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Abstract 
 

The experimental indications are discussed that in insulators thermal conductivity is exclusively due to Debye 

bosons (sound waves). Phonons do not obviously contribute to thermal conductivity. In metals, thermal 

conductivity is exclusively due to electronic degrees of freedom. Phonons and Debye bosons do virtually not 

contribute to thermal conductivity of the metals. It appears that the electronic system of the metals has also 

continuum properties with bosons as excitations. We will call the bosons of the spatially continuous conduction 

band, CB-bosons. In contrast to the bosons of the elastic continuum (Debye bosons), CB bosons and their 

dispersion relation are not yet explored. Since bosons propagate ballistic, independent of lattice structure, they are 

the predominant carriers of thermal conductivity. Their large mean free path enables a very efficient heat transport 

over large distances. Identification of boson fields is limited to their heat capacities. The heat capacity of the 

Debye boson field is ~T3. The heat capacity of the CB-boson field is ~T. In the approximation of an infinite mean 

free path of the bosons and negligible lattice contributions, thermal conductivity is proportional to the heat 

capacity of the boson field. Thermal conductivity therefore allows for a separate visualization of the heat capacity 

of the boson fields. The two power functions of temperature (~T3 and ~T) hold up to a temperature of about 

10…30 K only. At this temperature thermal energy gets transferred to the atomistic degrees of freedom (phonons, 

band structure states). This is a typical crossover event. For larger temperatures the boson system accumulates no 

longer thermal energy and its heat capacity tends to zero. In this way, a sharp maximum of thermal conductivity 

result at about 10 to 30 K. At ambient temperature the two power functions of temperature (~T3, ~T) have 

completely disappeared. When phonons are the relevant excitations, thermal conductivity of insulators tends to 

zero. In metals, crossover to the conventional (atomistic) conduction band states results in a finite and nearly 

temperature independent thermal conductivity. 
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1. Introduction 

Thermal conductivity of solids is a not well understood 

phenomenon [1-3]. As is well known, in all solids heat 

transport can be described by the same type of differential 

equation [1-5]. Atomistic structures need not to be 

considered. This means, thermal conductivity is a 

macroscopic phenomenon. One could call the differential 

equation of heat transport universal.  

As for the elastic properties of solids [6], for thermal 

conductivity the solid can be treated as a continuous 

medium. Quite generally, the excitations of a continuous 

medium are bosons. Independence of atomistic structures, 

that is universality, is typical for boson controlled 

thermodynamic phenomena. In fact, as we will see, the 

material specific atomistic system of phonons does not 

contribute obviously to thermal conductivity. Instead, the 

excitations of the continuous (elastic) solid are relevant for 

thermal conductivity.  

The bosons of the elastic continuum are the well-

known Debye bosons (sound waves). Since the translational 

symmetry of the elastic continuum is invariance with 

respect to transformations of the length scale, the 

momentum of the Debye bosons is a conserved quantity. 

Debye bosons therefore propagate ballistic over large 

distances, rather independent of atomistic structures and 

crystal imperfections. This propagation mode can be termed 

universal. The ballistic propagation mode makes Debye 

bosons particularly suitable for heat transport. Ballistic 

propagation implies a simple dispersion relation. As is well 

known, to a good approximation the dispersion of the mass-

less Debye bosons is a linear function of wave vector for all 

energies. However, the observed weak deviations from 

linearity (Figure 2 and 3) indicate that the Debye boson 

field is not a completely free field but interacts moderately 

with the atomistic background. 

In [4] it was argued that in harmonic approximation 

phonons do not interact with each other and, as a 

consequence, are unable to transport heat. Curiously, at 

temperatures of 10 to 30 K where the harmonic 

approximation can be expected to hold reasonably, thermal 

conductivity exhibits a surprisingly sharp maximum. The 

sharp maximum is indicative of a crossover event, in the 

sense of Renormalization Group (RG) theory [7,8]. As we 

know from RG theory, a crossover means a change of the 

relevant excitation spectrum. In fact, Debye bosons and 

phonons are distinguished by different translation 

symmetries and, as a consequence, have different excitation 

spectra (Figures 2 and 3). Phonons are the particles of the 

discrete and periodic translational symmetry of the lattice 

while Debye bosons are the particles of the continuous 
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translational symmetry of the infinite solid. The largest 

phonon energy is given by the inter-atomic interaction 

strength. Formally, for the Debye bosons with linear 

dispersion there is no upper energy limit. Note that the 

Debye boson field has identical thermodynamic properties 

as the electromagnetic radiation field. 

