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Abstract  

This simulation study explored the impact of Q-matrix misspecification and model misuse on examinees’ 

classification accuracy within the generalized deterministic input, noisy “and” gate (G-DINA) model framework 

under the different conditions. The data was generated by saturated G-DINA model. Along with the generating 

model, two reduced models were used to fit the data: the additive CDM (A-CDM) and DINA model. The 

manipulated conditions included number of respondents, attribute correlations and test length. Two types of 

classification accuracy were examined: the overall classification accuracy and the class-specific classification 

accuracy. Results showed that the Q-matrix misspecification influenced classification accuracy more ominously 

than model misuse. The proportion of examinees classified correctly for each latent class was related to the types 

of Q-matrix misspecification. More test items had greater positive impact on classification accuracy than more 

respondents taking the test. 

 

Key Words: Classification, cognitive diagnostic assessment, the generalized DINA model, Q-matrix 

misspecification 

 

INTRODUCTION  

Researchers and educational stakeholders have increasingly demanded more formative test 

information (Mislevy, 2006; Robets & Gierl, 2010; Rupp & Templin, 2008). They often wish to obtain 

the classification of respondents with respect to their skills. Teachers, students and parents often want 

to know the individual’s level of skill mastery to facilitate an individual’s development. Cognitive 

diagnosis models (CDMs) are used to measure the respondents’ knowledge structures and the multiple 

attributes for the purpose of making classification-based decisions (Rupp, Templin, & Henson, 2010).  

Despite the diversity of parametric models, general DCMs have gained increasing attention in recent 

years because they do not have idiosyncratic hypotheses about the impact of attribute relationship 

among items. They subsumed many popular models that were developed earlier such as the 

deterministic inputs, noisy, “and” gate (DINA; Junker & Sijtsma, 2001) models, the deterministic 

inputs, noisy, “or” gate (DINO; Templin & Henson, 2006) models, and the reduced reparameterized 

unified (R-RUM; Hartz, 2002) model. The three most common general DCMs are the general 

diagnostic model (GDM; von Davier, 2008, 2010), the log-linear cognitive diagnosis model (LCDM; 

Henson, Templin, & Willse, 2009), and the generalized DINA model (G-DINA; de la Torre, 2011). 

Among the three models, the G-DINA extends the logit link function of the other two models to 

multiple link functions including identity and log links.  

One of the most important steps before specifying CDMs is to identify the attributes measured by each 

items. This item by attribute specification is usually constructed by the content experts and is called 

the Q-matrix. In practice, if the item-attribute alignment we specified a priori is not supported by the 
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data, the Q-matrix may be misspecified. Previous research has shown that parameter estimates and 

classification accuracy were affected by the misspecification of Q-matrix (e.g., Rupp & Templin, 

2008; Kunina-Habenicht, Rupp, & Wilhelm, 2012). Specifically, Rupp and Templin (2008) used the 

different types of Q-matrix misspecification under the DINA model. They found the Q-matrix 

misspecification had caused biased parameter estimates and lower classification accuracy 

corresponding to the examinees’ latent class. However, questions such as whether the results may be 

generalizable to more general contexts.  The purpose of this study is to estimate the effects of specific 

types of Q-misspecification on examinee classification accuracy under the generalized G-DINA 

model.  

The rest of the manuscript is structured as follows: In the theoretical framework, we first provide an 

overview of the Q-matrix, types of Q-matrix misspecifications and the generalized DINA model. In 

the method, the simulation design, the model estimation and the outcome assessment are described.  

Next the findings of this study are described. Lastly this manuscript is closed with a discussion of the 

findings. 

 

Background 

Q-matrix 

A critical step in cognitive diagnostic model is to develop the Q-matrix because CDM and the Q-

matrix are essential modeling process. Developing the Q-matrix defines the attribute structure 

measured by an assessment. An example of a JxK Q-matrix can be demonstrated as follows:  
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Where j indicates “item” and k indicates “attributes.” The element, qjk, is specified as “1” if the jth 

item requires the kth attribute to answer this item correctly; otherwise, qjk is specified as “0”. 

In a Q-matrix, each element qjk indicates whether the item j measures the attribute k, where qjk =1 

means item j measures the attribute k and qjk =0 means item j does not measure the attribute k. The 

Q-matrix reflects the loading structure of the multiple attributes on the items. The Q-matrix is specified 

by content experts and this specification process is a subjective activity  (Rupp, Templin, & Henson, 

2010). Hence, the quality of the Q-matrix determines the diagnostic information obtained from the 

CDM analysis. 

