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Abstract 

We propose a new approach for the estimation of defaults and other forms of 
exit of borrowers. Our approach is based on the ordered qualitative response model. 
We first show that any ordered qualitative response model is equivalent to the 
competing risks model – commonly employed in the estimation of corporate defaults 
and other forms of exit – in continuous-time. We then construct the continuous-time 
likelihood function of the models and further present its discrete-time simplification. 
Lastly, we compare and contrast the competing risks and ordered qualitative response 
models through numerical experiments in a two-state setting, and demonstrate that 
none of the alternatives necessarily dominates the others. Our results indicate that it 
may be worthwhile to estimate the models in continuous-time.  
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Şirket Temerrütleri ve Diğer Türden Şirket Çıkışlarının Tahmini için  

Bir Sıralı Nitel Tepki Modelleme Yaklaşımı 

 

Öz 

Temerrütler ve diğer türden şirket çıkışlarının tahmini için yeni bir yaklaşım 
öneriyoruz. Yaklaşımımız sıralı nitel tepki modeli üzerine kuruluyor. Önce, sıralı nitel 
tepki modelinin – şirket temerrütleri ve diğer türden şirket çıkışları tahmininde sıkça 
kullanılan – rakip riskler modeline sürekli zamanda denk olduğunu gösteriyoruz. 
Sonra, modellerin sürekli zaman olabilirlik fonksiyonunu kuruyor ve daha sonra, bu 
fonksiyonun basitleştirilmiş kesikli zaman şeklini sunuyoruz. Son olarak, iki durumlu 
bir uzayda yaptığımız sayısal deneylerle rakip riskler ve sıralı nitel tepki modellerini 
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karşılaştırıyoruz ve seçeneklerden hiçbirinin diğerine yeğlenir olması gerekmediğini 
gösteriyoruz. Elde ettiğimiz sonuçlar modellerin sürekli zamanda tahminlerinin 
yararlı olabileceğini gösteriyor. 

Anahtar Kelimeler: Bankacılık, Risk Yönetimi, Finans, Ekonometri, Finansal 
Ekonometri 

Jel Kodları: E50, G32, C58 

 

1. Introduction 

We are motivated by the ongoing push on the banks by their regulators 
around the globe to adopt Basel II – and, now, its revision, Basel III – to meet 
their capital adequacy requirements for the loans they make.  According to the 
Basel Capital Accord, banks can employ one of two approaches: standard and 
advanced. If a bank chooses the standard approach, then the domestic banking 
regulator requires the bank to employ the standard rules of the Basel Capital 
Accord, applied uniformly across all participating banks to determine the risk 
weights for various loan categories to set aside capital to meet their regulatory 
obligations.  

If a bank chooses the advanced approach, on the other hand, although it 
is still subject to the rules of the Accord, it can determine its own risk weights 
to various loan categories based on its internal credit risk models. This 
requires, among other things, the development of an internal-rating system to 
assess the default probabilities and the potential loss given default – that is, 
the credit risk – of the loans. However, passing from the standard to the 
advanced approach is usually subject to an assessment of and the approval by 
the domestic banking regulator of the bank’s internal credit risk models.  

It is with this in mind that we propose a qualitative response modeling 
approach for defaults and other forms of exit of borrowers that can be used to 
assess the quality of internal credit risk models employed by financial 
institutions. The model we propose is an alternative to the commonly 
employed duration models and can help the banks to choose from a larger 
menu of models to build their internal-rating models. 

In a seminal article in 1975, Amemiya defined the qualitative response 
models “generically as models that involve one or more discrete random 
variables whose conditional probability distribution given the values of the 
independent variables is specified up to a finite number of parameters”.1  The 
most well-known qualitative response models are Logit and Probit, although 
there are others. In the rating transitions and defaults literature, multi-period 
Logit and Probit have been the most popular among the qualitative response 

                                                             
1 Takeshi Amemiya, “Qualitative Response Models”, Annals of Economic and Social 
Management, 1974, 4(3), 363-372 
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models. These models are generally referred to as “static” models in finance 
literature mainly because they have been employed traditionally in pooled 
estimations with the data from each firm in each period as if it were a separate 
observation.2  

The simplest duration model is the survival model, which has just two 
states: alive and dead. Another well-known duration model is the competing 
risks model, which has many states: one alive, the rest are dead for different 
reasons, such as a heart attack or a traffic accident and the like. While the 
survival model is used in the modeling of defaults extensively, the competing 
risks model is used in the modeling of defaults as well as other forms of exit 
such as delisting from the exchanges or leveraged buyouts or mergers and 
acquisitions, to name but a few forms of exits other than defaults.3 

The main proposition of this paper is that the ordered qualitative 
response models are equivalent to the competing risks model in continuous-
time. Our proposition takes as special case the proposition of Shumway 
(2001) that “a multi-period ‘Logit’ model is equivalent to a discrete-time 
hazard model” and extends it to continuous-time. An important implication of 
our proposition is that ordered qualitative response models are not “static”. 
We then construct the likelihood function of our models in continuous – as 
well as in discrete – time, and compare and contrast the duration and ordered 
qualitative response models through numerical experiments in a two-state 
setting. 

Although our discussion will have to be mathematical for inevitable 
reasons, we will try to keep the level of our mathematical exposition as easily 
accessible to bankers and other practitioners as we can. Therefore, we assume 
once and for all that all regularity conditions necessary for the derivation of 
our results hold. We organize the rest of the paper as follows. In Section 2, we 
discuss the competing risks formulation of defaults and other forms of exit, 
and show that any ܭ-state ordered qualitative response model is equivalent to 
the ܭ-state competing risks model in continuous-time. In Section 3, we 
construct our 3-state qualitative response model likelihood function in 
continuous-time – as well as in discrete-time – for the estimation of defaults 
and other forms of exit, and give a brief discussion of how the borrower 
specific variables, and the default and other exit processes can be estimated 

                                                             
2 Tyler Shumway, “Forecasting bankruptcy more accurately: A simple hazard model”, 
Journal of Business, 2001, Vol. 74, 101–124 
3 See, for example, Sanjiv Das, Darrel Duffie, Nikunj Kapadia and Leandro Saita, 
“Common failings: How corporate defaults are correlated”, Journal of Finance, 2007, 
62, 93–117; Darrel Duffie, Andreas Eckner, Guillaume Horel and Leandro Saita, 
“Frailty correlated default”, Journal of Finance, 2009, 64, 2089–2123; Darrel Duffie, 
Leandro Saita and Ke Wang, “Multi-period corporate default prediction with 
stochastic covariates”, Journal of Financial Economics, 2007, 83(3), 635–665 
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jointly in our framework. We devote Section 4 to our numerical experiments 
and, finally, in Section 5, we conclude. 