Thermal energy is either in the Debye boson field or in 

the system of lattice vibrations. In terms of RG theory, the 

two thermal reservoirs get alternatively relevant. In other 

words, the dynamic symmetry is clearly defined by the 

symmetry of the relevant system. The non-relevant system 

accumulates no longer thermal energy and its heat capacity 

tends to zero. Relevance has the severe consequence that 

thermal population of all available states of the atomistic 

and of the continuous system cannot be according to the 

Boltzmann factor but is subject to the symmetry selection 

rule of relevance. For instance, at sufficiently low 

temperatures phonons are not relevant, and their heat 

capacity is zero (see Figure 4). Under this condition 

atomistic structures are unimportant. The observed low-

temperature heat capacity of the solid then is the heat 

capacity of the Debye boson field and follows ~T3 

dependence. Vanishing heat capacity contributions of 

phonons can be evidenced by showing that the observed 

heat capacity agrees with the heat capacity of the Debye 

boson field, calculated from the known sound velocities [9]. 

The T3 function of the Debye boson field is universal not so 

much because it is observed for all solids but because it 

holds over a finite temperature range, up to crossover of 

thermal energy to the lattice system. In the observed heat 

capacity, the crossover to phonon system shows up as 

deflection from T3 function. This is a gradual process.     

As will be shown in this communication, thermal 

conductivity (Figure 5 and 6) provides an individual 

visualization of the heat capacity of the Debye boson field, 

at least qualitatively. This is because thermal conductivity 

is exclusively due to Debye bosons. Without interactions 

with the lattice, the heat capacity of the Debye boson field 

would be according to T3 function for all temperatures. It is 

evident that the dramatic increase of heat capacity 

according to T3 function cannot continue up to high 

temperatures. In fact, the T3 function stops at crossover of 

thermal energy to the phonon system. At ambient 

temperature the exploding T3 function has completely 

disappeared, meaning that the heat capacity of the Debye 

boson field is near zero. A vanishing heat capacity of the 

Debye boson field at elevated temperatures reveals from the 

fact that for all solids the observed heat capacity saturates 

reasonably at atomistic Dulong-Petit limit. This shows that 

at ambient temperature the observed heat capacity is 

determined by the lattice vibrations (phonons). As a 

consequence, the dispersion relation of the Debye bosons is 

no longer thermally populated and the heat capacity of the 

Debye boson field virtually is zero. Nevertheless, at all 

temperatures, excitation of Debye bosons (sound waves) is 

possible out of thermal equilibrium, irrespective of whether 

or not the dispersion of the Debye bosons is thermally 

populated. Heat transport by Debye bosons is also a process 

out of thermal equilibrium and is possible at all 

temperatures. 

Above crossover temperature, when phonons have 

become the relevant excitations, the observed (total) heat 

capacity continuous increasing but thermal conductivity 

decreases dramatically. This reflects the decreasing heat 

capacity of the Debye boson field, and, at the same time, 

shows that the relevant phonons do no contribute to thermal 

conductivity. The sharp maximum of thermal conductivity 

is near crossover temperature. In the total heat capacity, the 

transfer of thermal energy from boson field to lattice system 

appears as beginning saturation towards Dulong-Petit limit.   

