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SOME INTEGRAL INEQUALITIES FOR FUNCTIONS WHOSE

SECOND DERIVATIVES ARE ϕ−CONVEX BY USING

FRACTIONAL INTEGRALS

M. ESRA YILDIRIM, ABDULLAH AKKURT, AND HÜSEYİN YILDIRIM

Abstract. In this paper, we obtain new estimates on generalization of Hermite-

Hadamard type inequalities for functions whose second derivatives is ϕ−convex
via fractional integrals.

1. Introduction

The following inequality is called the Hermite-Hadamard inequality;

(1.1) f

(
a+ b

2

)
≤ 1

b− a
b∫
a

f(x)dx ≤ f(a) + f(b)

2
,

where f : I ⊆ R→ R is a convex function and a, b ∈ I with a < b. If f is concave,
then both inequalities hold in the reversed direction .

The inequality (1.1) was first discovered by Hermite in 1881 in the Journal
Mathesis. This inequality is known as the Hermite-Hadamard inequality, because
this inequality was found by Mitrinovic Hermite and Hadamard’ note in Mathesis
in 1974.

The inequality (1.1) is studied by many authors, see ([1]-[7], [9]-[11], [12], [15]-
[21]) where further references are listed.

Firstly, we need to recall some concepts of convexity concerning our work.

Definition 1.1. [6] A function f : I ⊂ R→ R is said to be convex on I if inequality

(1.2) f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b),

holds for all a, b ∈ I and t ∈ [0, 1].
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Definition 1.2. [8] Let s ∈ (0, 1]. A function f : I ⊆ R0 = [0,∞) → R is said to
be s−convex in the second sense if

(1.3) f(ta+ (1− t)b) ≤ tsf(a) + (1− t)sf(b),

holds for all a, b ∈ I and t ∈ [0, 1].

Tunç and Yildirim in [21] introduced the following definition as follows:

Definition 1.3. A function f :I ⊆ R→ R is said to belong to the class of MT (I)
if it is nonnegative and for all x, y ∈ I and t ∈ (0, 1) satisfies the inequality ;

f (tx+ (1− t) y) ≤
√
t

2
√

1− t
f (x) +

√
1− t
2
√
t
f (y) .

Dragomir in [3] introduced the following definition as follows:

Definition 1.4. [3] Let ϕ : (0, 1)→ (0,∞) be a measurable function. We say that
the function f : I → [0,∞) is a ϕ−convex function on the interval I if for x, y ∈ I,
we have

f (tx+ (1− t) y) ≤ tϕ (t) f (x) + (1− t)ϕ (1− t) f (y) .

Remark 1.1. According to definition 4, the followings hold for the special choose of
ϕ (t):

For ϕ(t) ≡ 1, we obtain the definition of convexness in the classical sense,
for ϕ(t) = ts−1, we obtain the definition of s− convexness,

for ϕ(t) =
1

2
√
t(1− t)

, we obtain the definition of MT−convexness.

Now, we give some definitions and notations of fractional calculus theory which
are used later in this paper. Samko et al. in [14] used the following definitions as
follows:

Definition 1.5. [14] The Riemann-Liouville fractional integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

(1.4) Jαa+f(x) =
1

Γ (α)

x∫
a

(x− t)α−1
f(t)dt, x > a

and

(1.5) Jαb−f(x) =
1

Γ (α)

b∫
x

(t− x)
α−1

f(t)dt, x < b

where f ∈ L1 [a, b], respectively. Note that, Γ (α) is the Gamma function and
J0
a+f(x) = Jαb−f(x) = f(x).

Definition 1.6. [14] The Euler Beta function is defined as follows:

β (x, y) =

1∫
0

tx−1 (1− t)y−1
dt, x, y > 0.

