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ABSTRACT 
 

In multi robot system applications, it is possible that the robots transform their past experiences into useful information which 

will be used for next task allocation processes by using learning-based task allocation mechanisms. The major disadvantages 

of multi-robot Q-learning algorithm are huge learning space and computational cost due to generalized state and joint action 

spaces of robots. In this study, experienced task-based multi robot task allocation approach is proposed. According to this 

approach, robots believe to be experienced about the tasks most frequently done. Robots prefer to do these tasks rather than 

the inexperienced ones. Then, robots refuse to execute inexperienced tasks over time. This means that the system has reduced 

learning space. The proposed approach plays a crucial role to achieve required system performance and provides effective 

solutions to learning space dimensions.  The effectiveness of the proposed algorithm is demonstrated by simulations on 

multi-robot task allocation problem. 
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1. INTRODUCTION 
 

Multi robot systems (MRS) are widely used especially in complicated applications, because they 

provide concurrent processing ability, faster task execution feature and robust system architecture [1]. 

Despite these advantages, the major drawback of MRS is precise and accurate coordination 

requirement [2]. The working environments of MRS are dynamic and partially observable in nature 

due to robots’ independent decision-making and acting mechanism. For this reason, estimation of all 

possible situations and problems to be encountered during execution becomes impossible. To achieve 

desired system performance needs that the robots adapt themselves and adjust their decisions to 

dynamic working conditions. MRS with robots having learning ability provides robust system 

structure against uncertainties in environments and unpredictable problems [2]. 

 

In most real-life MRS applications, a prior knowledge about the time sequence of tasks is not 

accessible. Generally, tasks appear immediately and in random sequence during system execution. In 

such a case, these tasks can be allocated to the robots which are not busy with another task at that 

moment. In such a case, an effective coordination providing desired system performance cannot be 

realized. If robots having learning ability transform past task allocation experiences to a useful 

knowledge, it becomes possible to overcome these problems [3].  

 

Q-learning is reinforcement learning method that is widely preferred in MRS due to its dynamic and 

adaptive structure [4]. Theoretically, Q-learning method is defined for single-agent systems satisfying 

Markov Decision Process properties [5]. In fact, most MRS environments are not MDP in nature. 

Centralized Q-learning method is an effective approach that is a direct application of single-agent Q-

learning to multi-agent systems. The major disadvantage of centralized Q-learning is huge learning 

space dimension and computational cost due to generalized state and joint action spaces [3]. 

Especially for MRS with large number of robots, this causes difficulties in application. 
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In this study, experienced task-based multi robot task allocation, ExpT-MRTA, approach is proposed. 

According to this approach, robots would rather execute more experienced tasks and drop less 

experienced tasks over an enough time period. So, the structure of MRS becomes less complicated. 

The dimension of learning space gets smaller and computational cost is reduced. 

 

The structure of the paper is organized as follows: In Section 2, a brief explanation of market-based 

multi robot task allocation approach is given. In Section 3, Q-learning theory is presented. The 

problem studied in this paper is stated in Section 4. In Section 5, the proposed approach, Experienced 

Task-Based Multi Robot Task Allocation, is explained in detail. Application environment and 

experimental results are given in Section 6 and Section 7 respectively. Lastly, conclusion part is in 

Section 8. 

 

2. MARKET-BASED MULTI ROBOT TASK ALLOCATION 

 

Multi robot task allocation (MRTA) problem is defined as the process of deciding which task should 

be performed by which robot in which order [6]. In most cases, it is not possible to execute all tasks 

because of insufficiency in system resources, namely robots and their abilities [7]. Effective use of 

system resources plays a crucial role to get desired system performance. So, task allocation should be 

realized by maximizing overall system gain or minimizing system cost. 

 

Market-based approaches provide efficient solutions for coordination problems in MRS by combining 

the advantages of centralized and distributed coordination approaches [8]. In these approaches, robots 

have independent decision-making mechanisms but overall coordination is realized by participation of 

all robots [9]. Auction protocols are widely used market-based task allocation methods [10].  An 

auction process starts with the announcement of tasks to be done by auctioneer. The robots having the 

ability of executing the announced tasks determine bid values and send to the auctioneer. In mobile 

robot applications, these bid values are calculated by using travelled distance, needed time [11] or 

required energy [12]. The auctioneer determines the winner robot in a manner that maximizing gain or 

minimizing cost and informs the robots. The assignment of tasks to appropriate robots is defined as 

Optimal Assignment Problem (OAP) in operations research studies [2]. Hungarian Algorithm is an 

efficient way to solve OAP [13]. 

