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Abstract: A new stepwise method for solving optimal control problesigitroduced. The main motivation

for developing this new approach is the limitation of the tammous-time Pontryagin Maximum Principle

(PMP) where all control functions must be continuous. Havein many real-world applications such as
drug injection or resource allocation problems, it is nagical to continuously change the control. In
dealing with these problems it is strictly preferred to apathe control only at certain moments of time and
keep it constant otherwise. Clearly, in this case the rieguditepwise solution cannot be calculated optimally
using PMP since it is not continuous anymore. The other adganof stepwise solutions is that they can
be obtained much easier compared to the PMP approach whepsteen has complex dynamics or the cost
function is more complicated. Some numerical examples@wed by using both the classical PMP and the

proposed stepwise method and the results are compared) piuee the high performance of the proposed
method.
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1. Introduction

Optimal control theory is an effective tool to be applied tygical, biological, economical and
other real-world models. Various examples of such apptinatare studied in [1] and [2]. As an-
other example, the application of optimal control theorgli®motherapy of cancer and epidemi-
ology can be found in [3] and [4], respectively. Currenthe most important classical method in
optimal control theory is the remarkable Pontryagin Maximrinciple (PMP) which can be used
in various forms in applied problems. Nonetheless, theiegidn of PMP is somehow limited
in practice since it finds the optimal control assuming itastmuous and has a continuous first
derivative. Other less important limiting conditions alsogposed on the state equations and the
corresponding cost function. It should be noted that discoaus optimal controls, which cannot
be obtained by the standard PMP, are also desired in mangigaigaroblems, e.g. when a relay
is involved or a medicine has to be injected in an stepwiseng@n
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Here, we are interested in developing a new optimal contethiod which is capable of finding
discontinuous optimal controls even for complicated dyicahsystems. More precisely, in the
proposed method the control functions are selected amenstéipwise candidate solutions using
heuristic and meta-heuristic optimization algorithms.the forthcoming sections, the classical
numerical forward-backward sweep method and the propdepd/ise method are applied to some
problems and the results are compared to provide the redtleawlear vision of the potential
applications and power of the new method.

2. Introductory Example and Definitions of the Stepwise Metlod
with Fixed Step-size

In this section, we describe the proposed stepwise methadshgple example ([1], page 42). For
this purpose, consider the constrained maximization prabl

2
maxJ:/O (2x—3u— W), (1)

subject tax' = x+u, x(0) = 5, and the control constrainte Q = [0,2]. The optimal solutionu(t)
of this problem can be obtained using PMP as follows. Firstfavm the Hamiltonian as below

H = (2x—3u— )+ A(x+U) = (2+A)x— (P +3u—Au).

Now, the optimal control can be calculated by differentigtd with respect tar and equating the
result to zero as
oH

= _2u-3+A=0
du U=s+ ’

which yieldsu(t) = (A (t) — 3) /2, whereu(t) must lie in the interval2 = [0,2]. In order to obtain
A we derive the adjoint equation as

oH

AMN=—"—=
[7)4

—2-A
or equivalently,
AM+A=-2 A(2)=0.

The solution of the above equationAgt) = 2(¢#~t —1). Considering the fact that the control
must always lie in the intervdl = [0, 2], this leads to the following optimal control:

2 if e€1-25>2
u=q e1-25 jf 0<e'-25<2, (2)
0 if e€'1-25<0.

As itis expected, the resultant optimal control is a cordimufunction irt. It can be easily verified
that the total cosi using this control is equal to 633.
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For solving this problem using the proposed method, we fliahge the maximization problem
under consideration to an equivalent minimization probldrhis task can be performed e.g. by
defining the cost function equal tg/@ + J), whereJ is defined in (1) (assuming = 68.93 the
value of cost function is obtained ag(1+ 68.93) = 0.0143). In the next step, we assume that the
control cannot vary continuously with time; instead, it densubjected only to stepwise changes.
In other words, it is assumed that the control remains cah$ta some period of time and then
its value is repeatedly changed to another constant valearlg using this assumption, one must
look for the optimal solution among stepwise functions. ®lprecisely, in this problem assuming
that the optimal solution has to be calculated in the timerirat [0, T], we divide this interval into
three subintervals of lengfh/3 each, and assume that the control functif) has a certain but
unknown constant value in each subinterval. Note that thgtleof the subintervals can also be
considered variable, which leads to the variable stepraithod.