The finite validity range of Debye´s T3 function results 

from the fact that the dispersion of the Debye bosons is 

fairly linear for all energies. Note that the dispersion of the 

acoustic phonons is given by sine function of wave vector 

and therefore is linear asymptotically for q→0 only. At 

elevated temperatures, the acoustic phonons become the 

relevant excitations because they have lower dispersion 

energies. Crossover to phonon system is associated with an 

analytical change from universal T3 function to a different 

and material specific function of temperature. However, 

this crossover proceeds in two steps (Figure 4). Below a 

first crossover at TAC (amplitude crossover) phonons do not 

contribute at all to the heat capacity. For T<TAC, finite 

contributions of phonons to the heat capacity are an 

exceptional situation [9]. Relevant phonons are noticed by a 

heat capacity that is larger than the heat capacity of the 

Debye boson field calculated from the known sound 

velocities. In other words, the observed heat capacity can be 

only larger than the calculated Debye heat capacity. 

Equivalently, the calorimetric Debye temperature, 

evaluated from heat capacity measurements, can be only 

smaller than the elastic Debye temperature calculated from 

the sound velocities. It is evident that because of possible 

contributions of phonons, the correct Debye temperature 

has to be evaluated from sound velocity measurements and 

not from heat capacity measurements [9]. Note that the 

Debye temperature is the characteristic parameter of the 

boson field.  

In the temperature range of T<TAC phonons are 

negligible and thermal conductivity reaches its maximum. 

This shows clearly that thermal conductivity is due to 

Debye bosons. For T>TAC the heat capacity of the phonon 

system is no longer negligible. Emerging heat capacity 

contributions due to phonons is not a gradual process but 

proceeds as a crossover event. As long as the heat capacity 

of the Debye bosons is larger than the emerging heat 

capacity of the phonons, Debye bosons remain the relevant 

excitations, and the universal T3 function is preserved. The 

finite contribution of the non-relevant phonons is to 

increase the pre-factor of the T3 function. This type of 

crossover we have called amplitude crossover. It is typical 

for finite but non-relevant energy degrees of freedom that 

they leave the universal class (the exponent) unchanged and 

enter the pre-factor of the universal power function only. 

The intrinsic heat capacity of the non-relevant energy 

degrees of freedom therefore becomes not obvious. As a 

conclusion, for a limited temperature interval (between TAC 

and a second crossover at T*) phonons and Debye bosons 

contribute together to the observed heat capacity. This 

temporally increases the heat capacity over the Debye value 

[10]. The phonon enhanced heat capacity of the Debye 

boson field gives rise to a sharply decreasing Debye 

temperature as a function of temperature [11]. Finally, at a 

second crossover temperature at T*, phonons become the 

relevant excitations and take over dynamics. The T3 

function of the Debye boson field then ceases and the 

observed heat capacity increases more slowly as a function 

of increasing temperature. For T>T* the Debye boson field 

accumulates no longer thermal energy, and its heat capacity 

tends to zero. In this way the heat capacity of the Debye 
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boson field assumes an unusually sharp maximum. Thermal 

conductivity just reflects this behavior of the heat capacity 

of the Debye boson field. Note that in the limit of negligible 

lattice contributions and a mean free path of the Debye 

bosons of larger than the linear dimension of the sample, 

thermal conductivity is strictly proportional to the heat 

capacity of the Debye boson field. For T>T* the observed 

heat capacity increases much weaker than T3 function. This 

lets ΘD(T) increase again [11]. Due to the two crossover 

events at T=TAC and at T=T* a sharp minimum results in 

ΘD(T). Note, however, that in temperature regions with 

finite phonon contributions, evaluation of a Debye 

temperature is not meaningful. For temperatures of T>T* 

thermal conductivity of insulators already is vanishingly 

small and approaches zero. At ambient temperature, the 

residual thermal conductivity of the insulators is on the 

strongly decaying tail of the heat capacity of the Debye 

boson field. As a conclusion, when phonons come into play 

(for T>TAC) thermal conductivity starts decreasing strongly. 

This shows that thermal conductivity by phonons is 

negligibly small. Interactions with phonons impede heat 

transport by Debye bosons.  