2. The Competing Risks Formulation of Defaults and Other Forms 
of Exit 

2.1 Preliminaries 

The competing risks model is a particular duration model. Duration 
models are characterized by a stochastic process, say, ܼ(ݐ), which takes values 
from a set of states, say, ܵ = {1,2, … , ࣮ over a period ,{ܭ = [ܽ, ܶ] or  ࣮ = [ܽ, ܶ) 
with ܶ ≤ ∞, where ܭ is the number of states. Let ܼ௧ denote the history 
generated by the stochastic process ܼ(ݐ) up to time ݐ. Suppose that there is a 
collection of some external variables, say, ܺ(ݐ), that influences the time 
evolution of the stochastic variable  ܼ(ݐ). Lastly, let ܺ௧ be the history up to 
time ݐ of the external covariates ܺ(ݐ) and denote by ܼ௧ ∨ ܺ௧  the combined 
history of ܼ(ݐ) and ܺ(ݐ). 

With the above definitions, the state transition probabilities from time 
,ݏ)ࡼ ,ݐ to time	ݏ ௦ܼ|ݐ ∨ ܺ௦) = ൣ ௜ܲ௝(ݏ, ௦ܼ|ݐ ∨ ܺ௦)൧, relative to the history ܼ௦ ∨ ܺ௦, 
are defined as  

௜ܲ௝(ݏ, ௦ܼ|ݐ ∨ ܺ௦) =
(ݐ)ܼ)ܾ݋ݎܲ = (ݏ)ܼ|݆ = ݅, ܼ௦ ∨ ܺ௦)																																																		(1)  

for all ݅, ݆ ∈ ܵ and ݏ < ݐ ∈ ࣮. If the transition probabilities depend on the 
combined history ܼ௦ ∨ ܺ௦ only through the value of external covariates at time 
  that is, if ,ݏ

௜ܲ௝(ݏ, ௦ܼ|ݐ ∨ ܺ௦) = (ݐ)ܼ)ܾ݋ݎܲ = (ݏ)ܼ|݆ = ݅, ((ݏ)ܺ =

௜ܲ௝(ݏ,   (2)																																	,((ݏ)ܺ|ݐ

then the process ܼ(ݐ) is called Markov.  We assume now that the process 
 dependence in the transition (ݐ)ܺ is Markov and suppress the (ݐ)ܼ
probabilities for convenience. Since we assumed that the process is Markov, it 
follows from the above that in this period 

,ݏ)ࡼ (ݑ = ,ݏ)ࡼ		 ,ݐ)ࡼ(ݐ ݏ																				,(ݑ < ݐ < ݑ ∈
	࣮.																																													(3)  

Associated with the above transition probabilities are the transition 
intensities (ݐ)ࣅ =   given by the derivatives	൧(ݐ)௜௝ߣൣ

(ݐ)௜௝ߣ = lim∆௧→଴
௜ܲ௝(ݐ, ݐ + (ݐ∆

ݐ∆
	 , ݅ ≠ ݆																																																														(4) 

and we set 

(ݐ)௜ߣ = (ݐ)௜௜ߣ− =෍ߣ௜௝(ݐ)
௝ஷ௜

.																																																																				(5)	
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It is clear from the above that the transition intensities measure the 
speeds with which the transition probabilities change. If for a state ݅ ∈ ܵ,	 
(ݐ)௜௝ߣ = 0 for all ݐ ∈ ࣮, ݆ ∈ ܵ, then this state is called absorbing, because this 
indicates that once the stochastic process ܼ(ݐ) enters that state, it remains 
there forever. The state ݅ ∈ ܵ	is called transient, otherwise.  

2.2 The Competing Risks Model 

In the case of competing risks model, only one of the states, say, state 1, 
is transient whereas all other states are absorbing. For convenience in what 
follows, we set ܭ = 3 and note that our results readily generalize to any ܭ. 
Therefore, our transition probability matrix ݏ)ࡼ,  takes the form (ݐ

,ݏ)ࡼ (ݐ = ൥
ଵܲଵ(ݏ, (ݐ ଵܲଶ(ݏ, (ݐ ଵܲଷ(ݏ, (ݐ
0 1 0
0 0 1

൩,																																																																(6) 

 

so that from the equations (3) and (6) we have 

ଵܲଵ(ܽ, (ݐ ଵܲ௝(ݐ, ݐ + (ݐ∆
= ଵܲ௝(ܽ, ݐ + (ݐ∆ − ଵܲ௝(ܽ,  (7)																																																				.(ݐ

 

It then follows from the equations (4), (5) and (7) that 

(ݐ)ଵ	ߣ = −
݀
ݐ݀
	݈݊ ଵܲଵ(ܽ,  (8)																																																																																		(ݐ

and  

(ݐ)ଵ௝	ߣ =
1

ଵܲଵ(ܽ, (ݐ
݀
ݐ݀
	 ଵܲ௝(ܽ,  (9)																																																																								(ݐ

for any ݐ ∈ ࣮ whereas for all ݅, ݆ ∈ ܵ	and ݅ ≠ 1 we have ߣ	௜௝(ݐ) = 0. This 
luxury arises for two reasons. Firstly, we have assumed that the process is 
Markov over ࣮. Secondly, since state 1 is the only transient state, transitioning 
from state 1 to state 1 from time ܽ to time ݐ cannot include any transition from 
state 1 to any other state, for otherwise, the process ܼ(ݐ) is absorbed.  

Solving the equations (8) and (9) subject to initial conditions 
ଵܲଵ(ܽ, ܽ) = 1 and ଵܲ௝(ܽ, ܽ) = 0 for all ݆ = 2,… ,  we ge ,ܭ

ଵܲଵ(ܽ, (ݐ = exp	{−∫ ݑ݀(ݑ)ଵ	ߣ
௧
௔ 	}																																																																	(10)  

and  

ଵܲ௝(ܽ, (ݐ = ∫ (ݖ)ଵ௝ߣ
௧
௔ exp൛−∫ ݑ݀(ݑ)ଵ	ߣ

௭
௔ 	ൟ ,	ݖ݀

݆ = 2,… ,   (11)																													.ܭ



Sinan Alçın, T. Sabri Öncü 
 

 

             Sayfa/Page | 164 
 

İGÜ Sos. Bil. Derg.,  
4 (2), 2017,  
ss. 159-183.                                      

 

 

If ܭ = 2, then the above are the well-known equations of the survival 
model with the hazard function ߣ	ଵ(ݐ) =  and the survival function (ݐ)ଵଶ	ߣ
ଵܲଵ(ܽ, ݆ where (ݐ)ଵ௝	ߣ We will refer to all of the transition intensities .(ݐ ≠ 1 as 

the hazard functions of the competing risks model. 