The incomplete beta function is defined as follows:

β (a, x, y) =

a∫
0

tx−1 (1− t)y−1
dt, x, y > 0, 0 < α < 1.
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In [13], Jaekeun Park established the following lemma which is necessary to prove
our main results:

Lemma 1.1. Let f : I ⊆ R → R be a twice differentiable function on the interior
I0 of an interval I such that f ′′ ∈ L1 [a, b], where a, b ∈ I with a < b. Then, for
any x ∈ [a, b], λ ∈ [0, 1] and α > 0, we have

Sf (x, λ, α; a, b) = (x−a)α+2

b−a
∫ 1

0
t (λ− tα) f ′′ (tx+ (1− t) a) dt

+ (b−x)α+2

b−a
∫ 1

0
t (λ− tα) f ′′ (tx+ (1− t) b) dt.

2. Main results

Throughout this paper, we use Sf as follows;

Sf (x, λ, α; a, b) ≡ (1− λ)
{

(b−x)α+1−(x−a)α+1

b−a

}
f ′ (x)

+ (1 + α− λ)
{

(x−a)α+(b−x)α

b−a

}
f (x)

+λ
{

(x−a)α(f(a)+(b−x)αf(b)
b−a

}
−Γ(α+2)

b−a
{
Jαx−f (a) + Jαx+f (b)

}
,

for any x ∈ [a, b] , λ ∈ [0, 1] and α > 0.

Theorem 2.1. Let ϕ : (0, 1) → (0,∞) be a measurable function. Assume also
that f : I ⊂ [0,∞) → R be a twice differentiable function on the interior I0 of an
interval I such that f ′′ ∈ L1 [a, b], where a, b ∈ I0 with a < b. If |f ′′|q is ϕ−convex
on [a, b] for some fixed q ≥ 1, then for any x ∈ [a, b] , t, λ ∈ [0, 1] and α > 0,

(2.1)

|Sf (x, λ, α, t, ϕ; a, b)| ≤ A1− 1
q

1 (α, λ)
[

(x−a)α+2

b−a
{
A2(α, λ, t, ϕ) |f ′′ (x)|q

+A3 (α, λ, t, ϕ) |f ′′ (a)|q
} 1
q

+ (b−x)α+2

b−a
{
A2 (α, λ, t, ϕ) |f ′′ (x)|q +A3 (α, λ, t, ϕ) |f ′′ (b)|q

} 1
q

]
.

The above inequality for fractional integrals holds, where

A1 (α, λ) = αλ1+ 2
α+1

α+2 − λ
2 ,

A2 (α, λ, t, ϕ) =
∫ 1

0
|t (λ− tα)| tϕ (t) dt,

A3 (α, λ, t, ϕ) =
∫ 1

0
|t (λ− tα)| (1− t)ϕ (1− t) dt.
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Proof. By using Lemma 1.1, the power mean inequality, we get
(2.2)
|Sf (x, λ, α, t, ϕ; a, b)|

≤ (x−a)α+2

b−a

(∫ 1

0
|t (λ− tα)| dt

)1− 1
q
(∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) a)|q dt

) 1
q

+ (b−x)α+2

b−a

(∫ 1

0
|t (λ− tα)| dt

)1− 1
q
(∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) b)| dt

) 1
q

= A
1− 1

q

1 (α, λ)

[
(x−a)α+2

b−a

(∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) a)|q dt

) 1
q

+ (b−x)α+2

b−a

(∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) b)|q dt

) 1
q

]
,

where

A1 (α, λ) =

∫ 1

0

|t (λ− tα)| dt =

(
αλ1+ 2

α + 1

α+ 2
− λ

2

)
.