According to the above discussion, in order to find the oglticoatrol for the dynamical system

X = f(x,u,t), x(0) = xo, in the time interval0, T| using the fixed step-size method we can assume
that the control takes constant valuesf3, andy, in the time intervals € [0, %], te [%, %], and

te [%,T], respectively (obviously, the number of time intervals risitaary). Clearly, in order

to calculate the cost function assuming that the contratléemr, 3, andy are known, we can
first solve the ordinary differential equation (ODE)= f(x,a,t), x(0) = Xo in the time inter-
valt € [0,%]. Then, fort € [%,%], we solve the ODE = f(x,3,t) with the initial condition
x(0) = x(%) wherex(%) is the terminal point of the solution obtained in the paserival (i.e.,

the solution obtained in [0,%]). Finally, we solvex' = f(x,y,t) using the initial condition

x(0) = x(%}) to obtainx in the time intervat € [2, T}, wherex(Z) refers to the terminal point

T 2T
35

and consequently, the cost function can be calculated ds e important to note that in this

of the solution obtained ihe | Using this techniquex is known in all of the subintervals,
manner we actually convert the optimal control problem toptimization problem where the op-
timal values of(a, 3,y) can be calculated using, e.g., any meta-heuristic opttioizalgorithm
(the genetic algorithm (GA), simulated annealing (SA), pattern search (PS) are used for this
purpose in this paper, where only the first two are meta-bics).

A question may arise here about the possible differencedmtwhe final cost of PMP and the
proposed stepwise method. We have the following simple lanabout the relation between
stepwise and continuous functions.

Lemma 1. For every continuous function(t), there is a sequendei,(t)} of stepwise functions
such that lime Un(t) = u(t).

Using this lemma, we can be confident that the proposed stepmethod can generate useful
solutions, which can mimic the results obtained by PMP. Muweg, it is also possible to find
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better optimal solutions compared to PMP since the lingtatin the continuity of the solution
and its derivative is removed using the stepwise methodur€i@ shows the optimal control (2)
obtained using PMP and the stepwise optimal control obtaireng GA (For this purpose the
GA of optimization toolbox of Matlab R2009a with default uak for parameters is applied. The

algorithm is run 20 times and the best result is reported.heihe final cost of the stepwise
method is equal t0.01430542.

—— Control function via PMP
- © - Control function via Stepwise Solution

Control

Time

FIGURE 1. Optimal control obtained by using PMP (solid) and the wiep
method (dashed).

Figure 2 shows the optimal stepwise controls obtained bygu€iA, SA, and PS. Table 1 and
Figure 2 summarize the results in this case. Note that, st#tile, the GA and SA are run for 20
times and the best result is reported, while PS is run onlg eintce it is not a meta-heuristic.

Method Final cost

Pattern search 0.01430542

Simulated annealing 0.01430682

Genetic algorithm | 0.01435889
TABLE 1
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FIGURE 2. Optimal controls obtained by using GA, SA, and PS.

It is expected that increasing the number of the steps usetepwise method leads to more
optimal controls. The results obtained by applying 5-stegefion are summarized in Table 2 and
Figure 3. Comparing Tables 1 and 2 shows that increasinguirder of steps from 3 to 5 leads
to decreasing the cost function in all cases which coincrdés our expectations.

Method Final cost

Pattern search 0.01428399

Simulated annealing0.01430531

Genetic algorithm | 0.01431998
TABLE 2

- © - Pattern Search
- - - Simulated Annealing|
—— Genetic Algorithm

Control
=
T
L

0.5¢ 8

FIGURE 3. 5-step optimal controls (with fixed step size) obtainedibiyng GA,
SA, and PS.

3. Stepwise Method with Variable Step-size

In the previous section, we divided the interval into equat® Here, in order to arrive at better
optimal controls, we let the optimization method decideudlibe width of subintervals. We re-
consider the introductory example presented in the prevseation. In dealing with this problem,
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instead of dividing the intervald, 2] into equal subintervalf),2/3], [2/3,4/3] and[4/3,2], we
divide it into [0,a], [a,b] and[b,2], and let the optimization method find the optimal values of
andb such thab > a. Table 3 shows the value of the cost function for each opation algorithm
(in this table GA and SA are run 20 times and the best resudfgsrted, while PS is run only once
since it is not a meta-heuristic). The corresponding ogdtimarvals and optimal controls are
presented in Table 4 and Figure 4, respectively. Note tleatdhues obtained for the cost function
in Table 3 are considerably smaller than the value obtairyelNOP, which shows the advantage
of the proposed stepwise method.