2.3 The Equivalence of Ordered Qualitative and Competing Risks 
Models 

Let us set ܭ = 2 for a while so that  

ଵܲଶ(ܽ, (ݐ = 1 −	 ଵܲଵ(ܽ,  (12)																																																																										(ݐ

and let ߤ௔,ଵ(ݐ − ܽ) be the scalar valued function which solves the 
equation 

Φቀߤ௔,ଵ(ݐ − ܽ)ቁ = ଵܲଵ(ܽ,   (13)																																																																					,(ݐ

where Φ(∙) is the cumulative probability distribution function of any 
qualitative response model. By the properties of	Φ(∙), such a solution exists, is 
unique, and lim௧→௔ ௔,ଵߤ ݐ) − ܽ) = ∞. Hence, we proved the proposition of 
Shumway (2001) in continuous-time. 

Proposition 1. Any two-state qualitative response model is equivalent to 
the survival model in continuous-time.  

Let us now go back, set ܭ = 3, and suppose that ߤ௔,ଵ(ݐ − ܽ) still solves 
the equation (13) with ܭ = 3. In this case, we have 

ଵܲଷ(ܽ, (ݐ = 1 − ൫ ଵܲଵ(ܽ, (ݐ +	 ଵܲଶ(ܽ,  (14)																																																										൯.(ݐ

Let us now suppose that ߤ௔,ଶ(ݐ − ܽ) is the scalar valued function that 
solves the equation 

Φቀߤ௔,ଶ(ݐ − ܽ)ቁ = ଵܲଵ(ܽ, (ݐ +	 ଵܲଶ(ܽ,   (15)																																																								.(ݐ

Again, by the properties of	Φ(∙), such a solution exists, is unique and 
lim௧→௔ ௔,ଶߤ ݐ) − ܽ) = ∞. Furthermore, it is evident that we have ߤ௔,ଶ(ݐ − ܽ) >
ݐ)௔,ଵߤ − ܽ) for all ݐ ∈ ࣮.	It then follows from the above that 

																	 ଵܲଵ(ܽ, (ݐ = Φቀߤ௔,ଵ(ݐ − ܽ)ቁ,																														 

ଵܲଶ(ܽ, (ݐ = 	Φ ቀߤ௔,ଶ(ݐ − ܽ)ቁ

−Φቀߤ௔,ଵ(ݐ

− ܽ)ቁ,																																																				(16)																																				 

															 ଵܲଷ(ܽ, (ݐ = 1 − 	Φቀߤ௔,ଶ(ݐ − ܽ)ቁ.																							 
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Hence, we proved that any three-state ordered qualitative response 
model is equivalent to the three-state competing risks model in continuous-
time. Proceeding in the same manner, we have the following proposition. 

Proposition 2. Any ܭ-state ordered qualitative response model is 
equivalent to the ܭ-state competing risks model in continuous-time. 

We will refer to the functions ߤ௔,௝(ݐ − ܽ), ݆ = 1,2, … , ܭ − 1, as the cutoff 
functions of the ܭ-state ordered qualitative response model. 

2.3 The Relationship Between Hazard and Cutoff Functions 

In this section, we are interested in connecting the hazard functions of 
the competing risks model to our cutoff functions. To this end, let us denote by 
߶(∙) the probability distribution function associated with the cumulative 
probability distribution function Φ(∙). From (9) and (16) we get for any ݐ > ܽ 

(ݐ)ଵ௝ߣ

=
߶ ቀߤ௔,௝(ݐ − ܽ)ቁ ௔,௝ᇱߤ ݐ) − ܽ) − ߶ ቀߤ௔,௝ିଵ(ݐ − ܽ)ቁߤ௔,௝ିଵᇱ ݐ) − ܽ)

Φቀߤ௔,ଵ(ݐ − ܽ)ቁ
,									"								(17) 

݆ = 2, … , ܭ − 1, and we have 

(ݐ)ଵ௄ߣ = −
߶ ቀߤ௔,௄ିଵ(ݐ − ܽ)ቁ ௔,௄ିଵᇱߤ ݐ) − ܽ)

Φ ቀߤ௔,ଵ(ݐ − ܽ)ቁ
	.																																																						(18) 

It is clear from the equation (18) that when ܭ = 2, we are back to the 
usual equation of the survival model. Since the hazard functions are positive, 
this equation shows also that ߤ௔,௄ିଵᇱ ݐ) − ܽ) is negative, that is, ߤ௔,௄ିଵ(ݐ − ܽ) is 
a decreasing function of its argument. Furthermore, since lim௧→ஶ (ݐ)߶ = 0, we 
also have	lim௧→௔ ௔,௄ିଵᇱߤ ݐ) − ܽ) = −∞. Indeed, using the equations (17) and 
(18), and rearranging, we get 

		߶ ቀߤ௔,௝(ݐ − ܽ)ቁ ௔,௝ᇱߤ ݐ) − ܽ)

= − ෍ ଵ௞ߣ

௄

௞ୀ௝ାଵ

Φ(ݐ) ቀߤ௔,ଵ	(ݐ − ܽ)ቁ.																															(19) 

 

This shows that all of the ߤ௔,௝(ݐ − ܽ)	must be decreasing functions of 
time with lim௧→௔ ௔,௝ᇱߤ ݐ) − ܽ) = −∞, ݆ = 1,… , ܭ − 1. 

 To give a simple example, let us set ܭ = 2 and suppose that the 
hazard function of the survival model is constant, that is, ߣଵଶ(ݐ) = ߣ > 0. Since 
in this case there is just one cutoff function, let us drop its subscript and set 
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ܽ = 0 for convenience. Let us now look at the Logit model whose cumulative 
probability distribution function is  

Φ൫(ݐ)ߤ൯ =
1

1 + exp{−(ݐ)ߤ}
.																																																																									(20) 

 

Since we assumed that the hazard function of the survival model is 
constant, from (10) and (19) we get  

1
1 + exp{−(ݐ)ߤ}

	= exp{−ݐߣ}																																																																				(21) 

 

so that (ݐ)ߤ = −ln	[exp( (ݐߣ − 1], which is clearly a decreasing function 
of time, lim௧→଴ ߤ (ݐ) = ∞ and lim௧→଴ ᇱߤ (ݐ) = −∞.  