Symmetries are very useful basic concepts to start with, 

also in thermodynamics. However, for all parts of physics 

symmetry violations are known. In the present context this 

means that in spite of their different (translational) 

symmetries, Debye bosons and phonons are not completely 

independent of each other but interact visibly. Interactions 

of Debye bosons with the atomistic background have two 

effects: they shorten the mean free path of the bosons and 

decrease their velocity (Figure 1) [6]. This is as for photons 

travelling across an optically dense medium. In fact, in all 

solids sound velocities decrease as a function of increasing 

temperature. The slope of the Debye dispersion line 

therefore is not perfectly constant but decreases weakly 

with thermal energy. Note that the sound velocity measured 

at temperature T gives the slope of the Debye boson 

dispersion relation at thermal energy kBT [12]. If the 

dispersion relation of the Debye bosons is already slightly 

curved at the lowest temperatures this can cause marginal 

deviations from perfect T3 function in the heat capacity of 

the boson field. Very sensitive in this respect are plots of 

cp(T)/T3 vs. temperature. For strong Debye boson-phonon 

interaction no really constant behavior results for T→0 in 

plots of cp(T)/T3 [10,11]. n insulators with high crystal 

perfection and low intrinsic Debye boson-phonon 

interaction, thermal conductivity starts with the T3 function 

of the heat capacity of the Debye boson field (Figure 7). 

However, in thermal conductivity the T3 function holds up 

to a much lower temperature than in heat capacity. This 

indicates a significant decrease of the mean free path of the 

Debye bosons as a function of increasing temperature. 

Onset of relevant damping processes for the Debye bosons 

is a threshold controlled crossover event and decreases the 

exponent of three in discrete steps. In imperfect crystals 

and/or in crystals with a strong intrinsic Debye boson-

phonon interaction, the explicit temperature dependence of 

the mean free path of the Debye bosons superimposes on 

the T3 function and decreases the exponent in thermal 

conductivity below a value of three. In addition to 3, 

exponent values of 2.5 and of 2 can clearly be identified 

(Figure 7-9). As a consequence, the maximum of thermal 

conductivity depends significantly on the quality of the 

sample. Reliable absolute conductivity values can nearly 

not be given. Of course, for crystals with high lattice 

perfection, the maximum of thermal conductivity is fairly 

high. 

Near amplitude crossover at TAC where phonons start 

contributing finitely to the heat capacity, thermal 

conductivity has already passed its maximum. Apparently 

phonons act as a sink for the Debye bosons. The strong 

damping of the Debye bosons for T>TAC makes the 

decreasing high temperature flank of thermal conductivity 

maximum more steep and lets the maximum appear more 

sharp. The maximum of thermal conductivity is near to the 

first crossover in the heat capacity at TAC and not at the 

expected maximum of  the boson heat capacity near ~T*. 

In metals, thermal conductivity also exhibits a sharp 

maximum in the same temperature range of 10 to 30 K. 

However, heat transport in metals is exclusively due to 

electronic degrees of freedom [3]. Debye bosons are not 

involved in the heat transport of the metals as reveals from 

complete absence of the T3 term. This is indicative of a 

sharp symmetry selection rule for the relevant carriers of 

heat transport.  

 