Method Final cost

Pattern search 0.01256629
Simulated annealing 0.01334206
Genetic algorithm | 0.01291203

TABLE 3
Method Subintervals control value |
Pattern search [0,0],[0,1],[1,2] (0,2,0)
Simulated annealing[0,0.0036],[0.0036,0.9738],[0.9738, 2]1.6336,1.8345,0.5623)
Genetic algorithm | [0,0.0034],[0.0034,0.9027],[0.9027,2](0.7718,1.9087,0.1524)
TABLE 4
2p---mmmmmmmmoommooommooooooo o o -o-Pattern Search
St =l —Simulated Annealing
E - - Genetic Algorithm
1.5; ' E B
£ | ]
3 |
0.5( ]
o R
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Time

FIGURE 4. 3-step optimal controls (with variable step size) olsditby using
GA, SA, and PS. Note that the fist step is very small in all cases

4. Application of the Stepwise Method to Real-world Models

As mentioned before, there are some limitations such agwotytwith respect to time for admis-
sible controls in PMP. Such limitations are really restnigtin practice, since we are often not able
to change the value of the control function at every mometihté. Instead, one prefers to change
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the value of control only at several distinct moments of tifser example, when we want to make
a decision about resource allocation in epidemiologicati@® we cannot alter our strategy in
short periods of time. The reason is that changing the vatiomrate or prevention strategy often
imposes heavy costs. An analogous problem occurs in optiomafol of the treatment of diseases
through the use of drugs. Thus, it seems that the stepwidwohét a reasonable way to deal with
certain real-world applications without facing the lintitms of PMP. In the following examples,

we apply the stepwise method to some real-world problemscantpare the results with those
obtained by using the classical PMP method.

4.1. Example: Chemotherapy

Optimal control methods are useful for optimal control oertotherapy. For example, Renee
Fister et al. [3, 2] studied different cell-kill models of enotherapy. They characterized an
optimal control strategy which minimizes the cancer maskthe cost of the total amount of drug
applied. We apply the stepwise method to one of their moddis.problem is

min/Ta(N(t)—N)2 bu?(t)d
i )%+ bu?(t)dt

u

subject to,
N’(t) =rNIn (%) —u(t)ON(t)

N(0) =Np, u(t)>0.
The parameters in this model are:

e N(t): the normalized density of the tumor at time
e r: the growth rate of the tumor,
e 0: the magnitude of the dose,

u(t): the time dependent pharmacokinetics of the drug,

Ng: the desired tumor density.

Without loss of generality, we perform our optimizationasingr =0.1,a=3,b=1,5 =0.45,

Ng = 0, Np = 0.975, andT = 20. Figure 5 shows the tumor density and the corresponditignalp
control strategy obtained by using the PMP method. The @bteontrol obtained by using our
stepwise method (with 5 fixed steps) is shown in Fig. 6. Thd finat of PMP and the 5-step
stepwise method is equal t0.ZF58 and 1@B666, respectively. As it is observed, the final cost of
the proposed method is fairly close to PMP, while it has theaathge of being constant at each
step and can be applied much easier in practice.
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FIGURE 5. (a) Tumor density, (b) the optimal control obtained ustdP method.
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FIGURE 6. The 5-step optimal control (with fixed step size) obtainsihg the
proposed stepwise method.

4.2. Example: Differential Susceptibility and Differential Infectivity (DSDI) model

Based on [4], we develop an optimal control formulation af SDI model with two groups
of susceptible and two groups of infected individuals [SheTreason for proposing the idea of
dividing the susceptible and infected population into twbgroups is that, in many diseases, the
pattern of spreading the disease is different for male amélie, children and adults, addicted and
nonaddicted, and so on. Define the grodandS, and suppose that the individuals in differ-
ent groups have different susceptibility, whereas theeqigaility is homogeneous in each group
based on its inherent susceptibility. The infected commyusisubdivided into two subgroupk,
andl,. The following parameters appear in our proposed model:
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Y natural death rate,

v;: the rate at which infectives iy are removed or become immune,

J: disease-induced mortality rates for the infectives,
e Ai: The rate of infection for susceptibles in gro8p(i = 1,2).

