1 and 9.2, we have

dΦ = −6z2 (η ∧ Φ) ,

where α defined α(z) = −3z2. Moreover, it can be noted that Nijenhuis torsion
tensor of φ vanishes. Hence, the manifold is an α-Kenmotsu.
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[7] H. Öztürk, N. Aktan and C. Murathan, On α-Kenmotsu Manifolds Satisfying Certain Con-

ditions, Applied Sciences, 12(2010), 115-126.
[8] S. Tanno, The Automorphism Groups of Almost Contact Riemannian Manifolds, Tôhoku
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