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PARTIAL DERIVATIVE EFFECTS IN TWO-DIMENSIONAL

SPLINE FUNCTION NODES

OGUZER SINAN

Abstract. One of the methods is two-dimensional spline functions for to cre-
ate geometrical model of surface. In this study Eligibility of partial derivatives

values for each node was examined. These nodes are projection of creation

aimed surface. Created effects by the chosen values were evaluated. The
results of the application example was provided with a computer software de-

veloped.

1. Introduction

Figure 1. Conversational usage of mechanical spline.

In mathematics, a spline is a numeric function that is piecewise-defined by poly-
nomial functions([5][7]). In dictionary, the word ”spline” originally meant a thin
wood or metal slat in East Anglian dialect. By 1895 it had come to mean a flexible
ruler used to draw curves[10]. These splines were used in the aircraft and ship-
building industries. The successful design was then plotted on graph paper and the
key points of the plot were re-plotted on larger graph paper to full size. The thin
wooden strips provided an interpolation of the key points into smooth curves. The
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strips would be held in place at the key points (using lead weights called ”ducks”
or ”dogs” or ”rats”)([6][7]) as shown in figure1. It is commonly accepted that the
first mathematical reference to splines is the 1946 paper by [6], which is probably
the first place that the word ”spline” is used in connection with smooth, piecewise
polynomial approximation([8][7]).

Let T = ( t0, t1, · · · , tn−1 ) and U = ( u0, u1, · · · , un−1 ) here,
t0 < t1 < · · · < tn−1 are distinct ordered real numbers and u0, u1, · · · , un−1

are real numbers that represent each node. It describes a spline function fsp

fsp(t) =



f0 (t) , t0 ≤ t ≤ t1
f1 (t) , t1 < t ≤ t2

...
fn−3 (t) , tn−3 ≤ t ≤ tn−2

fn−2 (t) , tn−2 ≤ t ≤ tn−1

fj (tj) = uj , fj (tj+1) = uj+1, j = 0, 1, · · · , n− 2.

a, b ∈ R, a = t0 < t1 < · · · < tn−2 < tn−1 = b is to be; fj : [tj , tj+1]→ R,
j = 0 , 1 , · · · , n − 2, fsp : [a, b] → R. Each fj function may have any degree
that is polynomial functions. Often the first, second and third order polynomial
functions are used in practice([8][1]).

Figure 2. fj piecewise function.

1.1. Cubic spline functions. Let T = (t0, t1, · · · , tn−1), U = (u0, u1, · · · , un−1)
and G = (g0, g1, · · · , gn−1). fsp : [t0, tn−1] → R, u = fsp (t), t ∈ [t0, tn−1].
fj : [tj , tj+1]→ R, fj (t) = ajt

3 + bjt
2 + cjt + dj , j = 0, 1, · · · , n− 2 which

satisfied the conditions f
′

sp (ti) = gi, i = 0, 1, · · · , n− 1 is unique [9].

f
′

j (tj) = gj and fj (tj) = uj

f
′

j (tj+1) = gj+1 and fj (tj+1) = uj+1

j = 0, 1, · · · , n− 2

Condition can provides, at least third degree spline functions [9]. The cubic spline
function fsp( t ) has following representation [1].

wi =
1

ti − ti−1

(
ui − ui−1

ti − ti−1
− gi−1

)
ai =

1

ti − ti−1

(
gi − gi−1

ti − ti−1
− 2wi

)
bi = − (ti + 2ti−1) ai + wi

ci = gi−1 − 3ait
2
i−1 − 2biti−1
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di = ui−1 − ait3i−1 − bit2i−1 − citi−1

i = 1, 2, . . . , n− 1

1.2. CubicSPL Cubic spline subroutine. The following subroutine representa-
tion have input values that are three vectors establish for cubic spline function and
provision sought value of t. The result of this subroutine is a value that u = fsp(t).

double CubicSPL (double* T, double* U, double* G, double t)

Example 1.1. T = (1, 2, 3, 4, 5), U = (−3, 3, 2, −2, 1) and G = (0, 0, 0, 0, 0)
are vectors representing the values of nodes.

