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THE MULTIPLE VALUES OF ALGEBROID FUNCTIONS AND
UNIQUENESS ON ANNULI

ASHOK RATHOD

ABSTRACT. In this paper, we present a unified approach of investigating the
influence of multiple values and deficiencies on the uniqueness problem of al-
gebroid functions on annuli and deduced several results on uniqueness of alge-
broid functions on annuli.

1. INTRODUCTION

The uniqueness theory of algebroid functions is an interesting problem in the
value distribution theory. The uniqueness problem of algebroid functions was firstly
considered by Valiron, afterwards some scholars have got several uniqueness the-
orems of algebroid functions in the complex plane C (see [2, 3, 5, 9, 10, 11, 18,
19]). In 2005, A. Ya. Khrystiyanyn and A. A. Kondratyuk have proposed on the
Nevanlinna Theory for meromorphic functions annuli (see [7,8]). In 2009, Cao and
Yi [1] investigated the uniqueness of meromorphic functions sharing some values on
annuli. In 2015, Yang Tan [12], Yang Tan and Yue Wang [13] proved some interest-
ing results on the multiple values and uniqueness of algebroid functions on annuli.
In thsi paper, we mainly study doubly connected domain. By Doubly connected
mapping theorem [17] each doubly connected domain is conformally equivalent to
the annulus {z : r < |2] < R},0 < r < R < 400. We consider only two cases
:r =0, R = 400 simultaneously and 0 < r < R < 4o00. In the latter case the

homothety z — % reduces the given domain to the annulus {z : R%] < |zl < Ro} ,

where Ry = w%. Thus, in two cases every annulus is invariant with respect to the

inversion z — %
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2. BASIC NOTATIONS AND DEFINITIONS

We assume that the reader is familiar with the Nevanlinna theory of meromorphic
functions and algebroid functions (see [4] and [15]).
Let A,(2),Ay—1(2), ..., Ao(2) be analytic functions which have no common

zeros and define on the annulus A (R%)’ RO) (1< Ry < +00),
(2.1) Yz, W) = Ay ()WY + Ay 1 ()W + 4+ A (o)W + Ag(2) =
Then irreducible equation (2.1) defines a v-valued algebroid function on the annulus
A (RLO,RO) (1< R < +00).
Let W (z) be a v-valued algebroid function on the annulus A (R%v R0> (1< Ry <

+00), we use the following notations

1
m(r,W) = ;Zm T, w;) Z 271_/ log™t |w;(re’?)|do,

i=1
1
Ni(r, W) = 1 Mdt, No(r, W) = 1 Mdt,
v Ji t v Jq t

= 1 = 1
— 1 1 tm (t’ w_a) — 1 1 72 (t’ w_a>
N - Ty N - Ty
1<T’Wa> V/; t ’ 2(T’Wa> 1//1 t ’
— —k

- r o\”,
)R ) )
) (r, L a) _ W <r, Wl_a) WY (n L a) ,
o) ) )

where w;(2)(j = 1,2, ...,v) is one valued branch of W(z), ny(¢, W) is the count-
ing function of poles of the function W(z) in {2z : t < |z] < 1} and no(t, W)
is the counting function of poles of the function W(z) in {z : 1 < |z| < t}

(both counting multiplicity).7; (t, ﬁ) is the counting function of poles of the

function = in {z : ¢ < 2| < 1} and M (t, e= a) is the counting function

of poles of the function 77— in {z : 1 < |z| < ¢} (both ignoring multiplicity).

ﬁ]f) (t, Wl a) <n1 ( , W )) is the counting function of poles of the function W1 -
with multlphaty <k (or >k)in {z:t <|z| <1}, each point count only once;

% () (a8 (et 1

)) is the counting function of poles of the function y—
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with multiplicity < k (or > k) in {z : 1 < |z| < ¢}, each point count only once,
respectively.