2.  Construction of the Dispersion of the Debye Bosons 

The mass-less Debye bosons cannot be observed using 

inelastic neutron scattering. With inelastic neutron 

scattering, phonons are detected exclusively. This is a 

matter of the excitation process. By the microscopic process 

of impact of neutrons, the local atomistic degrees of 

freedom of phonons are excited. On the other hand, Debye 

bosons can be excited by macroscopic methods such as by a 

transmitter attached to the surface of the sample. In the 

atmosphere, excitation of sound waves is possible by 

vibrating membranes. In other words, propagation of sound 

waves is independent of the atomic structure of the 

medium.  Only from sound velocity measurements the 

dispersion of the Debye bosons can be obtained. In fact, the 

sound velocity measured at temperature T gives the slope of 

the dispersion relation of the Debye bosons at thermal 

energy of kBT. The applied sound frequency defines the 

sampling width along dispersion line. In the approximation 

of a temperature-independent sound velocity, the dispersion 

of the Debye bosons is a linear function of wave-vector for 

all energies. This, however, is an idealization since the 

Debye boson field is not a free field but interacts weakly 

with the atomistic background of phonons and lattice 

defects. Interactions with the atomistic background let 

sound velocities and elastic constants decrease slightly as a 

function of temperature (Figure 1) [6]. In other words, with 

increasing temperature, interactions between Debye bosons 

and acoustic phonons increase. The decreasing sound 

velocity leads to a weaker than linear dispersion of the 

Debye bosons as a function of excitation energy. In general, 

interactions between Debye bosons and acoustic phonons 

are stronger for longitudinal polarization compared to 

transverse polarization. Additionally, elastic constants and 

sound velocities depend somewhat on sample perfection. 

This precludes exact evaluations of the two quantities. 

Thermal conductivity therefore also depends on sample 

perfection. 

Figure 1 visualizes the temperature dependence of the 

normalized sound velocities (Debye bosons) of cubic NaI 

(NaCl structure) as a function of temperature [6]. These 

data apply to cube edge. In cubic systems the relation 

between sound velocities and elastic constants along cube 

edge are given by: vL=(c11/ρ)1/2 and vT=(c44/ρ)1/2 with ρ as 

mass density or specific gravity (ρ=3.67 g·cm-3 for NaI) and 
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cij as elastic constants [13]. It can be seen that vL has 

stronger temperature dependence than vT. This is observed 

for the majority of all solids. In other words, sound waves 

with longitudinal polarization interact stronger with 

phonons compared to sound waves with transverse 

polarization. At Debye temperature of ΘD=167 K [14] no 

anomaly is visible in the temperature dependence of the 

sound velocities. Note that in his field theory of 1912, P. 

Debye has cut the dispersion of the Debye bosons at an 

energy of ΘD·kB in order to prevent thermal explosion of the 

heat capacity of the boson field according to ~T3 function 

[15]. As we now know, this cutting procedure is physically 

not reasonable. At the time of Debye, crossover events were 

unknown. The T3 function stops because of the crossover of 

thermal energy from boson field to phonon system at about 

10…30 K. In contrast to the boson excitation spectrum with 

no (intrinsic) upper energy limit, the phonon system has a 

clearly defined upper energy such that the observed heat 

capacity saturates at the atomistic Dulong-Petit limit. The 

unphysical consequence of Debye´s cut-off procedure is 

that the solid should have no longer elastic properties for 

thermal energies of larger than ΘDkB. This is obviously not 

correct. As is well known, solids have elastic properties for 

all temperatures up to melting point. This shows that the 

dispersion of the Debye bosons continues up to energies of 

kBTm with Tm as melting temperature. Equivalently, sound 

waves can be excited at all temperatures. 
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Figure 1.  Normalized sound velocities for transverse 

polarization (upper curve) and for longitudinal polarization 

(lower curve) measured along cube edge of NaI as a 

function of temperature [6]. The stronger temperature 

dependence for longitudinal polarization indicates stronger 

interactions between sound waves (Debye bosons) and 

phonons. As a consequence, for longitudinal polarization 

the dispersion of the Debye bosons deviates stronger from 

linearity. No anomaly is visible at Debye temperature of 

ΘD=167 K [14]. 

 

In order to construct the dispersion relation of the 

Debye bosons from the experimentally known sound 

velocities for transverse and longitudinal polarization (vL/T), 

we simply assume that the sound velocity measured at some 

temperature T, vL/T(T), gives the slope of the dispersion of 

the Debye bosons at dispersion energy E=kB·T, with kB as 

Boltzmann constant. The corresponding reduced wave 

vector value is set equal to q/q0=a0·kBT/hvL/T with a0 as 

lattice parameter and h as Planck´s constant. Since for most 

solids sound velocities and/or elastic constants have been 

measured up to melting temperature, it is possible to 

construct the dispersion of the Debye bosons up to an 

energy of E=kBTm with Tm as melting temperature (Tm=933 

K for NaI) [16]. Commonly kBTm is a much larger energy 

than the largest energy of the acoustic phonons. 
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Figure  2.  Dispersions of acoustic phonons with 

longitudinal and transverse polarization (circles), 

measured along cube axis (a0=6.4728 Å ) of NaI, using 

inelastic neutron scattering [17]. Dispersions of the Debye 

bosons calculated from the temperature dependence of 

sound velocities [6] are given by filled circles. For small 

wave vector values phonons have adapted to the dispersion 

of the Debye bosons and start linearly. No anomaly is 

visible at Debye´s cut-off energy of kB·ΘD (ΘD=167 K)[14]. 