 

3. The Likelihood Function  

3.1 A Single Borrower 

In this subsection, we will look at a single borrower and suppose that 
the external covariates ܺ(ݐ) are sampled with intervals of equal length ∆ݐ. 
This is a realistic assumption, since in the case of default estimation the 
external covariates would include borrower specific accounting and 
macroeconomic variables that can be observed at best monthly, if not 
quarterly (see, for example, Duffie et al, 2007). Suppose that the observations 
were made in the interval [0, ܶ] where ܶ =  and ܰ is the number of	ݐ∆ܰ
intervals. Let us set ݐ௜ = ,ݐ∆݅ ݅ = 0,1, … ,ܰ. Lastly, we have two absorbing 
states: the other types of exit state, state 2, and the default state, state 3. Let 
߬ = min	(ܶ, ଵܶ, ଶܶ) where ଵܶ	and, ଶܶ are the other exit and default times, 
respectively. 

 Let us now suppose that ܼ∗(ݐ) is a latent variable that generates 
the default and other forms of exit process ܼ(ݐ) for any ݐ ∈ ௜ିଵݐ] , ݅	,(௜ݐ =
1,… ,ܰ such that  

(ݐ)ܼ				 = (ݐ)∗ܼ			݂݅			,1 ≤ ݐ)௧೔షభ,ଵߤ −  																																																																			,(௜ିଵݐ

(ݐ)ܼ = ݐ)௧೔షభ,ଵߤ		݂݅			,2 − (௜ିଵݐ < (ݐ)∗ܼ	
≤ ݐ)௧೔షభ,ଶߤ −  (22)																																							௜ିଵ),ݐ

(ݐ)ܼ = (ݐ)∗ܼ			݂݅			,3 > ݐ)௧೔షభ,ଶߤ −  																																																																			.(௜ିଵݐ

 

We define ௝ܻ(ݐ) = (ݐ)ܼ}1 = ݆}, ݆ = 1,2,3 where 1{∙} is the indicator 
function which returns the value one if its argument is true and zero, 
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otherwise. We choose ߤ௧೔షభ,௝(ݐ௜ − (௜ିଵݐ = (௜ିଵݐ)௝ߤ = ,൯(௜ିଵݐ)௝൫ܺߙ ݆ = 1,2 
where ߙଶ൫ܺ(ݐ௜ିଵ)൯ >   .are functions to be specified	൯(௜ିଵݐ)ଵ൫ܺߙ

Lastly, we assume for any ݐ ∈ ,௜ିଵݐ] ݅	,(௜ݐ = 1,… ,ܰ 

(ݐ)∗ܼ =  (23)																																																																																										(ݐ)ߝ

where (ݐ)ߝ is either identically and independently distributed standard 
normal for Probit or identically and independently distributed logistic for 
Logit. Under these assumptions, the one-period transition probabilities in 
each interval [ݐ௜ିଵ, ݅	,(௜ݐ = 1,… ,ܰ are given by  

ଵܲଵ(ݐ௜ିଵ , (௜ݐ = Φ൫ߤଵ(ݐ௜ିଵ)൯,																																																																																				 

 

ଵܲଶ(ݐ௜ିଵ , (௜ݐ = Φ൫ߤଶ(ݐ௜ିଵ)൯ − Φ൫ߤଵ(ݐ௜ିଵ)൯,																																																								(24) 

 

ଵܲଷ(ݐ௜ିଵ, (௜ݐ = 1 − Φ൫ߤଶ(ݐ௜ିଵ)൯.																																																																													 

The above fixes our ordered qualitative response function formulation 
of the one-period transition probabilities. Our second alternative is specifying 
the hazard function. So we set	ߣଵ௝(ݐ) = (௜ିଵݐ)ଵ௝ߣ = ,൯(௜ିଵݐ)௝ିଵ൫ܺߛ ݆ = 2,3 for 
any ݐ ∈ ,௜ିଵݐ] ݅	,(௜ݐ = 1,… ,ܰ where ߛ௝(ܺ(ݐ௜ିଵ)) are functions to be specified 
and recall that ߣଵ(ݐ) = (ݐ)ଵଶߣ +  In this case, the one-period transition .(ݐ)ଵଷߣ
probabilities given by the equations (10) and (11) take the form 

ଵܲଵ(ݐ௜ିଵ , (௜ݐ = exp	(−ߣଵ(ݐ௜ିଵ)Δݐ)																																																																										 

 

ଵܲଶ(ݐ௜ିଵ, (௜ݐ =
(௜ିଵݐ)ଵଶߣ
(௜ିଵݐ)ଵߣ

{1 − exp(−ߣଵ(ݐ௜ିଵ)Δݐ)},																																																		(25) 

 

ଵܲଷ(ݐ௜ିଵ, (௜ݐ =
(௜ିଵݐ)ଵଷߣ
(௜ିଵݐ)ଵߣ

{1 − exp	(−ߣଵ(ݐ௜ିଵ)Δݐ)}.																																																										 

 

Suppose now that at some time ߬ ∈ ,௞ିଵݐ] for some ݇, 0	௞)ݐ < ݇ ≤ ܰ, that 
is, in the ݇௧௛period, either an exit or a default occurred. Then, the process gets 
absorbed in this interval and, depending on the type of “failure”, one of the 
following probabilities ଵܲଵ(ݐ଴, ߬) ଵܲ௝(߬, ߬ + ݆ for 	(ߢ = 2,3	needs to be 
computed for small ߢ. Since ߢ is small, from the equation (11) through 
straightforward calculations we get 

ଵܲ௝(߬, ߬ + (ߢ = 	ߢ	(௞ିଵݐ)ଵ௝ߣ + ,	(ଶߢ)ܱ ݆ = 2,3																																												(26) 
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where we used the usual big-O notation.  

Since  

ଵܲଵ(ݐ଴, (௞ିଵݐ =ෑ ଵܲଵ(ݐ௡ିଵ, (௡ݐ
௞ିଵ

௡ୀଵ

,																																																																						(27) 

it remains to determine ଵܲଵ(ݐ௞ିଵ, ߬)	to write down the equation for 
ଵܲଵ(ݐ଴ , ߬). It is evident from the equation (10) that 

ଵܲଵ(ݐ௞ିଵ, τ) = exp{−ߣଵ(ݐ௞ିଵ)(߬ −  (28)																																																								௞ିଵ)},ݐ

so we are done with the case when the one-period transition 
probabilities are modelled through the hazard function.  