Let W(z) be a v-valued algebroid function which determined by (2.1) on the
annulus A (R%)’R0> (1 < Ry < +0), when a € C, ng (r, ﬁ) = ng (r, m) ,
No (7‘, ﬁ) =1Ng (r, ﬁ) .In particular, when a = 0, Ny (r, ) = £ No (r, A%))
When a = oo, Ny (r, W) = %No (r, Aiu); where ng (n ﬁ) and ng (r, m) are

the counting function of zeros of W(z) — a and t(z,a) on the annulus A (R%), RO)
(1 < Ry < +00).

Definition 2.1. [12] Let W(z) be an algebroid function on the annulus A (R%J’ Ro)
(1 < Ry < +00), the function

To(r, W) =mo(r, W)+ No(r, W), 1<r <Ry
is called Nevanlinna characteristic of W (z).

Definition 2.2. [12] Let W(z) be an algebroid function on the annulus A (R%,’ RO)
(1 < Ry < +00), we denote the deficiency of a € C = C U {oo} by

o (s No (1 75)
oo(a, W) =00(0,W —a) =liminf ————% =1-1i — /.
o(a, W) = dof @) = lim it — ) Ry T (R, W)
and denote the reduced deficiency by
% ()

Oo(a, W) =0(0,W —a) =1- IITTE)SIS)P W.

Definition 2.3. Let W(z) be an algebroid function on the annulus A (R%)’RO)

(1 < Ry < +0), let ‘@’ be any arbitrary complex number. The Valiron deficiency
of W(z) on the annulus A with respect to the value ‘a’ will be defined by

mO(va%) NO(va%)
A — limsup ———W=a’ _ 1 _|ypijpf o W-a’
ola, W) = limsup — o0 R wm W)

SOME LEMMAS

Lemma 2.1. [7] (Jensen theorem for meromorphic function on annuli) Let f(z)

be a meromorphic function on the annulus A (P%o’ R0> (1 < Ry < +00), then

1 1 27 ) 1 27 1 .
Ny <T, f) — No(r, f) %/o log |f(1"619)‘d0 + %/0 log | f (rele) ‘ do

1 27 20
—5 [ los|f(e)do,
™ Jo

where 1 < r < Ry.
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Lemma 2.2. [12] (The first fundamental theorem on annuli) Let W (z) be v-valued
algebroid function which is determined by (2.1) on the annulus A (R%],RO) (1<
Ry <+x),aeC

mo(r,a) + No(r,a) = Ty (r, W) + O(1).
Lemma 2.3. [13] (The second fundamental theorem on annuli). Let W (z) be v-
valued algebroid function which is determined by (2.1) on the annulus A (P%o’ Ry

(1 < Ry < 400), ar (k = 1,2,..,p) are p distinct complex numbers (finite or
infinite), then we have

(2.2) (p—2v)Ty (r, W) ZNO ( k) — N1(r, W) + So(r, W)

Ny (r, W) is the density index of all multiple values including finite or infinite, every
7 multiple value counts T — 1, and

So(r, W) = mq ( W,> +Zmo < ak) +0(1).

The remainder of the second fundamental theorem is the following formula
So(r,W) = O (logTo(r,W)) + O(log ),

outside a set of finite linear measure, if r — Ry = +00, while

So(r, W) = O (log Ty (r, W) + O (logR ! T) ,
-

outside a set E of r such that fE R

Remark 2.1. [13] The second fundamental theorem on annuli has other forms, as
the following;:

P 1
(2.3) P-DREW) < ol W)+ 3o (W)
—Nl(T,W)—i—Ql(T,W),

N0 ) = 2o 9) = Mo ) + Mo (1 )

Zmo ( Wak> +0(1),a0 = 0.