The infectivity rate); is given byA; = ra; zjzzlﬁjlj, wheref; is the transmission probability per
contact and is the number of contacts of an individual per unit of timeeTbllowing system of
ODEs, which also includes the controls, is proposed in thep for modelling the system.

S’ =H(P1S ~S) ~MSi (1)

S =u(:S-%) - 1S((1-uw)

' = A1Si(1—u1) + G1A2S(1—up) — (M + vi+ uz)l1 €)
2" = 012181 (1~ W) + Gp2A2S (1 — Uz) — (U + V2 + Ug)l2

R =(vi+us)li+ (va+Us)lo— (H+ )R

The control functionsu (t), ux(t), us(t) andus(t) have to be bounded df, 1] and Lebesgue in-
tegrable. u;(t) anduy(t) denote the time dependent efforts (i.e., the preventiategly) on the
susceptible individuals i6; andS, respectively, to reduce the number of individuals that imay
infectious. Similarly, the control functiongs(t) andus(t) denote the time dependent efforts for
treatment of infected individuals ih andl,, respectively. The objective functional to be mini-
mized is considered as

.
J(Ug,Up, U3, Ug) = /0 (AI? + BIZ +Cu2 + DU3 + EU3 + Fu3)dt, (4)

whereA, B, C, D, andE are adjustment weights. The optimization goal is to find thénwal
control set(uj, U3, u3, uy) such that

J(u1, U5, Uz, up) = min{J(ug, Uz, Uz, Us)|(ug, Uz, U3, Us) €U }

whereU = {(ug,Up, U3, Us)| Uy measerabl® < u; < 1,t € [0,T],i = 1,2,3,4} is the control set.
The values of the parameters used in model®re-1, 6 =0, u = .012,r = 25, p; = 0.5,

p2 = 0.5,5(0) = 0.47,$(0) = 0.47,1;(0) = 0.02,12(0) = 0.04,R(0) =0, a; = 0.05,a, = 0.2,
B1=0.2,8,=0.06,v; =0.15,v, =0.6,011 =09, 12 =0.1,021 =0.1,022=09,A=3,B=3,

C =0.002,D =0.002,E =0.002,F =0.002, T = 1000. Figure 7 shows the optimal controls
calculated using the PMP method, which lead to the cost ifometalue 01059. Figure 8 shows
the optimal controls calculated using the 3-step stepwisthat, which lead to the cost function
value 011107136.
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FIGURE 8. Optimal controls calculated for the DSDI model via 3-sségpwise
method (using PS algorithm).

5. Convergence

One important point in numerical methods is the convergerfien algorithm and its rate. In this
paper, the stepwise method is proposed in contrast to a fdfackward sweep method (used in
PMP) for the numerical solution of optimal control problenEhe convergence of the forward-
backward sweep method and its rate has already been didcunsf#. In heuristic and meta-
heuristic algorithms, the convergence rate is often meashy counting the number of function
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evaluations, i.e., the number of recalls of the main (castrfion. Hence, in this case the struc-
ture of the cost functiod is not really important when evaluating the computatioradt of the
algorithm. In contrary, in the forward-backward sweep rodihthe cost function has an impor-
tant role in the structure of the algorithm. In fact, the fardrbackward sweep method does not
work based on function calls, and consequently, it is notrmimegiul to compare the performance
of forward-backward sweep method and the stepwise metheahcé] in the following we only
present the rate of convergence of the stepwise methoddantioductory example (with 3-step
fixed and 3-step variable step sizes) based on the numbendtida evaluations when different
algorithms are applied. The results are presented in FSguasnd 10. Note that similar to previous
simulations, in these figures the GA and SA are run 20 timeghtandverage results are presented.

The convergence rate of this method depends on the coneergate of the heuristic or meta-
heuristic method being used. From our experience, therdiffeal evolution (DE) method appears
to yield satisfying convergence rates in various examples.
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FIGURE 9. The rate of convergence of the fixed endpoint stepwiseadatarsus
iteration number, (a) GA, (b) SA, (c) PS.

6. Conclusion

We introduced the stepwise method for optimal control gFotd. This method can replace the
classical PMP method when dealing with certain real-worlobfems. The proposed method is
applied to several problems and the results are satisfactor
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