Let us now suppose that the one-period transition probabilities are 
modelled through the ordered qualitative response models and observe from 
the equations (24) and (25) that 

(௞ିଵݐ)ଵߣ =
1
Δݐ
ln ቈ

1
Φ൫ߤଵ(ݐ௞ିଵ)൯

቉ ,																																																																												(29) 

(௞ିଵݐ)ଵଶߣ

=
1
Δݐ
ln ቈ

1
Φ൫ߤଵ(ݐ௞ିଵ)൯

቉ ቊ
Φ൫ߤଶ(ݐ௞ିଵ)൯ − Φ൫ߤଵ(ݐ௞ିଵ)൯

1 −Φ൫ߤଵ(ݐ௞ିଵ)൯
ቋ ,																																						(30) 

(௞ିଵݐ)ଵଷߣ

=
1
Δݐ
ln ቈ

1
Φ൫ߤଵ(ݐ௞ିଵ)൯

቉ ቊ
1 − Φ൫ߤଶ(ݐ௞ିଵ)൯
1 −Φ൫ߤଵ(ݐ௞ିଵ)൯

ቋ .																																																(31) 

 

Lastly, we note from the equations (28) and (29) that 

ଵܲଵ(ݐ௞ିଵ, τ) = Φ൫ߤଵ(ݐ௞ିଵ)൯
ఛି௧ೖషభ
୼௧ .																																																																(32) 

Therefore, the likelihood function for this borrower is 

ℒ஼(ߠ) = ଵܲଵ(ݐ଴ , ߬){ ଵܻ(߬) + ଶܻ(߬)ߣଵଶ(ݐ௞ିଵ)
+ ଷܻ(߬)ߣଵଷ(ݐ௞ିଵ)}																																			(33) 

 

where ߠ is the parameter vector to be estimated after either the 
functions ߙ௝൫ܺ(ݐ௜ିଵ)൯, ݆ = 1,2 or the functions ߛ௝൫ܺ(ݐ௜ିଵ)൯, ݆ = 1,2	are 
specified. Of course, it is evident from the above that specifying the functions 
,൯(௜ିଵݐ)௝൫ܺߙ ݆ = 1,2 is one possible way of specifying the functions 
,൯(௜ିଵݐ)௝൫ܺߛ ݆ = 1,2		in this framework. Note that if no failure occurred, then 
߬ = ܶ so that ℒ஼(ߠ) = ଵܲଵ(ݐ଴, ܶ). 
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This is the first alternative. The second alternative is to ignore that the 
default or exit occurred in the interior of the interval [ݐ௞ିଵ, ߬ ௞), setݐ = ௞ݐ  and, 
instead, use the likelihood function  

ℒ஽(ߠ) = ଵܲଵ(ݐ଴, }(௞ିଵݐ ଵܻ(ݐ௞) ଵܲଵ(ݐ௞ିଵ, (௞ݐ + ଶܻ(ݐ௞) ଵܲଶ(ݐ௞ିଵ , (௞ݐ +
ଷܻ(ݐ௞) ଵܲଷ(ݐ௞ିଵ,   (34)												௞)}ݐ

This amounts to discretizing the continuous exit and default process 
 Although this discretization leads to some loss of information, the .(ݐ)ܼ
likelihood function becomes straightforward.  

3.2 Many Borrowers 

For convenience in what follows, we suppose that there is no left 
truncation, that is, no late entry of some of the borrowers into the data set. 
Similarly, we suppose that there is no right censoring, that is, no early 
departure of some borrowers from the data set except because of defaults or 
other forms of exit. In reality, however, borrowers may get left truncated, right 
censored, then left truncated again, then right censored again and so forth. 
That is, borrowers may come late, then drop out, then come back again and so 
forth without defaulting or exiting, because of missing data or some other 
reason. Although all of these can be handled within the ordered qualitative 
model formulation of defaults and other forms of exit with no essential 
difficulty, we ignore these possibilities for convenience in the following 
discussion.  

With the above caveat, let us now suppose that there are ܯ borrowers 
݉ = 1,2,…  and subscript the latent process that generates the default and ,ܯ,
other forms of exit of the ݉௧௛ borrower by ݉ so that it is ܼ௠∗  Suppose now 	.(ݐ)
that ܼ௠∗  either the (ߠ)are independent across borrowers and denote by ℒ௠ (ݐ)
continuous-time likelihood function (31) or the discrete-time likelihood 
function (32) for the ݉௧௛ borrower. Also let ܺ௠(ݐ௜) denote the external 
covariates for the ݉௧௛ borrower, sampled at the discrete time points 
௜ݐ = ,ݐ∆݅ ݅ = 0,1, … ,ܰ, and assume that ܼ௠∗  are independent for (௜ݐ)and ܺ௠ 	(௜ݐ)
each ݉. The ܺ௠(ݐ௜) consists of two components, the economy-wide covariates 
(௜ݐ)that is, ܺ௠ ,(௜ݐ)௠ܤ and the borrower specific covariates (௜ݐ)ܧ =
  .((௜ݐ)௠ܤ	,(௜ݐ)ܧ)

Lastly, let ߬௠ ∈ ,௞(௠)ିଵݐ]  ௞(௠)) be the last time the ݉௧௛ borrower isݐ
observed in the ݇(݉)௧௛ 	interval due to failure either in the form of default or 
other exit, or just the observation period ended. Suppose that failures 
occurred in ܮ intervals beginning at times ݐ௞(௟)ିଵ where ݈ = 1,2, … ,  and set ,ܮ
௞(଴)ݐ = ௞(௅ାଵ)ݐ ଵ. Further, setݐ = ேାଵݐ > ேݐ , which is any time after the end of 
the observation period so that we can count the remaining borrowers, if any, 
on the last date of the observation period conveniently. 
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Let us now order the borrowers according to their failure times from the 
latest to the earliest, denote by ܬ(݈), ݈ = 1,2, … ,  the number of remaining ,ܮ
borrowers at time ݐ௞(௟) and set (0)ܬ =  the total number of borrowers in the ,ܯ
beginning. Let us now define ܯ(ݐ௜), ݅ = 1,2, … ,ܰ, which counts the number of 
borrowers at time ݐ௜  as follows: 

(௜ݐ)ܯ = ௜ݐ	݂݅				(݈)ܬ ∈ ,௞(௟)ݐൣ ,௞(௟ାଵ)൯ݐ ݈ = 0,1,2, … , ,ܮ ݅ = 1,2, … ,ܰ. 

With these definitions, we now introduce the combined external 
covariates vector at time ݐ௜  defined as 
(௜ݐ)ܥ = ,(௜ݐ)ܧ) ,(௜ݐ)ଵܤ ,(௜ݐ)ଶܤ … , ∙)and let Ψ௧೔ ,((௜ݐ)ெ(௧೔)ܤ ,	(௜ିଵݐ)ܥ|  denote (ߴ
the joint probability density function of ܥ(ݐ௜) conditioned on ܥ(ݐ௜ିଵ) where ߴ 
is the parameter vector of this density function. 