 

3. Q-LEARNING 

 

Reinforcement learning methods are the machine learning approaches that do not require any input-

output data sets or a supervisor [14]. In reinforcement learning methods, the agents are directly 

connected to the environment by their perception and action units. Action of the agent causes the state 

transition of the environment. Agent is informed by a feedback signal called reward which indicates 

the effect of the action on the environment. Learning process is performed only through trial-and-error 

by using this reward value. Because of no supervisor requirement, simple structure of the algorithms 

and the possibility of using it in partially observable and dynamic environments, reinforcement 

learning approaches are preferred especially in multi robot system applications [5]. 

 

Theoretically, reinforcement learning approaches are defined on the Markov Decision Process (MDP) 

environments. An MDP is a tuple of < 𝑆, 𝐴, 𝑃, 𝜌 >, where 𝑆 is finite and discrete set of environment 

states, 𝐴 is finite and discrete set of agent actions, 𝑃: 𝑆 × 𝐴 × 𝑆 → 𝛱(𝑆): [0,1] is state transition 

function for each state-action pair and 𝜌: 𝑆 × 𝐴 × 𝑆 → ℝ is reward function of the agent [15].  

 

For any discrete step 𝑘, the environment state changes from 𝑠(𝑘) ∈ 𝑆 to 𝑠(𝑘 + 1) ∈ 𝑆 by the action 

𝑎(𝑘) ∈ 𝐴 of the agent. The reward value of 𝑟(𝑘) = 𝜌(𝑠(𝑘), 𝑎(𝑘), 𝑠(𝑘 + 1)), which the agent receives 

as the result of 𝑎(𝑘), represents the instantaneous effect of action on the environment [14]. The agent 
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in an MDP aims to maximize the expected value of the overall reward for each step.  For 𝑘th step, the 

expected value of overall gain is defined as in equation (1) [16]. 

 

𝑄ℎ(𝑠, 𝑎) = 𝐸{∑ 𝛾𝑖∞
𝑖=0 𝑟(𝑘 + 𝑖)|𝑠(𝑘) = 𝑠, 𝑎(𝑘) = 𝑎, ℎ} (1) 

 
𝛾 ∈ [0,1)  is the discount factor. 𝑄-function is expressed as the optimal action-value function and 

given in equation (2). 

 

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥
ℎ 

𝑄ℎ(𝑠, 𝑎) (2) 

 

A learning agent should determine the optimal 𝑄-value, 𝑄∗ firstly and then should find required action 

by using action policy providing 𝑄∗ [15]. 

 

Q-learning algorithm is a widely-used value function-based model- free reinforcement learning 

algorithm and proposed by Watkins [4]. According to Q-learning algorithm, the optimal 𝑄-values for 

each state-action pair is calculated by the following recursive equation [17]: 

 

𝑄(𝑠(𝑘), 𝑎(𝑘)) = 𝑄(𝑠(𝑘), 𝑎(𝑘)) +  𝛼 [𝑟(𝑘) + 𝛾𝑚𝑎𝑥
𝑎′∈𝐴

 𝑄𝑘(𝑠(𝑘 + 1), 𝑎′) − 𝑄(𝑠(𝑘), 𝑎(𝑘))] (3) 

 

It is shown that learned 𝑄-values converges the optimal 𝑄-values with the probability ‘1’, if each 

state-action pair is repeated infinitely many and learning rate 𝛼 is decreased in each step 𝑘 for MDP 

environments [18].  

 

Stochastic Game (SG) is the extended form of MDP to multi-agent case. An SG is defined as the tulle 

of < 𝑆, 𝐴, 𝑃, 𝜌𝑗 >, where 𝑆 is the set of finite and discrete environment states, 𝐴 = 𝐴1 × 𝐴2 × … .× 𝐴𝑚 

is the generalized action set for all agents, 𝑚 is the number of agents, P: 𝑆 × 𝐴 × 𝑆 → 𝛱(𝑆): [0,1] is 

the state transition function for each state-action pair and 𝜌𝑗: 𝑆 × 𝐴 × 𝑆 → ℝ, 𝑗 = 1 … 𝑚 is reward 

function for each agent [17]. For an SG, the state transitions are realized by joint actions of all agents.  