We notice that the following formula is true,

d 1 E— 1
2.4 N, — Ni(r, W) < N .
eh () Mo < N ()

— ay,
Ny (r, W%ak> is the reduced counting function of zeros(ignoring multiplicity). Then

the second fundamental theorem can be rewritten as the following

E 1
(2.5) (p — 20)To (r, W) < ; No (r, T ak) + So(r, W).
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Lemma 2.4. [12] Let W(z) be v-valued algebroid function which is determined by
(2.1) on the annulus A (RLO,RO) (1 < Ry < 400), if the following conditions are
satisfied

(r7 W)

T
liminf ~22 "7

00, Ry = +-00,
r—00 logr

T W
lim inf Ll) <00, Ry< 400,
r Ry 108 TRy —r)
then W (2) is an algebraic function.

Remark 2.2. [12] Let W(z) be a v-valued algebroid function which is determined
by (2.1) on the annulus A (%07]%0) (1 < Ry < +00) and W(z) be a p valued
algebroid function which is determined by the following equation on the annulus
A (. Ro) (1< Ro < +o0),

o(z, W) = Bu(2)W" + B,_1(2)W* ' + ... + By (2)W + By(z) = 0.

Without loss of generality, let u < v, ﬁ]g (r,a) denotes the counting function of the
common values of W(z) = a and W(z) = a with multiplicity < k on the annulus
A (B%)’ RO) (1 < Ry < +00), each point counts only once. And let

1 k) r =k)
k. nx (t,a nx (t,a
NIX)(r,a) = MJFV/ Al( )dt+u+1// Az( )dt
2uv J1 t 2uv )y t
—k;) —k) 1 —k) 1 —k;)
Ny (r,a) = N, (r,W_a>+NO (T,W_a>—2NAJ (rya).

3. MAIN RESULTS

Let W (z) be an algebroid function on the annulus A (R%)’ R0> (1 < Ry < +0)

and a be a complex number in the extended complex plane. Write E(a, W) = {z €
A : W(z) — a = 0}, where each zero with multiplicity m is counted m times. If we
ignore the multiplicity, then the set is denoted by E(a, W). We use Ey(a, W) to
denote the set of zeros of W — a with multiplicities not greater than k, in which
each zero is counted only once.

We now show our main results below which is an analog of a result on the

plane C obtained by H. X. Yi [16](see Theorem 3.19 and 3.20 in [15]).

Theorem 3.1. Let W(z) and /W(z) be two v-valued and p valued algebroid func-
tions on the annulus A (RLU,RO) (1 < Ry < +00) respectively and p < v, let

aj (j = 1,2,...,q) be q distinct complex numbers in C and k; (j = 1,2,...,q) be q
positive integers or oo such that

(3.1) ki > ko> .. >k

and
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Set

m:%mmwm+%mﬂwm+m+%mWW@%ki:@+%@wwm

-2
ks+1 ki +1 v

j=2u+1
and

Jofar, W(2)) + dofas, W) + o 4 do(0ans W) - gyt dolay, W(2))

A:
2 ks+1 k‘—ﬁ-l

—2u
j=2v+1

(33) min{Al, AQ} Z O,

(3.4) maxz{As, A2} > 0,

then W(z) = W(z)

Proof. We may assume, without loss of generality, that all a; (j = 1,2,...,¢) are
finite, otherwise, a suitable Mobius transformation will be done. From Remark 2.1,
we have

(3.5)

< S ()t L e (g ) e w)
T T ) .
7W—aj j:lkj+1 0 7I/V—Clj 0

From (3.4) and (3.5), we have

(g —2v)To(r, W)
2v
kl, 1 k; koy 1
b (k) § N )
k2V+1+1 W—aj = kj+1 kov4+1 +1 W—aj
+ (8.6 No(
B
2v

Eovt1 o= —ky) ( 1 ) ( k; koy41 )
=— No 77 |, + - 1—do(a;, W))To(r, W
kov41 +1 z_: 0 W —a; Jz::l ki+1 kopy1+1 ( o, W))To( )

)+&0W>

*Zk (1= do(a;, W) To(r, W) + So(r, W)

k2vtl s —kj) ( 1 ) 2 ( k) )