Under the above set up, the likelihood function of the above 
observations over the period [0, ܶ] is given by 

ℒ(ߴ, (ߠ = ℒ(ߴ)ℒ(ߠ)																																																																																							(35) 

where  

ℒ(ߴ) =ෑΨ௧೔(ܥ(ݐ௜)|ܥ(ݐ௜ିଵ), (ߴ
ே

௜ୀଵ

																																																																								(36) 

whereas 

ℒ(ߠ) = ෑℒ௠(ߠ)
ெ

௠ୀଵ

																																																																																														(37) 

 

This completes the construction of our likelihood function. Under our 
independence assumptions, it is clear that we can estimate the likelihood 
functions given by (36) and (37) separately. Once the model is estimated, the 
forward survival, other exit and default probabilities can be calculated 
through Monte Carlo simulations.  

3.3 A Brief Note on the Possibility of Joint Estimation of Defaults, 
Other Exits and External Covariates 

One advantage of our ordered qualitative response modeling approach 
is that it provides a simple tool for the joint estimation of defaults, other forms 
of exit and external covariates, if we choose our ordered qualitative response 
model as the ordered Probit.  Recall that we assumed that the latent processes 
ܼ௠∗  ݉ are independent for each borrower (ݐ)and the external covariates ܺ௠	(ݐ)
as well as that ܼ௠∗ ݉ ,are independent across borrowers (ݐ) = 1,2,…   .ܯ,

While the latter of these assumptions is plausible – with which we 
continue – the former may be questioned because the external covariates 
ܺ௠(ݐ) contain borrower specific variables. Recall that ܺ௠(ݐ) = ,(ݐ)ܧ)  ((ݐ)௠ܤ
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where (ݐ)ܧ are the economy wide covariates and ܤ௠(ݐ) are the borrower 
specific covariates. Unless there is a latent factor such as a crisis that 
influences all of the borrowers collectively, and leads to correlated defaults 
and contagion, an individual borrower’s impact on the overall economy may 
be ignored. Therefore, in the absence of correlated defaults and contagion, it is 
plausible that economy wide covariates are independent from the individual 
borrower variables, which we continue to assume, also.4 In the absence of 
correlated defaults and contagion, it is plausible also that the borrower 
specific external variables are independent across borrowers, so suppose that 
 .are independent across borrowers, as well (ݐ)௠ܤ

Let us now focus on a single borrower and drop the subscript ݉ for 
convenience. Also for convenience, suppose that there is one borrower 
specific variable, say, (ݐ)ܤ. Lastly, suppose that there are no other forms of 
exit so that a borrower either defaults or survives. Let state 1 be the survival 
and state 2 be the default state, and focus on two observations in discrete-
time, at times ݐ = ݐ ଴ andݐ = ଵݐ > ଴ݐ . The process ܼ(ݐ) is initialized at ݐ = ଴ݐ  as 
(଴ݐ)ܼ = 1 and the latent process ܼ∗(ݐ) determines the next state according as 

 

(ଵݐ)ܼ = (ଵݐ)∗ܼ			݂݅				,1 ≤ ܽ					and					ܼ(ݐଵ) = (ଵݐ)∗ܼ			݂݅				,2 > ܽ																						(37) 

 

For further simplicity, consider the following processes: 

 

(ଵݐ)ܤ  = ܾ +  (38)																																																																																							ߟ

(ଵݐ)∗ܼ = ߳																																																																																									(39) 

 

where ܾ is some constant, and  ߟ	and ߳	are some random variables. Since 
both ܤ(ݐଵ) and ܼ∗(ݐଵ)	are variables associated with the same borrower, it may 
be desirable to consider the possibility that they may be dependent. This 
possibility can be addressed in our framework with no essential difficulty and 
without the curse of dimensionality, as we demonstrate below.  

To this end, let us suppose that ߟ	and ߳ are jointly normally distributed 
with mean zero and the covariance matrix 

  

Σ = ൤ߪ
ଶ ߪߩ

ߪߩ 1 ൨ 

 

                                                             
4 We address the issue of correlated defaults and contagion elsewhere. 
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In this case, the joint probability distribution is given by 

߶ଶ(߳, (ߟ

=
1

ඥ(1ߨ2 − ଶߪ(ଶߩ
݌ݔ݁ ቊ−

ଶߟ − ߳ߟߪߩ2 + ଶ߳ଶߪ

2(1 − ଶߪ(ଶߩ
ቋ.																																							(40) 

 

Suppose now that the borrower did not default at time ݐଵ . Then the 
likelihood of this observation is 

 

ℒ(ܽ, ܾ) =
1

ଶߪߨ2√
݌ݔ݁ ቊ−

(ଵݐ)ܤ) − ܾ)ଶ

ଶߪ2
ቋΦቆ

ܽ
ඥ(1 − ଶߩ

−
(ଵݐ)ܤ)ߩ − ܾ)
ඥ(1 − ଶߪ(ଶߩ

ቇ.																										(41) 

 

whereas if the default occurred at time ݐଵ , then the likelihood of this 
observation is 

 

ℒ(ܽ, ܾ) =
1

ଶߪߨ2√
݌ݔ݁ ቊ−

(ଵݐ)ܤ) − ܾ)ଶ

ଶߪ2
ቋ ቊ1

−Φቆ
ܽ

ඥ(1 − ଶߩ
−
(ଵݐ)ܤ)ߩ − ܾ)
ඥ(1 − ଶߪ(ଶߩ

ቇቋ																			(42) 

 

where Φ(∙) is the standard normal cumulative distribution function. 
Since in most applications one works with a handful of borrower specific 
variables, the above can be extended to several borrower specific variables 
without much difficulty. 

4. Numerical Experiments 

In this section, we compare and contrast the predictions of the 
competing risks and ordered qualitative response models in a two-state 
setting for eight simulated data sets of 50,000 firm-periods. State 1 is the 
survival state whereas state 2 is the default state so that the competing risks 
model is simply the survival model.  We use a version of the Cox model to 
model the hazard function of the survival model and work with the Probit 
model as a representative of the qualitative response models. We then set the 
data sampling period length as ∆1=ݐ for convenience, suppose there is an 
external variable ܺ	that drives the defaults, and draw 50,000 values for ܺ 
assuming that it is identically and independently distributed standard normal.  
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Finally, we generate our default data for two sets of parameter values 
from the following four models that give the survival probabilities as follows. 

a) Probit:      		 ଵܲଵ(0,1) = Φ(ߙ௉ோை஻ூ்(ܺ)), (ܺ)௉ோை஻ூ்ߙ = ௉ோை஻ூ்ܣ +
ܺ,					 

b) Cox:       			 ଵܲଵ(0,1) = exp൫−λ஼ை௑(ܺ)൯ , λ஼ை௑(ܺ) =
exp	(ܣ஼ை௑ − ܺ),									 

c) Chi Squared:        	 ଵܲଵ(0,1) = Χଶ(ߙ஼ுூ(ܺ)), (ܺ)஼ுூߙ		 = exp	(ܣ஼ுூ +
ܺ),		 

d) Beta:           		 ଵܲଵ(0,1) = Β൫ߙ஻ா்஺(ܺ)൯, (ܺ)஻ா்஺ߙ = 1/(1 +
exp	(ܣ஻ா்஺ + ܺ)).		 