 

The Generalized DINA Model Framework   

The generalized DINA model, like all other CDMs, requires a J x K Q-matrix. The G-DINA 

discriminates latent classes into 2𝐾𝑗
∗

 latent groups, where 𝐾𝑗
∗ = ∑ 𝑞𝑗𝑘

𝐾
𝑘=1  represents the required 

attributes for item j. Each latent group is reduced to an attribute vector represented by 𝛼𝑙𝑗
∗ . In this study, 

it would suffice to use the reduced vector 𝛼𝑙𝑗
∗ = (𝛼𝑙𝑗1

∗ , … , 𝛼𝑙𝑗𝐾𝑗
∗

∗ ) instead of the full vector 𝛼𝑙𝑗 =

(𝛼𝑙𝑗1, … , 𝛼𝑙𝑗𝑘). Each latent group has the probability of answering correctly the item represented by 

P(𝛼𝑖𝑗
∗ ). The item response function (IRF) for G-DINA could be written as: 
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where 𝛿𝑗0 is the intercept, 𝛿𝑗𝑘  is the main effect by αk , 𝛿𝑗𝑘𝑘′ is the interaction effect by αk and αk’, and   

𝛿𝑗12…𝐾𝑗
∗is the interaction effect by α1 ,…, αk*. 
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The DINA model, that is the most commonly used reduced model, is a special case of the G-DINA 

model. By setting all the parameters, except 𝛿𝑗0 and 𝛿𝑗12…𝐾𝑗
∗, to zero, the IRF for DINA model is as 

follows: 
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Another special case of the G-DINA model is the A-CDM, which contains only the intercept and the 

main effects. The IRF for A-CDM is defined as follows: 
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This model contains only the intercept and the main effect of each attribute. 

 

METHOD 

Simulation Study 

The simulation study was aimed to examine the effects of Q-matrix misspecification and CDM misuse 

on classification accuracy. All data generation and estimations were conducted using the software R 

(R Core team, 2016). The data was generated using the saturated model G-DINA. The number of 

respondents, the correlation between attributes, and the number of items measured in a test were 

manipulated and resulted in 12 data-generating conditions with 1000 replications for each condition.  

For each of the generated datasets, three CDMs within the G-DINA framework were applied for the 

data analysis: the G-DINA, A-CDM and DINA models. Six Q-matrices, including 1 correctly specified 

Q-matrix and 5 misspecified Q-matrices were examined. In total, there were 216 different settings for 

data analysis, which included 18 diverse estimations and 12 different data-generating conditions.  

 

Number of respondents 

Three levels of number of respondents reflecting small, moderate and large samples were investigated 

in this study: N = 500, 1000 and 5000. Previous research has shown this is a relevant factor that 

influences model fit, parameter estimates, and classification (Chen, de la Torre, & Zhang, 2013; Cui, 

Gierl, & Chang, 2012; de la Torre, 2009; de la Torre & Douglas, 2004; Shu, Henson, & Willse, 2013). 

Several studies have shown that number of respondents should be at least 500 in order to have an 

acceptable model fit and relatively accurate parameter estimates even when using the reduced model 

as the generated model (Chen et al., 2013; Cui et al., 2012; Shu et al., 2013). The pilot study indicated 

that when the sample size increased to 500, the model fit achieved an acceptable level.  

  

Number of attributes 

This study focused on one level of the number of attributes K =4. A review of the CDM simulation 

studies indicates that there are usually three to eight attributes being designed in an assessment, which 

also reflects the number of attributes in application examples (Cheng, 2009; Chen et al., 2013; 

DeCarlo, 2012; de la Torre, 2009; de la Torre & Douglas, 2004; Huebner & Wang, 2011; Kunina-

Habenicht et al., 2012). Considering all the other factors being manipulated in the simulation and a 

fairly large estimation process, the attributes' number was fixed at four in this study. 
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Marginal attribute difficulty 

A multivariate normal distribution for latent attributes with the mean vector and correlation matrix  

were used to generate respondents’ true attribute patterns. In this study, the mean vector  of(0, 0, 0, 0) 

was used for the four attributes test; this led to the same marginal mastery proportions for all attributes 

of .50.  This mean vector is also called marginal attribute difficulty. 