= No ™77 |, + + 1—0do(a;, W))To(r, W

k2y+1+1; 0 W—a, J; Al E (1 = do(aj, W))To(r, W)
2v

k q
=2 (= o(ag, W) To(n W)+ 3
=1 2v+1 j=2v+1

o (1 —éo(a;, W))To(r, W) + So(r, W)

2v

k3 z —k-)( 1 )
=—-—=> No 7' [T + 20Ty (r, W So(a;, W)To(R,W
k2u+1+1; 0 W—aj 0( ) ];1 0 J )0( )

72 ko1 g (R, W)
_l’_

kou+

q

2v
koyt1
. [ W) To(r, W
+;@?€f“+l o(a;, W)To(r, W) + >

j=2v+

(1 = 8o(a;, W))To(r, W) + So(r, W)
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Ckaugr ( 1 ) X, So(aj, W)

No© : wTo(r, W) =S R4 2 W

i1 Z 0 W—a, + 2vTo(r, W) g P o(r, W)

hatt powyr S L mewy - 3 L (s(a, W) Te(r, W) + So(r, W)

— T, T a;j, T T,

ko +10° P szk +10 0 0

5 W) + 6 W)Y+ ... 46 w . So(a;, W 2vk 4 k;

o(a1, W) + do(az, W) + ... + do(az., )+ o(ay, )+ vkay41 i o | T, W)
koyy1 +1 Pl ki +1 kovg1 +1 Pl kj +1

1
)+%mwy
—

j=1
Therefore,
(3.8)
2vkoy 41 2 k; kayg1 ( 1 )

C —_— -2 Tt w N S w
( 1+ Foyr1 4 1 +j:§,:+1 A1 V) o(r, W) < T in p Z “a; +So(r, W),
where

Cl _ 50(@17W(2)) +60(a2,W(Z))+...+50(Q2V,W(Z)) + kl 50(aj,W(z))

k21/+1 +1 j=2m41 k’j +1
Similarly
(3.9)
2vkay 11 d k; kov41 1 —
Cy + E2vHL —ou | To(r, W) No" So(r, W),
2+k21,+1+1+j§_1k 1 u) o(r, k2,,+1+1z < W—a]->+ o(r, W)
where
C, — B0(a1, W(2)) + bo(az, W(2)) + ... + bo(azy, W Z do(a, W(2))
? ko1 +1 kj+1

By (3.8), (3.9) and Remark 3.2, we have

2vks,
Cr+ —— vl (r, W)
koy+1 + 1 S /€
2vks, —
+ | 0y 2L T = 2| To(r, W)
koyi1 + 1 S k]

o _kawn zq:Nkj) (r 1 ) n koy 1 ijﬁkj) , 1
> k2u+1 ¥ 1 = 0 9 W o (Ij k2u+1 -+ 1 = 0 5 W _ aj

+So(r, W) + So(r, W),

oy Zq:k)< 1 )+zq:Nkj) , 1
k2u+1+1 W —ay ; 0 7W_aj

Jj=1

+So(r, W) + So(r, W),

q q
Zﬁlz(r,aj)+22WA(r,aj) +SQ(T’, W)+So(’l”,W)

1 j=1

k21/+1
3.10) < ———
(810) < koyi1+1

<.
Il
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R(p, 1) =

R(p, ) =

If W(z) £ ﬁ/\(z), then we have

223

> Aa(r,a) < ng (r, R(;d))) :

A, (z) A,_1(z)

Ay (2)
6o
Bu(z) Bufl(z)
0 By.(z)
6 o

©, 1) denotes the resultant of ¢(z, W) and ¢(z, W
following

It can be written in the another form

Av1(2)
0

BM:; (2)

0

), it can be written as the

A1(z) Ao(2) 0

Ay (2) Av_1(2) oo Ao(2)
By (z) 0o .. ©0
Bl(z) Bo(Z) 0

Bu(2) Bu_1(2) ... Bo(2)

So we know that R(p, 1) is a holomorphic function and using Jensen Theorem for
meromorphic function on annuli, we have