#define TMax 5
T[TMax] = { 1, 2, 3, 4, 5 } ;
U[TMax] = { −3, 3, 2, −2, 1 } ;
G[TMax] = { 0, 0, 0, 0, 0 } ;
double t = 3.7 ;
u = CubicSPL ( T, U, G, t ) ;

u : −1.1359999999998536

u = CubicSPL ( T, U, G, 2.07 ) ;

u : 2.9859860000000111

Graphical representation of the results are also observed at figure 3.

Figure 3. Graphical representation of example 1.1.

2. Two Dimensional Spline

a, b, c, d ∈ R and Ω = [a, b] × [c, d], consider the rectangle on tOx plane as Ω
region.

a = t0 < t1 < · · · < ti < · · · < tm−1 = b; m ≥ 1

c = x0 < x1 < · · · < xj < · · · < xn−1 = d; n ≥ 1

i = 0, 1, · · · , m− 1, j = 0, 1, · · · , n− 1

Ω region divided into (n− 1)× (m− 1)sub regions.

Ωi,j = {(t, x) : ti ≤ t ≤ ti+1, xj ≤ x ≤ xj+1}
i = 0, 1, · · · , m− 2; j = 0, 1, · · · , n− 2. For any Ωi,j sub region have this edge
cardinal points:

ζti, xj
, ζti+1, xj

, ζti+1, xj+1
, ζti, xj+1
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The cardinal points of each Ωi,j sub region defines a grid Ωgrd. Be introduced a
function λ : Ωgrd → R, λ (ti, xj) = u(i,j) on the grid extended on the Ω region [8].

U =
{
u(0,0), u(0,1), · · · , u(0,n−1), u(1,0), · · · , u(m−1,n−1)

}
Gt =

{
gt(0,0), gt(0,1), · · · , gt(0,n−1), gt(1,0), · · · , gt(m−1,n−1)

}
Gx =

{
gx(0,0), gx(0,1), · · · , gx(0,n−1), gx(1,0), · · · , gx(m−1,n−1)

}
u(i,j) ∈ R, gt(i,j) ∈ R, gx(i,j) ∈ R

λ (ti, xj) = u(i,j), λ
′

t (ti, xj) = gt(i,j), λ
′

x (ti, xj) = gx(i,j),

f : Ω→ R, f (ti, xj) = u(i,j), λ (ti, xj) = f (ti, xj)

i = 0, 1, · · · , m− 1, j = 0, 1, · · · , n− 1

The purpose is find f : Ω→ R, f (t, x) derivable real function [8].

H (t0, x) , H (t1, x) , H (t2, x) , . . . , H (tm−1, x) , x0 ≤ x ≤ xm−1

S (t, x0) , S (t, x1) , S (t, x2) , . . . , S (t, xn−1) , t0 ≤ t ≤ tn−1

H (ti, x) , i = 0, 1, · · · , m − 1, x0 ≤ x ≤ xn−1 describe direction of x spline
functions and S (t, xj) , j = 0, 1, · · · , n− 1, t0 ≤ t ≤ tm−1 describe direction
of t spline functions[8].

U, Gx and Gt data sets according with Ωgrd. These sets provides m amounts

U
Xi

=
{
u(i,j)

∣∣ j = 0, 1, · · · , n− 1
}

and G
Xi

=
{
gx(i,j)

∣∣∣ j = 0, 1, · · · , n− 1
}

vectors for each H (ti, x) spline functions direction of x and n amounts

U
T j

=
{
u(i,j)

∣∣ i = 0, 1, · · · , m− 1
}

and G
T j

=
{
gt(i,j)

∣∣∣ i = 0, 1, · · · , m− 1
}

vectors for each S (t, xj) spline functions direction of t. At the end of the m + n
amounts supply one-dimensional spline functions can be calculated.

Figure 4. m+ n amounts one-dimensional spline functions.
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Figure 5. The demonstration will consist of an auxiliary spline
function according to the direction.