One solution approach in an SG is to get the Nash equilibrium [15]. The Nash equilibrium is defined 

as the joint action policy such that each agent’s action policy provides maximum total reward value 

against others’ action policy [5]. In the Nash equilibrium, it is not possible to increase the total reward 

by changing one agent’s action policy while all other agents’ action policies remain same. Hu and 

Wellman developed Nash-Q-learning algorithm which is based on reaching the Nash equilibrium [18]. 

It is shown that the optimal solutions are acquired under some certain conditions [19].  For each agent 

𝑗, the 𝑄-values are updated by equation (4). 

 

𝑉𝑁 = 𝑁𝑎𝑠ℎ𝑗(𝑠, 𝑄1, … , 𝑄𝑗, … , 𝑄𝑚) 
 

𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚) = 𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚) +  𝛼[𝜌𝑗 + 𝛾𝑉𝑁 − 𝑄𝑗(𝑠, 𝑎1, … , 𝑎𝑚) ] 
(4) 

 

It is shown that a fully cooperative SG is assumed as an MDP [20]. However, there exist more than 

one Nash equilibrium in an SG. It can be difficult to find joint actions of robots which result in Nash 

equilibrium due to agents’ independent decision making ability. 

 

4. PROBLEM STATEMENT 

 

When a prior knowledge about tasks and their time sequence is accessible, it is possible to optimize 

system performance by preplanning the order of tasks performed by each robot. However, in most 

MRS applications, tasks appear in unpredictable time steps and order. System performance is 

negatively influenced by instantaneous allocation of tasks to the robots that is not busy with another 
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task at that moment. When there exist a hierarchical order among the tasks in terms of priority, 

emergency or sensitivity, the tasks which must be completed primarily and unconditionally cannot be 

executed if the robots are busy with the low-ordered tasks. For example, consider a two-robot system 

with ability to do all tasks. A high-priority task announced when all robots are occupied by low-

priority tasks cannot be processed. This means that aimed system performance is not achieved and 

overall gain is reduced [3].  

 

In auction-based MRTA approaches, the robots bid for the announced tasks if they have the ability to 

do such a task and they are not busy at that time. These approaches have no mechanism for reasoning 

about future task sequence. If robots have expectations about future task sequence, some robots will 

not be willing to do low-ordered tasks and will wait for a high-ordered tasks. Having such information 

about future task sequence is possible if robots have learning ability which transforms past experiences 

to a useful advice. For this purpose, Q-learning based multi robot task allocation approach is studied in 

recent studies [3, 21]. In this approach, robots decide whether they bid for announced low-ordered 

tasks or wait for future high-ordered tasks by using past experiences. It is shown that successful results 

are obtained [3]. However, the application of Q-learning algorithm, which is defined theoretically on 

single-agent systems, to multi-agent systems causes some problems such as huge learning space 

dimension and greater computational load. Learning space dimension increases exponentially 

depending on the number of agents because of generalized state and joint action spaces of agents. 

 

ExpT-MRTA approach, proposed in this study, aims to obtain adaptive system architecture by means 

that the robots prefer to do more performed tasks and refuse to execute less performed tasks. 

According to this approach, robots have more experience about the tasks perform more than expected 

times. Robots are eager to execute the experienced tasks because these tasks are done with lower cost. 

On the contrary, robots do not want to execute inexperienced tasks and they refuse them over enough 

time period. Thus, robots start to perform experienced tasks only. This means reduced learning space 

dimension, reduced computational load and lower system cost as desired. 

 

5. ExpT-MRTA: EXPERIENCED TASK-BASED MRTA APPROACH 

 

A heterogeneous MRS with 𝑚 robots (𝑅𝑗, 𝑗 = 1, … , 𝑚) carries out 𝑛 different types of tasks (𝑇𝑖, 𝑖 =

1, … , 𝑛). Task experience parameter (TEP), 𝑣
𝑗

i, gives instantaneous experience information of robot  

𝑅𝑗 about task 𝑇𝑖 and is defined as in equation (5). 