1 1 27 . L
N, "N = 7/ 10 R w 7«6107 W 9 Tezeﬂ W d9
()~ 3 | lRIRIGGET W) plre ]
1 27 0 W
+ %/0 log‘R{w (re ) <p(7“e )”d@
1 2 . L~
Lol / log [RE(e”, W), (e, W)]|d6
2w 0
M 27 . v 2m .
= —/ log|Ay(relG)|d9+f/ log | B,,(re')|dd
27T 0 271— 0

1 27

H [wj(re’?) — @;(re')]| do
1<y
1<k

j<v
Zu
2 27
1,
+ L3 log | A < )‘d@ + —/ log | B, (ew) ‘ do
27 0 0 T

(Lo do—g“/%l 1A, ()]0
7“6 9/, og|A,(e

IT fos(e) = () ot

27
”’)‘d& 2. 7/ log|A, (¢'9)|df

1

,

1 2

- ZG)‘dGQ 7/ log | B,.(e'?)|do
,

27 27
o i0 1%
= — log |A, dd + — I
27T/0 0g | Ay (re™)|d0 + 277/0 og |4

v 2 " v 2m
— log |B ) |d0 + — 1
+ o [ e eian+ - [ oz
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1 27
+ — log H [wj(re’?) — @;(re')]| do
2m Jo 1<j<v
1<k<p
+ € 27T10 H w; lew —w Lo de
2 Jo g1<'<u T\r T\r
1§%§H
1 27 0 0
— 2% ; log H [w;(e™) —w,;(e*”)]| do
1<j<v
1<k<p
< fmolr, A) —mo (1, )| 4w | mo(r, Bu) —mo (i, =
< pfmo(r Ay) —mo (1,4 v |mo(r, By) —mo (1. -
+pv[mo(r, W) + mg(r, W)} +0(1)
= w[To(r, W) + To(r, W)] + O(1).
Then we get
2uv =
<
ZN (rya;) < M+V[T0(T,W)+TO(T,W)]+O(1)
(3.11) < V[To(r,W) + To(r, W)] + O(1).

By the condition of Theorem 3.1, we know that W (z) and W(z) take the same
values with multiplicity < k; about ¢ distinct a;, each point counts only once , at

the same time we get N’fé)(r, a;) = 0. From (3.10) and (3.11) and Remark 2.2

2l/k2u+1
Ci+ —— r, W
! koy41 +1 ;ﬂ k; + ( )
2Vk2 +1 1 1 =
+ [0y 4 2L i ou | To(r, W
YT R T B o(r, W)
2v ko, — —
< ZLEEL (T (r, W) 4 To(r, W)] + So(r, W) + So(r, W)
ko1 +1
Hence
Ci + Z —2V To(r, W)+ | Oy + Z —2u To(r,/W)
j=2v+1 J Jj=2v+1 ]
< So(r, W) + So(r, W).
Therefore

AvTo(r, W) + AsTo(r, W) = So(r, W) + So(r, W).

From Lemma 2.4 we know that this is not true, so it must be W(z) = ﬁ/\(z)

Therefore we complete the proof of theorem.
O
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From Theorem 3.1, we get the following corollaries
Corollary 3.1. Let W(z) and W(z) be two v-valued and p valued algebroid func-
tions on the annulus A (R%),RO) (1 < Ry < +00) respectively and p < v, let

aj (j = 1,2,...,q) be q distinct complex numbers in C and k; (j = 1,2,...,q) be ¢
positive integers or oo such that

and
Bip(a;,W(2)) = B0, W(2), (G =1,2,..,9)
Set
A = y ks — 2
jag i T 1
and
Ay = i ki _ 2/
j=20+1 kj+1
If
min{A;, As} > 0,
and

max{A;, As} > 0,
then W(z) = W(z)
From Corollary 3.1, we obtained Corollary 3.2.