Since |f ′′|q is ϕ−convex on [a, b], we have

(2.3)

I1 =
∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) a)|q dt

≤
∫ 1

0
|t (λ− tα)|

{
tϕ (t) |f ′′ (x)|q + (1− t)ϕ (1− t) |f ′′ (a)|q

}
dt

= A2 (α, λ, t, ϕ) |f ′′ (x)|q +A3 (α, λ, t, ϕ) |f ′′ (a)|q ,

and similarly, we can obtain

(2.4)

I2 =
∫ 1

0
|t (λ− tα)| |f ′′ (tx+ (1− t) b)|q dt

≤
∫ 1

0
|t (λ− tα)|

{
tϕ (t) |f ′′ (x)|q + (1− t)ϕ (1− t) |f ′′ (b)|q

}
dt

= A2 (α, λ, t, ϕ) |f ′′ (x)|q +A3 (α, λ, t, ϕ) |f ′′ (b)|q ,

where

A2 (α, λ, t, ϕ) =
∫ 1

0
|t (λ− tα)| tϕ (t) dt,

A3 (α, λ, t, ϕ) =
∫ 1

0
|t (λ− tα)| (1− t)ϕ (1− t) dt.
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By substituting (2.3) and (2.4) in (2.2), we get

|Sf (x, λ, α, t, ϕ; a, b)|

≤
(
αλ1+ 2

α+1
α+2 − λ

2

)1− 1
q [

(x−a)α+2

b−a

{
|f ′′ (x)|q

∫ 1

0
|t (λ− tα)| tϕ (t) dt

+ |f ′′ (a)|q
∫ 1

0
|t (λ− tα)| (1− t)ϕ (1− t) dt

} 1
q

+ (b−x)α+2

b−a

{
|f ′′ (x)|q

∫ 1

0
|t (λ− tα)| tϕ (t) dt

+ |f ′′ (b)|q
∫ 1

0
|t (λ− tα)| (1− t)ϕ (1− t) dt

} 1
q

]
.

Thus the proof is completed. �

Corollary 2.1. Let ϕ (t) = 1 in Theorem 2.1, then we get the following inequality:

|Sf (x, λ, α; a, b)|

≤
(
αλ1+ 2

α+1
α+2 − λ

2

)1− 1
q [

(x−a)α+2

b−a
{
A2 (α, λ) |f ′′ (x)|q +A3 (α, λ) |f ′′ (a)|q

}
+ (b−x)α+2

b−a {A2 (α, λ) |f ′′ (x)|q +A3 (α, λ) |f ′′ (b)|q}
]
.

Where

A2 (α, λ) =
∫ 1

0
|t (λ− tα)| tdt =

3− (α+ 3)λ+ 2αλ1+ 3
α

3 (α+ 3)

and

A3 (α, λ) =
∫ 1

0
|t (λ− tα)| (1− t) dt

=
αλ1+ 2

α

α+ 2
− 2λ1+ 3

α

3 (α+ 3)
+
αλ

6
− α

(α+ 2) (α+ 3)
.

Corollary 2.2. If we choose ϕ (t) = 1 and x = a+b
2 in Theorem 2.1, we can obtain

the corollary 2.2, 2.3, 2.4 in [13], respectively for λ = 1
3 , λ = 0, λ = 1.

Corollary 2.3. Let ϕ (t) = ts−1 in Theorem 2.1, then we have

|Sf (x, λ, α, t, ϕ; a, b)|

≤
(
αλ1+ 2

α+1
α+2 − λ

2

)1− 1
q [

(x−a)α+2

b−a
{
|f ′′ (x)|q A4 (α, λ, s) + |f ′′ (a)|q A5 (α, λ, t, ϕ)

} 1
q

+ (b−x)α+2

b−a
{
|f ′′ (x)|q A4 (α, λ, s) + |f ′′ (b)|q A5 (α, λ, t, ϕ)

} 1
q

]
.
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Where

A4 (α, λ, s) = 2
λ
s+2
α +1

s+ 2
− 2

λ
s+2
α +1

α+ s+ 2
+

1

α+ s+ 2

A5 (α, λ, t, ϕ) = λβ
(
λ

1
α , 2, s+ 1

)
− β

(
λ

1
α , α+ 2, s+ 1

)
+β
(

1− λ 1
α , α+ 2, s+ 1

)
− λβ

(
1− λ 1

α , 2, s+ 1
)
.