 

Correlation between attributes 

Two levels of attribute correlation were set to values of  .4 and  .8 to represent moderate and high 

correlation(Henson, Roussos, Douglas & He, 2008), respectively. A range of .3 to .9 of the tetrachoric 

correlation is typical in educational assessment and CDM research (Cui et al., 2012; Henson, Templin 

& Douglas, 2007; Kunina-Habenicht et al., 2012).  A weakly correlated attributes level could be 

included as a contrast, but I chose not to do this to keep the overall simulation and estimation 

manageable. The correlations were set to be equal across all attribute pairs in the correlation matrix. 

 

Q-matrix specification 

 The number of items in a test was set to two levels in this study: J =14 and 28. The number of items 

and the number of attributes measured in a test are associated. For K =4, the number of all possible 

attribute patterns was 24=16, and there are 15 attribute patterns. Considering the computational time, 

we set the maximum number of attributes being assessed by an item to three. The item 1-14 in Table 

1 showed the Q-matrix specification for generation when J=14. This simulation design also 

investigated the conditions where the test length is equal to and greater than the number of possible 

attribute patterns. Two levels of the item number were examined in this study: J = 14 and 28 for the 

number of attributes K = 4. The Q-matrix for J=28 was a duplicate of Q-matrix for J-14. The correctly 

identified Q-matrix for J = 28 is also shown in Table 1. The Q-matrix for J = 14 was embedded as a 

subset of this Q-matrix. 

 

Table 1. Correct Q-Matrix of J = 14 and 28 

 Attribute  Attribute 

Item #1 #2 #3 #4 Item #1 #2 #3 #4 

1 1 0 0 0 15 1 0 0 0 

2 0 1 0 0 16 0 1 0 0 

3 0 0 1 0 17 0 0 1 0 

4 0 0 0 1 18 0 0 0 1 

5 1 1 0 0 19 1 1 0 0 

6 1 0 1 0 20 1 0 1 0 

7 1 0 0 1 21 1 0 0 1 

8 0 1 1 0 22 0 1 1 0 

9 0 1 0 1 23 0 1 0 1 

10 0 0 1 1 24 0 0 1 1 

11 1 1 1 0 25 1 1 1 0 

12 1 1 0 1 26 1 1 0 1 

13 1 0 1 1 27 1 0 1 1 

14 0 1 1 1 28 0 1 1 1 

Note. Items 1-14 are used when J = 14. 

 

Different types of the Q-matrix misspecification were investigated: under-fitting the Q-matrix 

(defining 1 as 0), over-fitting the Q-matrix (defining 0 as 1), and a balanced misfit (exchanging 0 and 

1). As shown in Table 2, taking the test with J=14 items as an example, qt-14 was the true Q-matrix 

for data generation. Two under-specified Q-matrices qu3-14 and qu2-14 meant that qu3-14 Q-matrix 
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changed all 3-attribute items into selected 2-attribute items, and this selection of the attribute deletion 

was random for each item; qu2-14 Q-matrix changed all 2-attribute items into selected 1-attribute 

items, and this selection of the attribute deletion was random for each item. Similarly, two over-

specifications qo1-14 and qo2-14 Q-matrices were created by randomly selecting the attribute being 

added. For creating the balanced misfit for the Q-matrix (qm-14), the items that needed to be altered 

were first randomly selected; then, the attributes that needed to be altered were selected randomly for 

each item. 

 

Table 2. The Q-Matrix Misspecification and True Q-Matrix 

K J Q-

matrix 

Alternations Item Altered Total # 

of 

changes 

(1 to 0) 

Total # 

of 

changes 

(0 to 1) 

Ave. # of 

attribute

s per 

item 

Ave. # 

of items 

per 

attribute 

4 14 qt-14 Data generating Q-matrix 0 0 0 2 7 

  qu3-14 All 3-attribute items are 

changed into selected 2-

attribute items. 

I11 - I14 4 0 1.71 6 

  qu2-14 All 2-attribute items are 

changed into selected 1-

attribute items. 

I5 - I10  6 0 1.57 5.5 

  qo1-14 All 1-attribute items are 

changed into selected 2-

attribute items. 

I1-4 0 4 2.29 8 

  qo2-14 All 2-attribute items are 

changed into selected 3-

attribute items. 

I5 - I10 0 6 2.43 8.5 

  qm-14 Attributes are deleted and 

added to balance out the 

overall number of changes. 

2 items randomly 

selected from I1-I4; 3 

items randomly 

selected from I5-I10; 

2 items randomly 

selected from I11-I14 

7 7 2 7 

4 28 qt-28 Data generating Q-matrix 0 0 0 2 14 

  qu3-28 Half of the 3-attribute items 

are changed into selected 2-

attribute items. 