 

It is a somewhat confusing experimental observation 

that the initially linear dispersions of the acoustic phonons 

agrees with the measured sound velocities. This allows 

evaluation of sound velocities from phonon dispersions but 

does not mean that Debye bosons and phonons become 

identical particles in the limit of large wave-lengths. The 

translational symmetries of the two particles remain 

different also for λ→∞. The reason for the initially identical 

dispersion is that due to inevitable interactions between 

Debye bosons and phonons the two associated dispersion 

relations attract each other. Note that the dispersion 

relations of particles with different symmetries can attract 

each other. The dispersions of particles with the same 

symmetry are repelling. For a strong Debye boson-phonon 

interaction the dispersion of the acoustic phonons assumes 

the linear dispersion of the Debye bosons over a 

considerable energy and wave-vector range. In other words, 

phonon dispersion gets attracted by the linear dispersion of 

the Debye bosons and not vice versa. As an example of 

strong Debye boson-phonon interactions Figure 2 shows 

phonon dispersions measured along edge of the cubic unit 

cell of NaI (a0=6.4728 Å ) using inelastic neutron scattering 

(circles) [17]. It can be seen that for longitudinal 

polarization a rather abrupt analytical crossover occurs in 

the dispersion relation of the acoustic phonons. Up to an 

energy of ~2 THz (~96 K) the dispersion of the acoustic 

phonons has adapted to the linear dispersion of the Debye 

bosons. The slope of the linear section agrees excellently 

with the sound velocity of ~3200 ms-1 (filled circles) [6,14]. 

As a conclusion, phonon dispersion is attracted by the 

dispersion of the sound waves. Note that at T=96 K the 

dispersion of the Debye bosons is no longer thermally 

populated. In other words, attraction of the dispersions of 

Debye bosons and acoustic phonons is independent of 
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whether the dispersion relations are thermally populated or 

not. It is evident that the larger the linear section in the 

dispersion of the acoustic phonons is, the larger is the 

Debye boson-phonon interaction. Additionally, strong 

Debye boson-phonon interactions give rise to a strong 

temperature dependence of the sound velocity and to 

noticeable deviations of the dispersion of the sound waves 

from linearity. As a conclusion, due to Debye boson-

phonon interaction it becomes possible to observe the 

dispersion of the mass less Debye bosons using inelastic 

neutron scattering. 

Phonon dispersions for larger wave vector values than 

the linear section can be fitted by sine-functions of wave 

vector including a constant phase shift in the argument. As 

we have explained earlier [12], the empirical phase shift in 

the argument of the sine functions is another measure of the 

Debye boson-phonon interaction strength. In fact, for 

transverse polarization, Debye boson-phonon interaction is 

weaker and the phase shift is smaller. The sine function of 

wave vector (including phase shift) then holds over a larger 

q-range, and the initial section with linear dispersion is 

smaller. As a conclusion, strong Debye boson-phonon 

interactions manifest for all q-values. Note, however, that 

the sine function is the dispersion of the linear atomic chain 

[5]. This is not self-evident for three-dimensional bulk 

materials. It is evident that lattice theories [5] can give 

adequate description of phonon dispersions only in the case 

of negligible Debye boson-phonon interactions. In 

particular, a sharp functional crossover in the phonon 

dispersion is beyond lattice theories. 

At the Debye temperature of NaI of ΘD=167.6 K 

(≈3.49 THz) [14] no anomaly is visible in the dispersion 

relations of the Debye bosons. In particular boson 

dispersion continues beyond Debye´s cut-off limit of ΘD·kB. 