Theorem 2.2. Let ϕ : (0, 1) → (0,∞) be a measurable function. For f : I ⊂
[0,∞) → R be a twice differentiable function on the interior I0 assume also that
f ′′ ∈ L1 [a, b], where a, b ∈ I0 with a < b. If |f ′′|q is ϕ−convex on [a, b] for some
fixed q > 1 with 1

p + 1
q = 1, then for any x ∈ [a, b] , λ ∈ [0, 1] and α > 0 the following

inequality holds

(2.5)

|Sf (x, λ, α, t, ϕ; a, b)|

≤ B
1
p (α, λ, p)

[
(x−a)α+2

b−a

{(
|f ′′ (x)|q + |f ′′ (a)|q

) ∫ 1

0
tϕ (t) dt

} 1
q

+ (b−x)α+2

b−a

{(
|f ′′ (x)|q + |f ′′ (b)|q

) ∫ 1

0
tϕ (t) dt

} 1
q

]
,

where

B (α, λ, p) = λ
1+p+αp

α

α

{
Γ (1 + p) Γ

(
1+p+α
α

) (
2F1

(
1, 1 + p, 2 + p+ 1+p

α , 1
))

+β
(
1 + p,− 1+p+αp

α

)
− β

(
λ, 1 + p,− 1+p+αp

α

)}
,

also, for 0 < b < c and |z| < 1, 2F1 is hypergeometric function defined by

2F1 (a, b, c, z) =
1

β (b, c− b)

∫ 1

0

tb−1 (1− t)c−b−1
(1− zt)−a dt.

Proof. By using Lemma 1.1 and the Hölder inequality, we have the below inequality

(2.6)

|Sf (x, λ, α, t, ϕ; a, b)|

≤ (x−a)α+2

b−a

(∫ 1

0
|t (λ− tα)|p dt

) 1
p
(∫ 1

0
|f ′′ (tx+ (1− t) a)|q dt

) 1
q

+ (b−x)α+2

b−a

(∫ 1

0
|t (λ− tα)|p dt

) 1
p
(∫ 1

0
|f ′′ (tx+ (1− t) b)|q dt

) 1
q

=
(∫ 1

0
|t (λ− tα)|p

) 1
p

[
(x−a)α+2

b−a

(∫ 1

0
|f ′′ (tx+ (1− t) a)|q dt

) 1
q

+ (b−x)α+2

b−a

(∫ 1

0
|f ′′ (tx+ (1− t) b)|q dt

) 1
q

]
.
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Since |f ′′| is ϕ−convex on [a, b], we have

(2.7)

∫ 1

0
|f ′′ (tx+ (1− t) a)|q dt ≤

∫ 1

0
tϕ (t) |f ′′ (x)|q dt

+
∫ 1

0
(1− t)ϕ (1− t) |f ′′ (a)|q dt

=
(
|f ′′ (x)|q + |f ′′ (a)|q

) ∫ 1

0
tϕ (t) dt,

and using same technique, we get

(2.8)

∫ 1

0
|f ′′ (tx+ (1− t) b)|q dt ≤

∫ 1

0
tϕ (t) |f ′′ (x)|q dt

+
∫ 1

0
(1− t)ϕ (1− t) |f ′′ (b)|q dt

=
(
|f ′′ (x)|q + |f ′′ (b)|q

) ∫ 1

0
tϕ (t) dt.

On the other hand, we can obtain the following equality;

(2.9)

B (α, λ, p) =
∫ 1

0
|t (λ− tα)|p dt

=
∫ λ 1

α

0
{t(λ− tα)}p dt+

∫ 1

λ
1
α
{t (tα − λ)}p dt

= C1 (α, λ, p) + C2 (α, λ, p) .