I11 - I14 4 0 1.86 13 

  qu2-28 Half of the 2-attribute items 

are changed into selected 1-

attribute items. 

I5 - I10  6 0 1.79 12.5 

  qo1-28 Half of the 1-attribute items 

are changed into selected 2-

attribute items. 

I1-4 0 4 2.14 15 

  qo2-28 Half of the 2-attribute items 

are changed into selected 3-

attribute items. 

I5 - I10 0 6 2.21 15.5 

  qm-28 Attributes are deleted and 

added to balance out the 

overall number of changes. 

2 items randomly 

selected from I1-I4; 3 

items randomly 

selected from I5-I10; 

2 items randomly 

selected from I11-I14 

7 7 2 14 

 

The assessment with number of items J = 28 had doubled the items as in the assessment J =14. The 

misspecification of Q-matrix in J =28 only occurred in items 1 to 14, and items 15 to 28 always 
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remained the same as in true Q-matrix (qt-28). In this way, the number of misspecified items in J = 28 

was the same as in J =14 when controlling the type of misspecification, which made the results 

comparable for different test length. 

 

Item parameter specification for data generation  

The parameter setting was referenced from an empirical study (Basokcu, Ogretmen, &Kelecioglus, 

2013).  The true item parameters (𝛿𝑗𝑘) used in this simulation study were ranged from 0.12 to 0.68, 

and the detailed values were presented in Table 3. For simplicity, all the one-attribute items used the 

same parameter setting, and the same idea was followed for the two- and three-attribute items. 

 

Table 3. Item Parameters for Data Generation (d jk ) 

 Attribute Pattern and Parameters 

1-attribute item 0 1       

.21 .68       

2-attribute item 00 10 01 11     

.18 .25 .15 .59     

3-attribute item 000 100 010 001 110 101 011 111 

.26 .12 .17 .18 .13 .27 .26 .51 

 

Model selection 

Each of the generated datasets was analyzed by three CDMs within the G-DINA framework. The true 

generating model was the G-DINA model. In addition to the true model, two misused CDMs were 

used to analyze the data. misusage of CDM refers to incorrect parameterization of the modeling 

process. As two comparison models, A-CDM contained only intercept and main effects for each item; 

and the DINA model contained only intercept and the highest order of interaction effect for each item. 

 

Outcome Measures 

Classification accuracy (CA) is defined as the degree to which the classification of examinees’ latent 

classes analyzed by observed data agrees with examinees’ true latent classes (Cui et al., 2012). The 

simulated examinee attribute patterns were used as the true examinees’ latent classes; the attribute 

patterns estimated from the response data using MLE method were used as the estimated latent classes. 

The simulated and estimated latent class were then compared for each examinee. If they were 

consistent, a value of “1” was assigned to the examinee to represent being classified accurately; 

otherwise, a value of “0” was assigned for being classified inaccurately. By taking the average of 0/1 

over all examinees and all replications, the overall correct classification rates were calculated for each 

condition, which refers to overall classification accuracy (OCA). By taking the average of 0/1 for the 

examinees by each latent class, the class-specific correct classification rates were calculated, which 

refers to class-specific classification accuracy (CCA). In order to simplify the interpretation of the 

findings, the CCA was calculated based on one generating condition (n = 5000, ρ = .4 and J = 14) and 

being fitted with the various CDMs and Q-matrices. The OCA and CCA were then compared for all 

the estimation settings. 

 

RESULTS 

In CDM estimations, the classification is usually of primary interest because the decisions about the 

examinees are made based on the classification (Rupp, Templin, & Henson, 2010). Two types of the 

classification accuracy were illustrated in this part: the OCA and CCA. 
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Overall Classification Accuracy (OCA) 

Table 4 demonstrated the overall correct classification rates by the different levels of all factors. For 

the purpose of explaining the results more explicitly, the effects of N, J and on the OCA were the focus 

in Table 4. The impact of CDM misuse and Q-matrix misspecification on OCA is examined in Figure 

1. 