Another important detail in Figure 2 is that the dispersion 

of the Debye bosons continues much beyond zone 

boundary. In principle, the shortest possible wavelength of 

the Debye bosons is of the order of the diameter of the 

sources of the Debye bosons. In [12] it was argued that the 

sources of the Debye bosons must be the nearly spherical 

atomic cores. 
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Figure 3. Dispersions of the acoustic phonons along cube 

edge of MgO (filled circles) measured by inelastic neutron 

scattering [18]. The dispersions of the Debye bosons have 

been obtained from the temperature dependence of the 

sound velocities (see text) [6]. Initially, phonon dispersions 

start with the same slope as the dispersions of the Debye 

bosons. 

As a second example with weaker Debye boson-

phonon interactions Figure 3 shows similar results as for 

NaI but for cubic MgO [6,19]. The dispersions of the 

acoustic phonons approach sine functions of wave-vector 

more closely. The phase shifts in the argument of the sine 

functions are smaller than for NaI. Again, no anomaly is 

visible in the dispersions of the Debye bosons at ΘD·kB with 

ΘD=940 K (~19.6 THz) [19]. Melting temperature of MgO 

is Tm=3105 K (~64.7 THz) [16]. The dispersions of the 

Debye bosons much continue beyond zone boundary. 

Our main interest is in the question: how do phonons 

and Debye bosons contribute to thermal conductivity. As 

we have explained, thermal conductivity and heat capacity 

cannot be discussed independent of each other. In 

particular, the different appearance of the crossover of 

thermal energy from Debye bosons to phonons in heat 

capacity and in thermal conductivity has to be discussed. In 

the heat capacity this crossover proceeds in two steps. 

Below crossover temperature TAC phonons do not 

contribute at all to the heat capacity. This can be evidence 

by showing that the observed T3 function agrees with the T3 

function of the Debye boson field, calculated from the 

observed sound velocities [9]. Interestingly, in insulators 

thermal conductivity has its maximum for T<TAC. This 

shows that phonons are not involved in thermal 

conductivity. Only for T>TAC phonons contribute finitely to 

the heat capacity, and thermal conductivity decreases 

strongly. In order to illustrate the sharp onset of phonon 

contributions to the heat capacity Figure 4 shows data of the 

coefficient of linear thermal expansion, α [21], and of heat 

capacity [22] as a function of absolute temperature to a 

power of three. The two data sets have been matched 

together. The perfect proportionality conforms to Grüneisen 

relation. 
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Figure 4.  Coefficient of linear thermal expansion, α, 

(circles) and heat capacity (filled circles) of the Rare Gas 

Solid argon as a function of absolute temperature to a 

power of three [21,22]. Data of both quantities are 

proportional to each other (Grüneisen relation) and have 

been matched together. The amplitude crossover at TAC=4.4 

K marks the sharp onset of phonon contributions to the heat 

capacity. For T<TAC phonons contribute negligibly to the 

heat capacity. 

 

It can be seen in Figure 4 that emergence of phonon 

contributions to the heat capacity proceeds as a crossover 

event, giving rise to a sharp kink (amplitude crossover). 

The increased pre-factor of the T3 function for T>TAC is a 

qualitative measure for the heat capacity of the phonons. 
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After a second crossover event at T* (not shown in Figure 

4) the heat capacity increases much weaker and starts 

saturating towards Dulong-Petit limit. For T>T* Debye 

bosons contribute negligibly to the observed heat capacity. 

In other words, when phonons are the relevant excitations 

thermal conductivity tends to zero.  

 

2. Thermal Conductivity of Insulators 
Figure 5 shows two typical examples of the sharp 

maximum of thermal conductivity of insulators [2]. 