 

𝑣
𝑗

𝑖 =
2

1 + 𝑒−( 𝜂
𝑗

𝑖− 𝜇
𝑗

𝑖)
 (5) 

 

𝜂
𝑗

𝑖 is the number of total 𝑇𝑖 tasks allocated to robot 𝑅𝑗 and 𝜇
𝑗

𝑖  is the expected value of  𝑇𝑖 tasks to 

be assigned to robot 𝑅𝑗. TEP means that a robot is experienced about a task when it executes that task 

more than the expected. TEP value changes between zero and two and it is one at the beginning. The 

experience status of robot 𝑅𝑗 about task 𝑇𝑖 is determined by task experience measure (TEM), 𝑢
𝑗

𝑖. 

TEM is calculated as the arithmetic mean of TEP values as shown in equation (6). 

 

𝑢
𝑗

𝑖 =
∑ 𝑣

𝑗
𝑖

𝜂
𝑗

𝑖

1

𝜂
𝑗

𝑖

 (6) 



Ezercan Kayır / Anadolu Univ. J. of Sci. and Technology  A  Appl. Sci. and Eng. 18 (4) – 2017 
 

868 

By using TEP and TEM values, robots derive three different behavior that are regular bidding, eager / 

hesitant to execute and refuse task. System architecture is reconstructed according to these behaviors 

as explained below.  

 

4.1. Behavior-0: Regular Bidding 

 

At the beginning, all robots are in behavior-0 state which means there is no knowledge about tasks. 

Robots in behavior-0 bid for announced tasks by using task cost as bid value if they are able to do 

announced task and are not busy at that time. In behavior-0, TEP value is in near neighborhood of one. 

A robot transits behavior-1, when it has any knowledge about experience status for a task. This 

behavior change occurs if the condition in equation (7) holds:  

| 𝑣
𝑗

𝑖
− 1| < 𝛿𝑣 (7) 

𝛿𝑣 is a threshold value for TEP.  

 

4.2. Behavior-1: Eager / Hesitant to Execute Tasks 

 

The proposed approach thinks that more experienced tasks can be done by lower cost e.g. faster 

execution, less time or less energy.  This assumption leads that the robots are eager to execute more 

experienced tasks and hesitant to execute otherwise. Eager / hesitant to execute tasks behavior affects 

bid values in auction process. In the case bid values are determined as cost of performing tasks, these 

bid values are re-calculated according to equation (8).  

 

𝑇𝑖 𝑏𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 =
𝑇𝑖 𝑐𝑜𝑠𝑡

𝑢
𝑗

𝑖

 (8) 

 

Consequently, bid value decreases in eager to execute tasks case because of 𝑢
𝑗

𝑖 > 1, whereas it 

increases in hesitant to execute tasks case where 𝑢
𝑗

𝑖 < 1. 

 

Eager / hesitant to execute tasks behavior plays an important role in the determination of reward 

values of state-action pairs in learning process. If a robot is eager to execute a task, the reward value 

related to do that task is increased proportional to TEM value and the reward value related not to do 

that task is decreased in the same manner. On the contrary, the reward value related to do that task is 

decreased by TEM value and the reward value related not to do that task is increased in hesitant to 

execute task behavior. In according to this, new reward value is calculated as below:  

 

𝑟𝑖
′ = {

𝑢
𝑗

𝑖 ∙ 𝑟𝑖 , 𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑑𝑜 𝑎𝑛𝑛𝑜𝑢𝑛𝑐𝑒𝑑 𝑡𝑎𝑠𝑘
𝑟𝑖

𝑢
𝑗

𝑖

,            𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑤𝑎𝑖𝑡 𝑛𝑒𝑥𝑡 𝑡𝑎𝑠𝑘
 (9) 

𝑟𝑖  represents the reward value of a state-action pair. 

 

4.3. Behavior-2: Refuse Task 

 

When TEM value calculated over enough time period is less than a threshold value as expressed in 

equation (10), robots think that they are inexperienced and refuse to perform that task. 𝛿𝑢 is TEM 

threshold value. 

𝑢
𝑗

𝑖 < 𝛿𝑢 (10) 
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In multi robot Q-learning approach, it is required that the learning process should be reorganized if 

any robot refuses to execute any task. Generalized state and joint action spaces of overall system are 

reconstructed by excluding the local state and action spaces of refused tasks. This procedure has 

advantages of simplified system structure and reduced learning space dimension, whereas it seems as a 

drawback. 