3. Any f(t, x) on the Ω

Calculations can be started with the any direction spline functions the direction
of t or direction of x arbitrarily chosen. Let t0 ≤ l ≤ tm−1 and x0 ≤ k ≤ xn−1 .
If t direction spline functions are chosen, a supplementary spline function can create
using these spline functions.The solution is shown below.
Let k ∈ (x0, xn−1) and l ∈ (t0, tm−1). u(tsup, j) = S (l, xj), j = 0, 1, · · · , n−

1, f (l, k) = H (tsup, k). In detail u(tsup, j) = CubicSPL(T, U
T j
, G

T j
, l); for

j = 0, 1, · · · , n − 1 create a new U
Xsup

vector for use in x direction. Therefor

CubicSPL function need a G
Xsup

vector represent x direction derivative values of

H (tsup, x) ti ≤ l ≤ ti+1, G
Xi

and G
Xi+1

vectors represent partial derivative

values relationship H (ti, x) and H (ti+1, x) spline functions on direction x. Get
help these two vectors to determine G

Xsup
. U

Xsup
was obtained. ti ≤ l ≤ ti+1

and j = 0, 1, · · · , n− 1. As shown in figure 6.

Figure 6

(
g
Xsup

)
j

=
(
g
Xi

)
j

|ti+1 − l|
|ti+1 − ti|

+
(
g
Xi+1

)
j

|ti − l|
|ti+1 − ti|

f (l, k) = CubicSPL(X, U
Xsup

, G
Xsup

, k);
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4. Smooth Surface

At the direction of t and the direction of x, partial derivative values can be
arbitrarily chosen on the grid nodes. Nevertheless the created surface able to reach
somewhat smoothness using some basic rules. For spline functions direction of t :

(
g
T j

)
0

=

(
u
T j

)
1
−
(
u
T j

)
0

t1 − t0

(
g
T j

)
m−1

=

(
u
T j

)
m−2

−
(
u
T j

)
m−1

tm−2 − tm−1

(
g
T j

)
i

=


(
u
T j

)
i
−
(
u
T j

)
i−1

ti − ti−1

|ti+1 − ti|
|ti+1−ti−1|

+

(
u
T j

)
i+1
−
(
u
T j

)
i

ti+1−ti
|ti−1−ti|
|ti+1−ti−1|


i = 1, 2, · · · , m− 2, j = 0, 1, · · · , n− 1.

For spline functions direction of x :

(
g
Xi

)
0
=

(
u
Xi

)
1
−
(
u
Xi

)
0

x1−x0

(
g
Xi

)
n−1

=

(
u
Xi

)
n−2
−
(
u
Xi

)
n−1

xn−2−xn−1

(
g
Xi

)
j
=


(
u
Xi

)
j
−
(
u
Xi

)
j−1

xj−xj−1

|xj+1−xj |
|xj+1−xj−1|

+

(
u
Xi

)
j+1
−
(
u
Xi

)
j

xj+1−xj
|xj−1−xj |
|xj+1−xj−1|


i=0, 1,· · ·,m−1, j=1, 2, · · ·,n−2.

5. Results and Discussion

A computer program was developed as a result of this study is. Using the
http://oguzersinan.net.tr web address that is accessible to this computer program.

U =

 3 4 3
4 5 4
3 3 3

, Gx =

 0 0 0
0 0 0
0 0 0

 and Gt =

 0 0 0
0 0 0
0 0 0

 get in that

way. Surface appearance is shown in figure 7. Computer software by the method
described hereinabove, when it determines partial derivatives of nodes is calculated

as Gx =

 1 0 −1
1 0 −1
0 0 0

 and Gt =

 1 1 1
0 0 0
−1 −2 −1

. New surface appearance

is shown in figure 7.
Determine the value of partial derivatives with the weighted arithmetic mean

method on two-dimensional cubic spline functions reveals appropriate results.
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Figure 7. On left side without correction, on right side after
smoothness correction.
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