 

Table 4. Overall Classification Accuracy (OCA) in All Conditions 

    Q-matrix Specification 

Model r  J N qt qu3 qu2 qo1 qo2 qm 

G-DINA 0.4 14 500 0.711 0.689 0.525 0.706 0.695 0.467 

   1000 0.719 0.698 0.533 0.717 0.713 0.477 

   5000 0.727 0.705 0.542 0.726 0.725 0.481 

  28 500 0.886 0.879 0.837 0.885 0.883 0.815 

   1000 0.889 0.884 0.843 0.889 0.888 0.826 

   5000 0.893 0.888 0.850 0.893 0.893 0.834 

 0.8 14 500 0.720 0.731 0.647 0.714 0.709 0.629 

   1000 0.723 0.734 0.651 0.720 0.720 0.639 

   5000 0.726 0.733 0.650 0.725 0.724 0.644 

  28 500 0.873 0.876 0.846 0.871 0.870 0.824 

   1000 0.875 0.879 0.852 0.874 0.873 0.831 

   5000 0.877 0.881 0.858 0.877 0.876 0.837 

A-CDM 0.4 14 500 0.669 0.645 0.536 0.657 0.641 0.460 

   1000 0.675 0.652 0.540 0.666 0.647 0.462 

   5000 0.689 0.653 0.543 0.678 0.654 0.453 

  28 500 0.838 0.833 0.810 0.833 0.828 0.776 

   1000 0.850 0.846 0.816 0.847 0.845 0.792 

   5000 0.859 0.851 0.820 0.860 0.859 0.800 

 0.8 14 500 0.738 0.726 0.641 0.730 0.717 0.617 

   1000 0.750 0.736 0.642 0.751 0.743 0.619 

   5000 0.755 0.742 0.643 0.760 0.758 0.609 

  28 500 0.887 0.868 0.845 0.887 0.886 0.827 

   1000 0.888 0.868 0.846 0.889 0.888 0.831 

   5000 0.889 0.870 0.848 0.890 0.889 0.835 

DINA 0.4 14 500 0.643 0.648 0.512 0.448 0.526 0.374 

   1000 0.647 0.652 0.513 0.454 0.530 0.375 

   5000 0.648 0.652 0.515 0.458 0.532 0.379 

  28 500 0.851 0.855 0.767 0.736 0.773 0.737 

   1000 0.858 0.861 0.771 0.740 0.785 0.744 

   5000 0.865 0.867 0.781 0.746 0.794 0.753 

 0.8 14 500 0.673 0.664 0.652 0.505 0.613 0.485 

   1000 0.678 0.666 0.653 0.509 0.613 0.488 

   5000 0.682 0.668 0.653 0.511 0.613 0.490 

  28 500 0.870 0.872 0.828 0.712 0.811 0.750 

   1000 0.878 0.879 0.832 0.715 0.821 0.753 

   5000 0.882 0.883 0.836 0.717 0.825 0.759 

 

As shown in Table 4, when test length increased, the correct overall classification rates were much 

higher. For example, in G-DINA model with qt matrix, the correct overall classification rates went up 

from .711 to .886 as test length increased from J=14 to 28,controlling ρ= .4 and N = 500. This is 

expected because more pieces of information provided by the items for each dimension can be used to 

detect the classification. Second, as the sample size increased, the overall classification rates slightly 

increased for all conditions. For example, again in G-DINA model with qt matrix, the overall 

classification accuracy increased from .886 to .893 as sample size increased from 500 to 
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5000,controlling  ρ= .4 and J=28. Comparing the effects of J and N on classification accuracy, we can 

see that more items in a test are more critical than more examinees to get a better classification 

accuracy. Third, the increase in attribute correlation slightly increased the overall classification 

accuracy with few exceptional conditions. 

 
Figure 1. Overall Classification Accuracy (OCA) by CDM and Q-matrices 

 

To investigate the effects of the misspecification of CDM and Q-matrix, the correct overall 

classification rates were shown in Figure 1. The classification rates used in this figure were collapsed 

over the other factors N, J and for the simpler illustration.  

For CDM misuse, Figure 1 showed that the overall classification accuracy was highest in G-DINA no 

matter which specified Q-matrix was used. This makes sense because G-DINA was the generating 

model. Comparing the other two CDMs, A-CDM has higher classification rates than DINA. The A-

CDM yielded very similar overall classification rates with the true model G-DINA where A-CDM 

contained only main effects of the attributes and omitted all the interactions. The DINA model showed 

the lowest classification rates among three CDMs where DINA contained only the highest order of 

interactions among attributes.  

