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Abstract: A new stepwise method for solving optimal control problems is introduced. The main motivation
for developing this new approach is the limitation of the continuous-time Pontryagin Maximum Principle
(PMP) where all control functions must be continuous. However, in many real-world applications such as
drug injection or resource allocation problems, it is not practical to continuously change the control. In
dealing with these problems it is strictly preferred to change the control only at certain moments of time and
keep it constant otherwise. Clearly, in this case the resulting stepwise solution cannot be calculated optimally
using PMP since it is not continuous anymore. The other advantage of stepwise solutions is that they can
be obtained much easier compared to the PMP approach when thesystem has complex dynamics or the cost
function is more complicated. Some numerical examples are solved by using both the classical PMP and the
proposed stepwise method and the results are compared, which prove the high performance of the proposed
method.
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1. Introduction

Optimal control theory is an effective tool to be applied to physical, biological, economical and

other real-world models. Various examples of such applications are studied in [1] and [2]. As an-

other example, the application of optimal control theory inchemotherapy of cancer and epidemi-

ology can be found in [3] and [4], respectively. Currently, the most important classical method in

optimal control theory is the remarkable Pontryagin Maximum Principle (PMP) which can be used

in various forms in applied problems. Nonetheless, the application of PMP is somehow limited

in practice since it finds the optimal control assuming it is continuous and has a continuous first

derivative. Other less important limiting conditions are also posed on the state equations and the

corresponding cost function. It should be noted that discontinuous optimal controls, which cannot

be obtained by the standard PMP, are also desired in many practical problems, e.g. when a relay

is involved or a medicine has to be injected in an stepwise manner.
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Here, we are interested in developing a new optimal control method which is capable of finding

discontinuous optimal controls even for complicated dynamical systems. More precisely, in the

proposed method the control functions are selected among the stepwise candidate solutions using

heuristic and meta-heuristic optimization algorithms. Inthe forthcoming sections, the classical

numerical forward-backward sweep method and the proposed stepwise method are applied to some

problems and the results are compared to provide the reader with a clear vision of the potential

applications and power of the new method.

2. Introductory Example and Definitions of the Stepwise Method

with Fixed Step-size

In this section, we describe the proposed stepwise method bya simple example ([1], page 42). For

this purpose, consider the constrained maximization problem:

max J =
∫ 2

0
(2x−3u−u2)dt, (1)

subject tox′ = x+u, x(0) = 5, and the control constraintu ∈ Ω = [0,2]. The optimal solutionu(t)

of this problem can be obtained using PMP as follows. First, we form the Hamiltonian as below

H = (2x−3u−u2)+λ (x+u) = (2+λ )x− (u2+3u−λu).

Now, the optimal control can be calculated by differentiating H with respect tou and equating the

result to zero as
∂H
∂u

=−2u−3+λ = 0,

which yieldsu(t) = (λ (t)−3)/2, whereu(t) must lie in the intervalΩ = [0,2]. In order to obtain

λ we derive the adjoint equation as

λ ′ =−
∂H
∂x

=−2−λ , λ (2) = 0,

or equivalently,

λ ′+λ =−2, λ (2) = 0.

The solution of the above equation isλ (t) = 2(e2−t − 1). Considering the fact that the control

must always lie in the intervalΩ = [0,2], this leads to the following optimal control:

u =















2 if e2−t −2.5> 2,

e2−t −2.5 if 0 ≤ e2−t −2.5≤ 2,

0 if e2−t −2.5< 0.

(2)

As it is expected, the resultant optimal control is a continuous function int. It can be easily verified

that the total costJ using this control is equal to 68.93.
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For solving this problem using the proposed method, we first change the maximization problem

under consideration to an equivalent minimization problem. This task can be performed e.g. by

defining the cost function equal to 1/(1+ J), whereJ is defined in (1) (assumingJ = 68.93 the

value of cost function is obtained as 1/(1+68.93) = 0.0143). In the next step, we assume that the

control cannot vary continuously with time; instead, it canbe subjected only to stepwise changes.

In other words, it is assumed that the control remains constant for some period of time and then

its value is repeatedly changed to another constant value. Clearly, using this assumption, one must

look for the optimal solution among stepwise functions. More precisely, in this problem assuming

that the optimal solution has to be calculated in the time interval [0,T ], we divide this interval into

three subintervals of lengthT/3 each, and assume that the control functionu(t) has a certain but

unknown constant value in each subinterval. Note that the length of the subintervals can also be

considered variable, which leads to the variable step-sizemethod.