By letting λ− tα = u and tα = u, respectively, we have
(2.10)

C1 (α, λ, p) =
∫ λ 1

α

0
{t (λ− tα)}p dt

= 1
α

∫ λ
0
up (λ− u)

1+p−α
α du

= 1
α

∫ 1

0
λpypλ

1+p−α
α (1− y)

1−α+p
α λdy

=
λ
pα+1+p

α

α

∫ 1

0
yp (1− y)

1+p
α (1− y)

−1
dy

= λ
1+p+αp

α

α Γ (1 + p) Γ
(

1+p+α
α

)
2
F1

(
1, 1 + p, 2 + p+ 1+p

α , 1
)
,

and

(2.11)

C2 (α, λ, p) =
∫ 1

λ
1
α
{t (tα − λ)}p dt

= 1
α

∫ 1

λu
1+p−α
α (u− λ)

p
du

= λ
1+p+αp

α

α

{
β
(
1 + p,− 1+p+αp

α

)
− β

(
λ, 1 + p,− 1+p+αp

α

)}
.
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By substituting (2.7), (2.8), (2.9), (2.10) and (2.11)in (2.6), we get

|Sf (x, λ, α, t, ϕ; a, b)|

≤ B
1
p (α, λ, p)

[
(x−a)α+2

b−a

{(
|f ′′ (x)|q + |f ′′ (a)|q

) ∫ 1

0
tϕ (t) dt

} 1
q

+ (b−x)α+2

b−a

{(
|f ′′ (x)|q + |f ′′ (b)|q

) ∫ 1

0
tϕ (t) dt

} 1
q

]
,

thus, the proof is completed. �

Corollary 2.4. Let ϕ (t) = 1 in Theorem 2.2, then we get the following inequality
for any x ∈ [a, b] , λ ∈ [0, 1] and α > 0;

|Sf (x, λ, α, t, ϕ; a, b)|

≤
(∫ 1

0
|t (λ− tα)|p dt

) 1
p

[
(x−a)α+2

b−a

{
(|f ′′(x)|q+|f ′′(a)|q)

2

} 1
q

+ (b−x)α+2

b−a

{
(|f ′′(x)|q+|f ′′(b)|q)

2

} 1
q

]
.

Corollary 2.5. If we choose ϕ (t) = 1 and x = a+b
2 in Theorem 2.2, we can obtain

the corollary 2.6, 2.7, 2.8 in [13], respectively for λ = 1
3 , λ = 0, λ = 1.

Corollary 2.6. Let ϕ (t) = ts−1 in Theorem 2.2, then we obtain

|Sf (x, λ, α, t, ϕ; a, b)|

≤
(∫ 1

0
|t (λ− tα)|p dt

) 1
p

[
(x−a)α+2

b−a

{
(|f ′′(x)|q+|f ′′(a)|q)

s+1

} 1
q

+ (b−x)α+2

b−a

{
(|f ′′(x)|q+|f ′′(b)|q)

s+1

} 1
q

]
.
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[5] Işcan, I., Bekar, K. and Numan, S., Hermite-Hadamard an Simpson type inequalities for
differentiable quasi-geometrically convex func- tions, Turkish J. of Anal. and Number Theory,

2(2014), no. 2, 42-46.
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[18] Set, E., Özdemir, M. E., Sarikaya M. Z., Karako, F., Hermite-Hadamard type inequalities for

mappings whose derivatives are s-convex in the second sense via fractional integrals, Khayyam

J. Math., 1(1) (2015) 62-70.
[19] Toader, Gh., On a generalization of the convexity, Mathematica, 30(53) (1988), 83-87.

[20] Tunc, M., On some new inequalities for convex functions, Turk. J. Math., 35(2011), 1-7.
[21] Tunc, M. and Yildirim, H., On MT-Convexity, arXiv: 1205.5453 [math. CA] 24 May 2012

[Department of Mathematics, Faculty of Science, University of Cumhuriyet, 58140,

Sivas, Turkey

E-mail address: mesra@cumhuriyet.edu.tr

[Department of Mathematics, Faculty of Science and Arts, University of Kahramanmaraş
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