For investigating Q-matrix misspecification, the condition qt was the correct Q-matrix and could be 

used as baseline rates in each CDM. Figure 1 showed that the OCA in qt was higher than the other 

misspecified Q-matrices in three CDMs. The effects of the misspecified Q-matrices on classification 

accuracy were then compared with the true Q-matrix in different CDMs. The classification rates in G-

DINA and A-CDM showed similar patterns for the Q-matrix misspecification. Within these two 

models, the OCA for the condition qu3, qo1 and qo2 was close to the rates in qt. The misspecified qu2 

had lower overall classification rates, and the misspecified qm showed the lowest overall classification 

rates. This is not surprising because the qm included all types of misspecification. To compare the 

effects of different Q-matrices in the DINA model, the OCA was highest in qt; the condition qu3 

yielded almost the same results with qt; while the lowest classification still occurred in qm among all 

the conditions. The Q-matrices qo2 and qu2 in DINA model yielded the moderate classification rates. 
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Table 5. Correct Overall and Class-specific Classification Rates for Misspecifications of CDM and Q-matrix 

M
o

d
el

 

Q
-m

at
ri

x
 

O
v

er
al

l Attribute Classes 

0000 1000 0100 0010 0001 1100 1010 1001 0110 0101 0011 1110 1101 1011 0111 1111 

G
-D

IN
A

 

qt .802 .587 .653 .666 .666 .673 .810 .816 .830 .822 .836 .847 .922 .934 .934 .940 1 

qu3 .798 .688 .637 .609 .609 .578 .756 .728 .726 .758 .756 .815 .840 .890 .890 .912 1 

qu2 .719 .792 .532 .568 .568 .305 .502 .745 .500 .532 .406 .492 .849 .807 .807 .672 .944 

qo1 .800 .586 .648 .661 .661 .668 .806 .812 .827 .818 .832 .843 .923 .933 .933 .939 1 

 qo2 .797 .592 .631 .648 .648 .654 .792 .801 .816 .804 .817 .829 .921 .932 .932 .936 1 

 qm .692 .741 .290 .353 .353 .526 .438 .414 .556 .518 .471 .624 .673 .557 .557 .574 .994 

A
-C

D
M

 

qt .791 .647 .628 .623 .623 .599 .731 .753 .759 .767 .771 .776 .864 .872 .872 .877 .995 

qu3 .774 .740 .612 .592 .592 .541 .636 .652 .637 .688 .680 .782 .712 .809 .809 .830 .991 

qu2 .711 .781 .545 .593 .593 .307 .488 .728 .485 .524 .375 .481 .826 .800 .800 .664 .936 

qo1 .780 .612 .608 .603 .603 .583 .723 .733 .746 .759 .764 .764 .869 .879 .879 .882 .994 

 qo2 .787 .638 .608 .611 .611 .589 .726 .747 .754 .753 .762 .768 .867 .877 .877 .880 .997 

 qm .673 .735 .334 .362 .362 .481 .390 .355 .549 .434 .429 .516 .654 .553 .553 .531 .994 

D
IN

A
 

qt .765 .597 .551 .593 .593 .608 .684 .690 .698 .710 .715 .733 .922 .908 .908 .925 1 

qu3 .764 .601 .505 .547 .547 .571 .715 .705 .727 .765 .749 .766 .887 .906 .906 .925 1 

qu2 .693 .735 .449 .482 .482 .253 .506 .705 .462 .463 .330 .384 .843 .726 .726 .675 1 

qo1 .604 .246 .242 .240 .240 .286 .664 .629 .668 .548 .724 .627 .892 .870 .870 .848 1 

qo2 .686 .555 .439 .455 .455 .467 .568 .557 .570 .579 .579 .573 .864 .820 .820 .610 1 

 qm .591 .396 .221 .376 .376 .419 .384 .433 .492 .462 .445 .626 .725 .517 .517 .635 1 
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Class-specific Classification Accuracy (CCA) 

When we examined the respondents’ classification at each latent class level, it was worthwhile to note 

that classes with more attributes tended to have generally higher classification accuracy in various 

CDMs and Q-matrices (Table 5). For example, in the G-DINA and qt condition, the CCA ranged from 

0.587 to 1 for the class with no attribute to the class with all attributes. The attribute class in which all 

attributes were mastered (attribute pattern 1111) maintained very high correct classification rates no 

matter which CDM and Q-matrix were used. Especially in the DINA model, the misclassification of 

examinees in this attribute class never occurred. 