According to the above discussion, in order to find the optimal control for the dynamical system

x′ = f (x,u, t), x(0) = x0, in the time interval[0,T ] using the fixed step-size method we can assume

that the control takes constant valuesα , β , andγ , in the time intervalst ∈ [0, T
3 ], t ∈ [T

3 ,
2T
3 ], and

t ∈ [2T
3 ,T ], respectively (obviously, the number of time intervals is arbitrary). Clearly, in order

to calculate the cost function assuming that the control levels α , β , and γ are known, we can

first solve the ordinary differential equation (ODE)x′ = f (x,α , t), x(0) = x0 in the time inter-

val t ∈ [0, T
3 ]. Then, fort ∈ [T

3 ,
2T
3 ], we solve the ODEx′ = f (x,β , t) with the initial condition

x(0) = x(T
3 ) wherex(T

3 ) is the terminal point of the solution obtained in the past interval (i.e.,

the solution obtained int ∈ [0, T
3 ]). Finally, we solvex′ = f (x,γ , t) using the initial condition

x(0) = x(2T
3 ) to obtainx in the time intervalt ∈ [2T

3 ,T ], wherex(2T
3 ) refers to the terminal point

of the solution obtained int ∈ [T
3 ,

2T
3 ]. Using this technique,x is known in all of the subintervals,

and consequently, the cost function can be calculated as well. It is important to note that in this

manner we actually convert the optimal control problem to anoptimization problem where the op-

timal values of(α ,β ,γ) can be calculated using, e.g., any meta-heuristic optimization algorithm

(the genetic algorithm (GA), simulated annealing (SA), andpattern search (PS) are used for this

purpose in this paper, where only the first two are meta-heuristics).

A question may arise here about the possible difference between the final cost of PMP and the

proposed stepwise method. We have the following simple lemma about the relation between

stepwise and continuous functions.

Lemma 1. For every continuous functionu(t), there is a sequence{un(t)} of stepwise functions

such that limn→∞ un(t) = u(t).

Using this lemma, we can be confident that the proposed stepwise method can generate useful

solutions, which can mimic the results obtained by PMP. Moreover, it is also possible to find
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better optimal solutions compared to PMP since the limitation on the continuity of the solution

and its derivative is removed using the stepwise method. Figure 1 shows the optimal control (2)

obtained using PMP and the stepwise optimal control obtained using GA (For this purpose the

GA of optimization toolbox of Matlab R2009a with default values for parameters is applied. The

algorithm is run 20 times and the best result is reported here.). The final cost of the stepwise

method is equal to 0.01430542.
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FIGURE 1. Optimal control obtained by using PMP (solid) and the stepwise
method (dashed).

Figure 2 shows the optimal stepwise controls obtained by using GA, SA, and PS. Table 1 and

Figure 2 summarize the results in this case. Note that, in this table, the GA and SA are run for 20

times and the best result is reported, while PS is run only once since it is not a meta-heuristic.

Method Final cost
Pattern search 0.01430542
Simulated annealing0.01430682
Genetic algorithm 0.01435889

TABLE 1
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FIGURE 2. Optimal controls obtained by using GA, SA, and PS.

It is expected that increasing the number of the steps used instepwise method leads to more

optimal controls. The results obtained by applying 5-step function are summarized in Table 2 and

Figure 3. Comparing Tables 1 and 2 shows that increasing the number of steps from 3 to 5 leads

to decreasing the cost function in all cases which coincideswith our expectations.

Method Final cost
Pattern search 0.01428399
Simulated annealing0.01430531
Genetic algorithm 0.01431998

TABLE 2
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FIGURE 3. 5-step optimal controls (with fixed step size) obtained byusing GA,
SA, and PS.

3. Stepwise Method with Variable Step-size

In the previous section, we divided the interval into equal parts. Here, in order to arrive at better

optimal controls, we let the optimization method decide about the width of subintervals. We re-

consider the introductory example presented in the previous section. In dealing with this problem,
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instead of dividing the interval[0,2] into equal subintervals[0,2/3], [2/3,4/3] and [4/3,2], we

divide it into [0,a], [a,b] and [b,2], and let the optimization method find the optimal values ofa

andb such thatb > a. Table 3 shows the value of the cost function for each optimization algorithm

(in this table GA and SA are run 20 times and the best result is reported, while PS is run only once

since it is not a meta-heuristic). The corresponding optimal intervals and optimal controls are

presented in Table 4 and Figure 4, respectively. Note that the values obtained for the cost function

in Table 3 are considerably smaller than the value obtained by PMP, which shows the advantage

of the proposed stepwise method.