In the above, Φ(∙), Χଶ(∙)	and Β(∙)	are the cumulative distribution 
functions of the standard normal, Chi Squared with unit degree of freedom 
and Beta with unit shape parameters, respectively. We choose the free model 
parameters ܣ௉ோை஻ூ் ஼ை௑ܣ , ஼ுூܣ ,  and ܣ஻ா்஺  to generate two data sets from 
each of the models in such a way that the resulting in-sample unconditional 
default probabilities in the first data sets are 5%, whereas they are 15% in the 
second data sets. Table 1 summarizes the chosen free parameter values. 

Table 1. Summary of Simulated Data 

This table summarizes the models and selected free parameter values 
that are used to generate the data of 50,000 firm-periods for each of the eight 
simulated data sets. 

Simulation 1: Unconditional Default Probability: 5% 

Data Generating Model Probit  Cox Chi Squared Beta 

Free Parameter Value 2.326 -3.41913 1.94021 -3.34253 

 

Simulation 2: Unconditional Default Probability: 15% 

Data Generating Model Probit  Cox Chi Squared Beta 

Free Parameter Value 1.4646 -2.17793 1.00125 -2.04379 

 

Next, we estimate the models for each of the data sets under the 
assumption that the observations are made in discrete-time. Table 2 
summarizes the estimation results. All parameter estimates and models are 
statistically significant at better than 1%. Although a comparison of models 
based on the likelihood ratios is not a proper comparison for non-nested 
models, we nevertheless see from this comparison in Panels A and B that 
when Probit is the data-generating model, Probit appears to fit the data better 
than Cox, whereas when Cox is the data-generating model, Cox appears to fit 
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the data better than Probit. These results are expected and included only as a 
check on our results. 

Table 2. Comparison of Probit and Cox Models in Discrete-time 

This table presents the estimation results of Probit and Cox models for 
eight simulated data sets of 50,000 firm-periods. All parameter estimates and 
models are statistically significant at better than 1%. 

Panel A. Data Generating Model: Probit 

  Simulation I Simulation II 

Model Probit Cox Probit Cox 

Constant 2.311 -4.168 1.462 -2.530 

Slope  0.989 -1.668 0.997 -1.422 

Loglikelihood   

              Null -9925.76 -9925.76 -21135.45 -21135.45 

              Model -6827.81 -6912.10 -14943.32 -15126.97 

Likelihood Ratio 6195.91 6027.33 12384.26 12016.97 

 

Panel B. Data Generating Model: Cox 

  Simulation I Simulation II 

Model Probit Cox Probit Cox 

Constant 1.843 -3.435 1.388 -2.194 

Slope  0.507 -1.008 0.581 -0.999 

Loglikelihood   

              Null -9925.76 -9925.76 -21135.45 -21135.45 

              Model -8718.25 -8706.93 -18215.03 -17833.21 

Likelihood Ratio 2415.02 2437.67 5840.86 6604.48 

 

Panel C. Data Generating Model: Chi Squared 

  Simulation I Simulation II 

Model Probit Cox Probit Cox 

Constant 2.250 -3.995 1.328 -2.295 

Slope  0.933 -1.517 0.796 -1.115 

Loglikelihood 
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              Null -9925.76 -9925.76 -21135.45 -21135.45 

              Model -7082.03 -7259.74 -16578.74 -16876.59 

Likelihood Ratio 5687.47 5332.05 9113.43 8517.72 

 

Panel D. Data Generating Model: Beta 

  Simulation I Simulation II 

Model Probit Cox Probit Cox 

Constant 1.819 -3.382 1.182 -2.116 

Slope  -0.470 0.941 -0.547 0.870 

Loglikelihood 
 

  

              Null -9925.76 -9925.76 -21135.45 -21135.45 

              Model -8860.21 -8852.18 -18500.08 -18500.97 

Likelihood Ratio 2131.11 2147.15 5270.76 5268.96 

 

However, the results in Panels C and D are interesting.  In these panels, 
the data generated from the Chi Squared and Beta models represent “real 
world” data whose distribution is “unknown”. From these panels – again 
based on a comparison of the likelihood ratios – we see that when the data-
generating model is Chi Squared, Cox appears to fit the data better than Probit, 
whereas when the data-generating model is Beta, the roles are reversed 
(although the models appear to tie for the second set of simulations in this 
case).   

Figure 1 depicts the predicted one-period default probabilities from the 
Probit and Cox models as functions of the underlying external variable ܺ, and 
compares their predictions with the “true” default probabilities for the first 
simulated data sets where the unconditional default probability is 5%. 
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a) Data Generating Model: Probit 

 

 

b) Data Generating Model: Cox 
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c) Data Generating Model: Chi Squared 

 

 

d) Data Generating Model: Beta 

 

Figure 1. Comparison of Probit and Cox Models in Discrete-time – 
In Sample Unconditional Default probability: 5% 

The figures plot one-period default probabilities as estimated by 
discrete-time Probit, Cox and data-generating models as functions of the 
simulated firm-period variable X for the simulated data of 50,000 firm-
periods.  In Figures 1.a and 1.b, only the estimated models are included 
because the data-generating model and its estimation produce 
indistinguishable graphs. 
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In Figures 1.a and 1.b, we compare the Probit and Cox models when the 
data-generating model is one of them, and see that although the models agree 
in their predictions for the most part, the deviations at the left extreme – 
where the predicted default probabilities are large – can be as large as 7% for 
our simulated data sets. However, this does not constitute a problem for Basel 
capital requirements, because at that level of one-period of default 
probabilities, all boundaries are crossed despite the deviations. 

In Figures 1.c and 1.d, we compare the Probit and Cox models when the 
data-generating processes are “unknown” (that is, when they are Chi Squared 
and Beta, respectively). We see from these figures that not only the Probit and 
Cox models generally agree with each other, but also they do not deviate from 
the “true” models significantly except at the extremes.  

Lastly, we turn our attention to continuous-time, and focus on the last 
two data-generating models, that is, Chi Squared and Beta. We keep our 
original simulated data sets generated by these models, but randomly assign 
to the defaults a default time between zero and one. The results of our 
estimations based on these data are reported in Table 3. 

Table 3. Comparison of Probit and Cox Models in Continuous-time 

This table presents the estimation results of Probit and Cox models for 
four simulated data sets of 50,000 firm-periods. All parameter estimates and 
models are statistically significant at better than 1%. 