Comparing the different CDMs, the G-DINA model yielded the highest CCA in almost all the latent 

classes with few exceptions. When using qt in G-DINA model, the correct classification rates for one-

attribute mastery classes were at least 65%; and these rates reached at least 80% and 90% for two- and 

three-attribute mastery classes, respectively. A-CDM performs better than DINA in the classes with 

zero-, one- and two-attributes. The CCA by using qt and A-CDM were approximately .6 for one-

attribute mastery classes, .75 for two-attribute mastery classes, .87 for three-attribute mastery classes.  

However, the DINA model had higher than expected classification accuracy in three- and four-attribute 

mastery classes, even with misspecified Q-matrices. More specifically, focusing on the three-attribute 

mastery classes, the CCA of the DINA model using qt were .922, .908, .908 and .925, while the G-

DINA model using qt has almost the same classification accuracy. In qu2, qo1 and qo2, the CCA of 

the DINA model was slightly lower than G-DINA and higher than A-CDM in three-attribute classes’ 

estimations. In qu3, DINA even performed best among three CDMs in the classification accuracy of 

three-attribute latent classes (.887, .906, .906 and .925).  

Considering the Q-matrix misspecification, the class-specific classification rates are related to the 

different types of misspecified Q-matrices (under-, over- or mixed misspecification). G-DINA and A-

CDM showed a similar pattern: The over-specified Q-matrices (qo1 and qo2) did not have much 

impact on the class-specific classification accuracy. The under-specified Q-matrices, especially qu2, 

had much lower CCA in these two models. While in the DINA model, the misspecified qu2 and qo2 

seemed to have a more severe impact on CCA; the qo1 mainly affected the correct classification rates 

on the classes with fewer attributes.  The misspecified qm, for all three fitting models, showed the 

lowest classification rates, and the low class-specific classification rates occurred in almost all attribute 

classes.  

Furthermore, we noticed that the low class-specific classification rates corresponded to the attribute 

patterns that matched the manipulated attribute classes. For example, in the misspecified qu2 where 

two-attribute items were changed into one-attribute items, the correct classification rates of two-

attribute mastery classes (e.g. attribute class [1100]) dropped a great deal when compared with qt 

condition. The correct classification rates of one-attribute mastery classes (e.g. attribute class [0001]) 

decreased as well in all three CDMs. Unlike G-DINA and A-CDM, in the condition qo1 where the 

one-attribute items were changed to two-attribute items, the classification rates for having one attribute 

in DINA were very low which matched the manipulated items. In the condition qo2, the CCA of two-

attribute mastery classes were low as well in the DINA model. 

 

DISCUSSION and CONCLUSION  

The G-DINA model offers a flexible framework to investigate the issues in examinees’ diagnostic 

classification. The specification of Q-matrix and the choice of CDM play a critical role for achieving 

better classification accuracy. This study helps to understand better of the effects of CDM misuse and 

Q-matrix misspecification on classification accuracy under various conditions. The different factors, 

such as number of test items, number of examinees and attribute correlation, all have certain impacts 

on examinees’ classification. The outcome of CDMs provides meaningful formative test information 

about the multiple proficiencies of the attributes measured in each examinee. Although this study is 

sufficiently complex, it clearly can be extended by using a broader range of design. 
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This simulation study contributed in the following four aspects. First, the G-DINA model was used as 

a framework that aligned with the trend in CDM development. The simulation was conducted in the 

saturated model and fit the data with two reduced models as well as the saturated model, which better 

aligns to the practice of real data analysis. Second, both the Q-matrix misspecification and CDM 

misuse were investigated separately and conjunctively. Third, the under-, over- and mixed 

misspecified Q-matrices allow us to detect the more specific effects of Q-matrix misspecification 

under various conditions in a generalized CDM framework. Fourth, the overall classification accuracy 

and the class-specified classification rates (often the primary interest in CDM analysis) were 

investigated under different conditions in this study.  

Both the number of respondents and test length illustrated clear positive effects on classification 

accuracy. Despite the model selection and Q-matrix specification, the increase of the number of 

respondents and/or the test items always demonstrated the growth in the correct classification rates. 

One noticeable finding is that the increase in test length improved the classification accuracy more 

dramatically than the increase in sample size.  It provides an insightful direction to the practitioners, 

to assist in making the decision of which factors will be manipulated, in order to effectively improve 

the examinees' classification accuracy. 

Our results also demonstrated that model misuse does not noticeably affect the overall classification 

accuracy, even though the G-DINA model still maintained the highest level of classification accuracy. 

We simulated data in the saturated G-DINA model by mimicking the complex empirical situation. 