Method Final cost
Pattern search 0.01256629
Simulated annealing0.01334206
Genetic algorithm 0.01291203

TABLE 3

Method Subintervals control value
Pattern search [0,0],[0,1],[1,2] (0,2,0)
Simulated annealing[0,0.0036],[0.0036,0.9738],[0.9738, 2](1.6336,1.8345,0.5623)
Genetic algorithm [0,0.0034],[0.0034,0.9027],[0.9027,2](0.7718,1.9087,0.1524)

TABLE 4
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FIGURE 4. 3-step optimal controls (with variable step size) obtained by using
GA, SA, and PS. Note that the fist step is very small in all cases.

4. Application of the Stepwise Method to Real-world Models

As mentioned before, there are some limitations such as continuity with respect to time for admis-

sible controls in PMP. Such limitations are really restricting in practice, since we are often not able

to change the value of the control function at every moment oftime. Instead, one prefers to change
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the value of control only at several distinct moments of time. For example, when we want to make

a decision about resource allocation in epidemiological models, we cannot alter our strategy in

short periods of time. The reason is that changing the vaccination rate or prevention strategy often

imposes heavy costs. An analogous problem occurs in optimalcontrol of the treatment of diseases

through the use of drugs. Thus, it seems that the stepwise method is a reasonable way to deal with

certain real-world applications without facing the limitations of PMP. In the following examples,

we apply the stepwise method to some real-world problems andcompare the results with those

obtained by using the classical PMP method.

4.1. Example: Chemotherapy

Optimal control methods are useful for optimal control of chemotherapy. For example, Renee

Fister et al. [3, 2] studied different cell-kill models of chemotherapy. They characterized an

optimal control strategy which minimizes the cancer mass and the cost of the total amount of drug

applied. We apply the stepwise method to one of their models.The problem is

min
u

∫ T

0
a(N(t)−Nd)

2+bu2(t)dt

subject to,

N ′(t) = rN ln

(

1
N

)

−u(t)δN(t)

N(0) = N0, u(t)≥ 0.

The parameters in this model are:

• N(t): the normalized density of the tumor at timet,

• r: the growth rate of the tumor,

• δ : the magnitude of the dose,

• u(t): the time dependent pharmacokinetics of the drug,

• Nd: the desired tumor density.

Without loss of generality, we perform our optimization assumingr = 0.1, a = 3, b = 1, δ = 0.45,

Nd = 0, N0 = 0.975, andT = 20. Figure 5 shows the tumor density and the corresponding optimal

control strategy obtained by using the PMP method. The optimal control obtained by using our

stepwise method (with 5 fixed steps) is shown in Fig. 6. The final cost of PMP and the 5-step

stepwise method is equal to 10.7758 and 10.8666, respectively. As it is observed, the final cost of

the proposed method is fairly close to PMP, while it has the advantage of being constant at each

step and can be applied much easier in practice.
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FIGURE 5. (a) Tumor density, (b) the optimal control obtained usingPMP method.
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FIGURE 6. The 5-step optimal control (with fixed step size) obtainedusing the
proposed stepwise method.

4.2. Example: Differential Susceptibility and Differential Infectivity (DSDI) model

Based on [4], we develop an optimal control formulation of the DSDI model with two groups

of susceptible and two groups of infected individuals [5]. The reason for proposing the idea of

dividing the susceptible and infected population into two subgroups is that, in many diseases, the

pattern of spreading the disease is different for male and female, children and adults, addicted and

nonaddicted, and so on. Define the groupsS1 andS2 and suppose that the individuals in differ-

ent groups have different susceptibility, whereas the susceptibility is homogeneous in each group

based on its inherent susceptibility. The infected community is subdivided into two subgroups,I1

andI2. The following parameters appear in our proposed model:
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• µ : natural death rate,

• νi: the rate at which infectives inIi are removed or become immune,

• δ : disease-induced mortality rates for the infectives,

• λi: The rate of infection for susceptibles in groupSi (i = 1,2).