 

The algorithm of proposed approach is given as below: 

 

ExpT-MRTA Algorithm 

for  each announced task 
       if 𝑅𝑗 bids for 𝑇𝑖 task 

             Behavior-0: Regular Bidding 
                                   𝑇𝑖  bid value=Ti cost 
             Behavior-1: Eager/Hesitant to Execute Task  𝑇𝑖 

                                   𝑇𝑖   𝑏𝑖𝑑 𝑣𝑎𝑙𝑢𝑒 = 𝑇𝑖  𝑐𝑜𝑠𝑡 / 𝑢
𝑗

𝑖 

       end if 
       for each task bidden 
             if  𝑇𝑖 allocated to robot  𝑅𝑗  

                   Update 𝜂
𝑗

𝑖  

            end if 

            Calculate 𝑣
𝑗

𝑖  

                    Update  𝑢
𝑗

𝑖 

       end for 

       if 𝑢
𝑗

𝑖 < 𝛿𝑢 

             Behavior-2: Refuse Task  𝑇𝑖  
             Re-arrange state and action spaces 
      end if 
       for each task bidden 
             Q-Learning Process  
             Behavior-1: Eager/Hesitant to Execute Tasks 
                                   Adapt reward values 
      end for 
end for 

 
6. APPLICATION ENVIRONMENT 

 

To show the effectiveness of the proposed approach, an experimental environment on which the 

applications are realized is prepared. The multi-robot system used in applications consists of ten 

robots, (𝑅1, 𝑅2,…, 𝑅10). The system is said to be fully heterogeneous because the robots have 

different skills. There exist eight different type of tasks (𝑇1, 𝑇2,…, 𝑇8). The robots and the tasks which 

the robots are capable of executing are given in Table 1 by ‘+’ sign. 

 

Tasks are generated randomly and with equal probability. The number of tasks announced at any time 

could be between three and seven. Each task has two different priority degrees, low-priority and high-

priority. Low-priority tasks and high-priority tasks are 65% and 35% of all tasks, respectively. 
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Table 1. Robots and tasks performed by robots. 

 

Robots 

Tasks 

𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 

𝑹𝟏 +  + +  +   

𝑹𝟐 + +   +  + + 

𝑹𝟑    +  + +  

𝑹𝟒    +    + 

𝑹𝟓  +   +  + + 

𝑹𝟔 + +       

𝑹𝟕   +   + +  

𝑹𝟖  +   +   + 

𝑹𝟗  +    + +  

𝑹𝟏𝟎   + + +   + 

 

The applications are realized by using 45 experimental sets, each having nearly 90 tasks. First 30 sets 

are used for learning process and last 30 sets are used for test purpose. It is assumed that the tasks 

assigned to robots are completed. None of the allocated tasks is left unfinished. 

 

7. EXPERIMENTAL RESULTS 

 

The purpose of the proposed approach is to increase system performance by using learning-based 

MRTA. The essential goal of the study is to increase the number of executed high-priority tasks in 

addition to the number of completed low-priority tasks remains as high as possible. To show the 

effectiveness of the proposed approach, the applications are realized in the experimental environment 

whose details are given in the previous section and the results are compared in terms of the task 

completion ratio. The task completion ratio is defined as the ratio of the number of tasks assigned to 

any robot to the total number of tasks announced. Applications are executed for three different 

approaches as traditional market-based task allocation (MRTA), Q-learning-based task allocation (QL-

MRTA) and experienced task-based task allocation (ExpT-MRTA). The results of low-priority and 

high-priority tasks for each task type are given separately in Figure 1.  

 

It is clear that the MRS in this study is much more complicated system with large number of robots 

and their task execution abilities. The application of Q-learning algorithm in MRS causes huge 

learning space dimension and high computational cost due to generalized state and joint action spaces. 

According to the proposed approach, ExpT-MRTA, robots want to execute the experienced tasks 

because of their lower cost. On the contrary, robots do not want to execute tasks that are not 

experienced enough and they refuse them enough time later. So, robots’ individual state and action 

space dimensions become smaller. Consequently, learning space dimension and computational cost 

decrease.  

 

The graphs in Figure 1 indicate that the completion ratios of high-priority tasks of all task types are 

higher than low-priority tasks because of MRTA algorithms’ nature.  