Panel A. Data Generating Model: Chi Squared with Randomized Default Times 

  Simulation I Simulation II 

Model Probit Cox Probit Cox 

Constant 2.278 -3.967 1.335 -2.304 

Slope  1.014 -1.573 0.780 -1.088 

Loglikelihood   

              Null -9905.86 -9905.86 -21048.58 -21048.58 

              Model -6917.36 -7103.42 -16534.63 -16831.65 

Likelihood Ratio 5977.00 5604.88 9026.74 8433.86 

Panel B. Data Generating Model: Beta with Randomized Default Times 

  Simulation I Simulation II 

Model Probit Cox Probit Cox 

Constant 1.817 -3.369 1.197 -2.136 

Slope  -0.479 0.944 -0.545 0.860 
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Loglikelihood   

              Null -10011.31 -10011.31 -20936.61 -20936.61 

              Model -8921.64 -8925.30 -18331.93 -18350.47 

Likelihood Ratio 2179.34 2172.02 5209.36 5172.28 

 

All of the parameter estimates and models reported in Table 3 are 
statistically significant at better than 1%. As before, we note that although a 
comparison between two non-nested models is not appropriate based on such 
criteria, our results show that our Probit formulation appears to fit the data 
better than the Cox model in all of the samples based on these criteria in our 
simulated samples.  

Since in these sets of simulated data the “true” data generating 
processes are truly unknown, we compare predictions of the Probit and Cox 
models without any reference to any “true” default probabilities in Figure 2. 

 
a) Data Generating Model: Chi Squared with randomized default times 
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b) Data Generating Model: Beta with randomized default times 

 

Figure 2. Comparison of Probit and Cox Models in Continuous-time 
– In Sample Unconditional Default Probability: 5% 

The figures plot one-period default probabilities as estimated by 
continuous-time Probit and Cox Models as functions of the simulated firm-
period variable X for the simulated data of 50,000 firm-periods.  The data-
generating models are Chi Squared and Beta with randomized default times. 

This figure shows for our simulated data that the Probit model appear to 
predict lower default probabilities than the Cox model, at least, at the 
extremes of the distribution. However, since the “true” data-generating 
processes are unknown in this case, it is not possible to reach any conclusion 
based on this figure regarding which of the models does better than the other. 
This is because the results depicted in this figure are specific to our simulated 
data sets. Therefore, there is no assurance that the predictions of the models 
depicted in this figure can be generalized to other data sets for which the 
underlying data-generating processes are different. 

Notwithstanding this, however, the results depicted in Figure 3 show 
that not accounting for defaults that occur between discretized sampling times 
may lead to the underestimation of the default probabilities. Figures 3.a and 
3.b compare the continuous-time and discrete-time predictions of the Probit 
and Cox models, respectively, and provides support for this. 
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a) Probit 

 

b) Cox 

Figure 3. Comparison of Discrete-time Probit and Cox Models with 
Their Continuous-time Equivalents – In Sample Unconditional Default 
Probability: 5% 

The figures plot one-period default probabilities as estimated by Probit 
and Cox Models as functions of the simulated firm-period variable X for the 
simulated data of 50,000 firm-periods in continuous-time and discrete-time. 
The data-generating model is Chi Squared with randomized default times. 
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Let us close this section by summarizing our observations from the 
numerical experiments of this section as follows. 

1) As long as the underlying data generating process for the defaults is 
not known, it is not possible to decide whether they are the qualitative 
response or duration models that are the better suited to the task, at least, in 
discrete-time; 

2) No matter which class of models is chosen, it may be worthwhile to 
estimate the models in continuous-time, for otherwise, default probabilities 
may be underestimated. 

5. Conclusions 

Motivated by the ongoing push on the banks by their regulators around 
the globe to adopt Basel II – and, now, its revision, Basel III – to meet their 
capital adequacy requirements for the loans they make, we developed an 
approach for the estimation of defaults and other forms of exit of borrowers. 
Our approach is based on the ordered qualitative response models.  

We first showed that ordered qualitative response models are 
equivalent to the commonly employed competing risks model in continuous-
time, indicating that competing risks could be modeled using ordered 
qualitative response models in addition to duration models. We then 
constructed the likelihood function of ordered qualitative response models for 
the estimation of defaults and exits in continuous-time and presented a 
simpler discrete-time version. Furthermore, since borrower specific variables 
are expected to be dependent, we gave a brief discussion of how the borrower 
specific external variables, and the default and other exit processes can be 
jointly estimated in our framework. Lastly, we compared and contrasted the 
competing risks and ordered qualitative response models through numerical 
experiments in a two-state setting, and demonstrated that none of the 
alternatives necessarily dominates the others. Further, we demonstrated that 
it may be worthwhile to estimate the models in continuous-time. 

Under the ongoing push of the banking regulators, the banks are 
expected to move from the standard approach to the advanced approach of 
the Basel Capital Accord. While the standard approach is easy to implement, 
the advanced approach requires the banks to develop their internal credit risk 
models. However, passing from the standard to the advanced approach is 
subject to an assessment of and the approval by the domestic banking 
regulator of the banks’ internal credit risk models. We hope that the ordered 
qualitative response modeling approach we proposed provides the banks with 
a broader menu of models to choose from and that it offers a convenience to 
the banks and their regulators for the assessment of internal credit risk 
models. 
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Özet 

Tüm dünyada, bankacılık düzenleyicilerinin bankaları yönelttikleri Basel 
II – ve şimdilerde revizyonu Basel III – sermaye yeterliliği düzenlemelerinden 
alınan ilham ile şirket temerrütleri ve diğer türden şirket çıkışlarının tahmini 
için bir yaklaşım önerilmektedir. Yaklaşımımız sıralı nitel tepki modelleme 
yaklaşımıdır. İlk olarak, bu amaçla kullanılan rekabet eden riskler modeli ile 
sıralı nitel tepki modellerinin denk oldukları gösterilmiştir. Yapılan, rekabet 
eden risklerin sıralı nitel tepkiler olarak da modellenebileceğini göstermektir.  

Bunu takiben, şirket temerrütleri ve diğer türden şirket çıkışlarının 
tahmini için sürekli zamanda ihtimal fonksiyonu kurulmuş ve sonrasında bu 
fonksiyon, bir de basitleştirilmiş kesikli zaman ihtimal fonksiyonuna 
indirgenmiştir. Yaptığımızın en önemli yanı ise genel değişkenler ile temerrüt ve 
diğer çıkış değişkenlerinin nasıl birlikte tahmin edilebileceği konusunda yol 
göstermektir ki yapılan, bu konuda ilktir.  

 
 
 
 
 