Corollary 3.2. Let W(z) and W(z) be two v-valued and p valued algebroid func-
tions on the annulus A (RLO,RO) (I < Ry < 4+00) respectively and p < v, let

aj (j = 1,2,...,q) be q distinct complex numbers in C and k; (j = 1,2,...,q) be q
positive integers or oo such that

and

If

then W(z) = W(z)

As a consequence of Corollary 3.2, we get the following corollary
Corollary 3.3. Let W(z) and W(z) be two v-valued and p valued algebroid func-
tions on the annulus A (R%;’RO (1 < Ry < +00) respectively and p < v, let

aj (j = 1,2,...,q) be q distinct complex numbers in C and k; (j = 1,2,...,q) be q
positive integers or oo such that

k1> ko > .. > keuya
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and

Epy)(aj, W(2)) = Ex,y(a;, W(2),  (1=12,..9),
(i) if ¢ =6v+1, then W(z) = ﬁ/\(z)),
(i) if ¢ = 6v and kayy1 > 2v, then W(z) = W(z)),
(iii) if q = 4v + 1, kopy1 > 2v + 1 and ks > 2v, then W(z) = /W(z)),
(iv) if g =4v + 1 and kg, > 4v, then W(z) = W(z))

From Corollary 3.3, we obtain the following result
Theorem 3.2. Let W(z) and W(z) be two v-valued and p valued algebroid func-
tions on the annulus A <RL07R0) (1 < Ry < +00) respectively and p < v, let
a; (j =1,2,...,6v+1) be seven distinct complex numbers in C.If E, ) (a;, W (2)) =
Epy(a;, W(2), (G =1,2,.,60+1), then W(z) = W(z)).

Also from Corollary 3.3, we obtain an analogue of Nevanlinna’s five value theorem
for algebroid functions on annuli as follows

Theorem 3.3. Let W(z) and W(z) be two v-valued and p valued algebroid func-
tions on the annulus A (RLO,RO) (1 < Ry < +00) respectively and p < v, let
a; (j =1,2,...,4v+ 1) be seven distinct complex numbers in @.Ifﬁkj)(aj, W(z)) =
Eyy(a;, W(2)), (j=12,..,4v +1), then W(z) = W(z)).

Theorem 3.4. Let W(z) and W(z) be two v-valued and p valued algebroid func-
tions on the annulus A (R%)’RO) (1 < Ry < +00) respectively and p < v, let

aj (j = 1,2,...,q) be q distinct complex numbers in C and k; (j = 1,2,...,q) be q
positive integers or oo such that

by > ko > >k,

and
Erpy(a;, W(2)) = Er(a;; W(2),  (G=12.,q).
Set
B, — Ao(a1, W(2)) + Ao(az, W(2)) + ... + Ao(az,, W(z)) N i Ao(aj, W(z))
koy+1 +1 Pl kj+1
and
B, = D01, W(2)) + Ao(az, W(=) + .. + Ao(az, W) | g~ Aolay, W(2)
koyt1+1 Pl i) ki +1
If
(3.12) ﬁé Mg
j=20+1 kj +1
and
(3.13) max{By, B2} > 0.

Then W(z) = W(z)
Proof. Using the similar argument as in Theorem 3.1, we can prove Theorem 3.2 [

As a consequence of Theorem 3.4, we get the following corollary
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Corollary 3.4. Let W(z) and W\(z) be two v-valued and p valued algebroid func-
tions on the annulus A (RLU,RO) (1 < Ry < +00) respectively and p < v, let

aj (j =1,2,...,q) be q distinct complex numbers in C. Then
(i) If ¢ = 6v and El)(aj,W) zfl)(aj,W), (j=1,2,..,6v),

6v
Z maz{Ao(aj, W), Ao(ay, W)} > 0,

j=1

then W(z) = W(z),

(i) If g = 4v + 1 and Eq)(a;, W) = Eqy(a;, W), (j =1,2,..,4v + 1),
dv41
Z max{Ao(aj,W),Ao(aj,W)} >0,

j=1
then W (z) = W(z)
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