 

The results obtained by QL-MRTA approach indicates that the robots are successfully use their past 

task-allocation experiences by means of learning ability. The completion ratios of high-priority tasks 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 1. Task completion ratios of all task types: (a) for 𝑇1 and 𝑇2; (b) for 𝑇3 and 𝑇4; (c) for 𝑇5 and 𝑇6; (d) for 

𝑇7 and 𝑇8. 
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get higher. So, increased system performance is achieved. However, a small amount decrease occurs 

in the completion ratio of low-priority tasks. In fact, the number of total tasks to be completed is 

limited due to restricted system resources.  

 

In the proposed approach, ExpT-MRTA, a great change in the task completion ratios of both high-

priority and low-priority tasks does not occur although a lot of robots refuse to execute one or more 

tasks. The robots and their experienced tasks are shown in Table 2. According to this table, it is seen 

that all robots except robots 𝑅6 and 𝑅7 give up executing at least one task. 

 
Table 2. Robots and experienced tasks. 

 

Robots 

Tasks 

𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 

𝑹𝟏 +  +      

𝑹𝟐 +    +  +  

𝑹𝟑    +  +   

𝑹𝟒        + 

𝑹𝟓  +      + 

𝑹𝟔 + +       

𝑹𝟕   +   + +  

𝑹𝟖     +   + 

𝑹𝟗  +     +  

𝑹𝟏𝟎   + +     

 

As an example, robot 𝑅5 has the ability to do four different tasks, namely 𝑇2, 𝑇5, 𝑇7 and 𝑇8 at the 

beginning. After a while, robot 𝑅5 thinks that become inexperienced about task 𝑇7 because task 𝑇7 is 

rarely assigned. TEM value of robot 𝑅5 for task 𝑇7 gets lower than the threshold. After that, robot 𝑅5 

refuses to execute task 𝑇7. While the dimension of individual learning space of robot  𝑅5 is 512 

initially, it reduces to 162 after the dropping of 𝑇7. Later, task 𝑇5 is refused by robot 𝑅5 in a similar 

manner. At the end of the ExpT-MRTA algorithm, robot 𝑅5 performs only two tasks, 𝑇2 and 𝑇8, 

instead of four tasks. So, the dimension of individual learning space of robot 𝑅5 decreases to 32. The 

reduction of learning space dimension of robot 𝑅5 from 512 to 32 while the task completion ratios of 

mentioned tasks remain nearly unchanged indicates the success of the proposed algorithms. TEM 

values of 𝑇2, 𝑇5, 𝑇7 and 𝑇8 tasks for robot 𝑅5 is shown in Figure 2(a). Behavior transition of robot 𝑅5 

and change in learning space dimension of robot 𝑅5 are drawn in Figure 2(b) and Figure 2(c) 

respectively. 

 

In multi robot Q-learning approach, the dimensions of generalized state and joint action space 

increases exponentially depending on the number of robots. ExpT-MRTA approach provides a 

considerable reduction in the learning space dimension as a result of the decrease in the number of 

tasks performed by each robot. For the system evaluated in this study, the dimension of learning space 

for QL-MRTA approach is found as 3498. The dimension of learning space reduced to 550 when 

ExpT-MRTA approach is used. As a result, by taking into account the significant difference between 

these values and the task completion ratios it is evident that the proposed approach yields successful 

results.  
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(a) 

(b)

(c) 

 

Figure 2. Result of ExpT-MRTA for robot 𝑅5: (a) TEM values of 𝑇2, 𝑇5, 𝑇7 and 𝑇8 tasks for robot 𝑅5; (b) 

Behavior transition of robot 𝑅5; (c) Change in learning space dimension of robot 𝑅5. 
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7. CONCLUSION 

 

In this study, experienced task-based multi robot task allocation, ExpT-MRTA, is proposed. In this 

approach, robots believe that they are experienced about more executed tasks and inexperienced for 

less performed tasks. For this, robots derive Behavior-1:eager / hesitant to execute task and Behavior 

2: refuse task. Behavior-1 influences the decision of bidding and calculated bid value in auction 

process. In addition, reward value of state-action pairs is directly related to this behavior. Behavior-1 

feeds positively the eager or hesitant performance of the robots. Behavior-2 affects the structure of 

learning process. The reconstruction of generalized state and joint action spaces is required because of 

Behavior-2. As a result of Behavior-2, learning space dimension is decreased to a reasonable level and 

also the desired system performance is achieved. Experimental results indicate that ExpT-MRTA 

proposes a successful solution for huge learning space dimension and high computational load 

problems of multi robot Q-learning applications.  
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