When estimating the data with various CDMs, we found the models performed differently under the 

consideration of examinees’ latent classes. For the examinees who have fewer attributes (e.g. one- or 

two-attribute), G-DINA and A-CDM models yield more accurate classification rates than the DINA 

model. A-CDM showed a better classification accuracy in the non-attribute mastery class. This may 

due to the structure of G-DINA and A-CDM models that they contains the main effects.  For the 

examinees who have more attributes (e.g. three- or four-attribute), the DINA model that contained 

only the highest order of interaction had higher than expected classification accuracy even with the Q-

matrix misspecification. Given these, although A-CDM is easier to interpret in practice, if we have 

large number of attributes, it may be worth considering having higher order interaction effects. 

One important finding in this study is that the misspecification of Q-matrix affected the overall 

classification accuracy in a more obvious way than model misuse. In practical application, the true Q-

matrix is unknown and there is a possibility that Q-matrix could be misspecified in the designing 

process. As expected, the true Q-matrix yielded the most accurate classification. In general, the under-

misspecified Q-matrices had more severe impact on CA than over-misspecified Q-matrices especially 

in the models with main effects. The misspecified Q-matrix qm was most problematic because the 

correct classification rates were low in almost all the conditions. Although the number of attributes 

held constant in qm, a large number of misspecification occurred. The qm contained all types of the 

misspecification and represented the most severe misspecification. Thus, it is not only the number of 

misspecified items that matters but also the types of misspecification. The attribute structure, rather 

than the number of attribute by item, is a much more important component in the diagnosis process. 

In practice, we may face a situation where there is an uncertainty in determining whether one item 

measures the attribute. We suggest that over-specification may be better than under-specification.  

Besides the effect on overall classification rates, the different types of misspecified Q-matrices also 

showed the effects on the corresponding latent class. When a certain attribute combination is not 

represented in the Q-matrix, the respondents mastering the same attribute combination are more likely 

to be misspecified.  A typical example in all three CDMs is the misspecified qu2, where two-attribute 

items were changed into one-attribute items. The classification rates decreased noticeably in the 

corresponding two-attribute mastery classes in all three CDMs. Thus inferences for the examinees in 

the associated classes should be more cautious. 

Moreover, the effects of differently specified Q-matrices on classification accuracy varied in three 

CDMs. For example, the over-specified Q-matrix (qo1and qo2) influenced the DINA model more 

severely, but not in the G-DINA and A-CDM. The balanced misfit Q-matrix qm had shown more 
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dramatic negative effect on the classification rates in DINA than the other two models. This may be 

due to the different features of three CDMs. The saturated G-DINA model contains the main effects 

and all the ways of interactions, the A-CDM contains the main effects only, and the DINA includes 

only the highest order of interaction. In sum, the G-DINA model had a more stable performance in all 

latent classes when considering Q-matrix misspecification, although A-CDM performed well in zero- 

and one-attribute mastery classes and DINA showed high classification accuracy in three- and four-

attribute mastery classes. 

Regardless of the different types of CDMs and Q-matrices, it was noteworthy that the examinees in 

the latent classes with more attributes had higher classification accuracy, and the examinees in the 

latent classes with fewer attributes could not be classified accurately. This becomes considerable in 

practice when applying these CDMs to identify the mastery and non-mastery of multiple attributes, 

especially for the examinees at the lower end. The attribute class mastering all attributes almost never 

showed any misspecification rates; while the attribute class with no attributes had low correct 

classification rates. For addressing the possible reasons of this phenomenon, future research may 

examine the impact of item difficulty and the distribution of attribute patterns. 

In practice, the importance of diagnostic test development framework and Q-matrix validation 

methods should be emphasized. After the Q-matrix is designed, we recommend validating the Q-

matrix using the method proposed in de la Torre (2008) and de la Torre and Chiu (2016) to check the 

possibility of misspecification. Yet it is not easy to evaluate the correctness of the Q-matrix due to its 

subjective nature and the complexity when applied to the model. When there is an uncertainly in 

determining if one item measures the attribute, over-specification may be better than under-

specification. In order to classify the examinees into latent groups, the selection of the CDMs may 

relate to which group of examinees are more concerned with. The saturated model usually yields more 

stable classification accuracy across all the latent classes. The model with higher order interactions 

should be considered when there are a number of attributes, although the model with only main effects 

is easier to interpret. Hopefully the findings of this study will provide some insights for practitioners 

and researchers in determining the Q-matrix and cognitive diagnostic models when facing various 

situations. 
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