The infectivity rateλi is given byλi = rαi ∑2
j=1β jI j, whereβi is the transmission probability per

contact andr is the number of contacts of an individual per unit of time. The following system of

ODEs, which also includes the controls, is proposed in this paper for modelling the system.














































S1
′ = µ(p1S0−S1)−λ1S1(1−u1)

S2
′ = µ(p2S0−S2)−λ2S2(1−u2)

I1′ = q11λ1S1(1−u1)+q21λ2S2(1−u2)− (µ +ν1+u3)I1

I2′ = q12λ1S1(1−u1)+q22λ2S2(1−u2)− (µ +ν2+u4)I2

R′ = (ν1+u3)I1+(ν2+u4)I2− (µ +δ )R

(3)

The control functionsu1(t), u2(t), u3(t) andu4(t) have to be bounded on[0,1] and Lebesgue in-

tegrable. u1(t) andu2(t) denote the time dependent efforts (i.e., the prevention strategy) on the

susceptible individuals inS1 andS2, respectively, to reduce the number of individuals that maybe

infectious. Similarly, the control functionsu3(t) andu4(t) denote the time dependent efforts for

treatment of infected individuals inI1 and I2, respectively. The objective functional to be mini-

mized is considered as

J(u1,u2,u3,u4) =

∫ T

0
(AI2

1 +BI2
2 +Cu2

1+Du2
2+Eu2

3+Fu2
4)dt, (4)

whereA, B, C, D, andE are adjustment weights. The optimization goal is to find the optimal

control set(u∗1,u
∗
2,u

∗
3,u

∗
4) such that

J(u∗1,u
∗
2,u

∗
3,u

∗
4) = min{J(u1,u2,u3,u4)|(u1,u2,u3,u4) ∈U}

whereU = {(u1,u2,u3,u4)| ui measerable,0 ≤ ui ≤ 1, t ∈ [0,T ], i = 1,2,3,4} is the control set.

The values of the parameters used in model areS0 = 1, δ = 0, µ = .012, r = 25, p1 = 0.5,

p2 = 0.5, S1(0) = 0.47, S2(0) = 0.47, I1(0) = 0.02, I2(0) = 0.04, R(0) = 0, α1 = 0.05, α2 = 0.2,

β1 = 0.2, β2 = 0.06,ν1 = 0.15,ν2 = 0.6, q11 = 0.9, q12 = 0.1, q21 = 0.1, q22 = 0.9,A = 3, B = 3,

C = 0.002, D = 0.002, E = 0.002, F = 0.002, T = 1000. Figure 7 shows the optimal controls

calculated using the PMP method, which lead to the cost function value 0.1059. Figure 8 shows

the optimal controls calculated using the 3-step stepwise method, which lead to the cost function

value 0.11107136.
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FIGURE 7. Optimal controls calculated for the DSDI model via PMP.
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FIGURE 8. Optimal controls calculated for the DSDI model via 3-stepstepwise
method (using PS algorithm).

5. Convergence

One important point in numerical methods is the convergenceof an algorithm and its rate. In this

paper, the stepwise method is proposed in contrast to a forward-backward sweep method (used in

PMP) for the numerical solution of optimal control problems. The convergence of the forward-

backward sweep method and its rate has already been discussed in [9]. In heuristic and meta-

heuristic algorithms, the convergence rate is often measured by counting the number of function
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evaluations, i.e., the number of recalls of the main (cost) function. Hence, in this case the struc-

ture of the cost functionJ is not really important when evaluating the computational cost of the

algorithm. In contrary, in the forward-backward sweep method, the cost function has an impor-

tant role in the structure of the algorithm. In fact, the forward-backward sweep method does not

work based on function calls, and consequently, it is not meaningful to compare the performance

of forward-backward sweep method and the stepwise method. Hence, in the following we only

present the rate of convergence of the stepwise method for the introductory example (with 3-step

fixed and 3-step variable step sizes) based on the number of function evaluations when different

algorithms are applied. The results are presented in Figures 9 and 10. Note that similar to previous

simulations, in these figures the GA and SA are run 20 times andthe average results are presented.

The convergence rate of this method depends on the convergence rate of the heuristic or meta-

heuristic method being used. From our experience, the differential evolution (DE) method appears

to yield satisfying convergence rates in various examples.
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FIGURE 9. The rate of convergence of the fixed endpoint stepwise method versus
iteration number, (a) GA, (b) SA, (c) PS.

6. Conclusion

We introduced the stepwise method for optimal control problems. This method can replace the

classical PMP method when dealing with certain real-world problems. The proposed method is

applied to several problems and the results are satisfactory.
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FIGURE 10. The rate of convergence of variable endpoint stepwise method ver-
sus iteration number, (a) GA, (b) SA, (c) PS.
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