Amplitude crossover at T=TAC is on the high temperature 

flank of conductivity maximum. As a conclusion, upon 

emergence of phonons, heat transport by Debye bosons 

breaks down dramatically. In other words, phonons impede 

thermal conductivity by Debye bosons. Above a second 

crossover temperature at T* phonons are the relevant 

excitations and thermal conductivity tends to zero. This 

shows that thermal conductivity by phonons is negligibly 

small. Appearance of the maximum of thermal conductivity 

at a temperature of lower than TAC can be explained by 

damping processes in the propagation of Debye bosons 

and/or by the fact that the crossover at TAC is not an as 

sharp event as a phase transition but spreads over a finite 

width. 

Another frequently occurring exponent is 2 (Figure 9). 

Comparison of Figure 7 and Figure 8 shows that depending 

on crystal quality T3 and T5/2 functions can occur for 

different LiF and Al2O3 samples.    
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Figure 5.  Two typical examples of the sharp maximum in 

thermal conductivity of insulators [2]. The maximum is in 

the temperature range T<TAC where Debye bosons (sound 

waves) are the relevant excitations and heat capacity 

exhibits T3 dependence (Figure 4). For T>TAC phonons 

contribute finitely to heat capacity and thermal conductivity 

tends to zero. For explanation of TAC and T* see text. 

 

In many materials the increasing and decreasing flank 

of thermal conductivity can be fitted by power functions of 

absolute temperature with positive and negative rational 

exponents, respectively. Such a functional change is typical 

for a crossover event. Figure 6 shows as an example 

thermal conductivity data of NaF [23]. NaF is perhaps the 

material with the highest occurring peak of thermal 

conductivity. The increasing flank of thermal conductivity 

can be fitted by the T3 function of the heat capacity of the 

Debye bosons. Limiting the fit range appropriately results 

in an exponent of 3.002±0.049. The exponent of three 

shows, that the mean free path of the Debye bosons is larger 

than the linear dimension of the sample. Thermal 

conductivity then is given by the heat capacity of the Debye 

boson field. However, in thermal conductivity the T3 

function holds up to a lower temperatures than in heat 

capacity. Note that in the heat capacity the T3 function 

holds up to TAC (Figure 4). We can assume that in the 

extremely good thermal conductor NaF damping processes 

for the Debye bosons are essentially of the intrinsic type 

due to interactions of Debye bosons with phonons. The 

decreasing flank of thermal conductivity can be fitted over 

a large temperature range by T-6 function. 
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Figure 6.  Increasing and decreasing flank of thermal 

conductivity maximum can be fitted by power functions of 

absolute temperature. This characterizes the maximum as 

crossover event. The crossover is from Debye bosons to 

phonons. When phonons are relevant thermal conductivity 

tends to zero. TAC=13.84 K is the crossover temperature 

identified in the heat capacity (see Figure 4) [23].  
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Figure 7.  In hard materials with high crystal perfection 

thermal conductivity starts by the T3 function of the heat 

capacity of the Debye boson field [2,23,24]. Condition for 

T3 dependence is that the mean free path of the Debye 

bosons is larger than the linear dimension of the sample. 

 

In hard materials with high crystal perfection thermal 

conductivity commonly starts by T3 function (Figure 7). For 

LiF the fitted exponent is 2.988±0.024 [24]. For crystals 

with higher defect concentration propagation of Debye 

bosons becomes damped. When the mean free path 

becomes shorter than the linear dimension of the sample, 

the exponent falls below the value of three (Figures 7-9). 

Sound velocities and thermal conductivity then are sample 
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dependent. This makes measurements of thermal 

conductivity, elastic constants, i.e. sound velocities badly 

reproducible [6]. Thermal conductivity then starts by a 

power function of temperature with rational exponent of 

lower than three. The fact that rational exponents can be 

identified proves definite damping mechanisms. Change of 

exponent is a threshold controlled event. Figure 8 shows 

examples for the exponent of 2.5. The mean free path of the 

Debye bosons therefore can be assumed to be ~T-0.5. 
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Figure 8.  For crystals with higher defect concentration 

thermal conductivity can start by T5/2 function [2]. The 

mean free path of the Debye bosons therefore is ~T-0.5. 
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Figure 9.  For crystals with a fairly high concentration of 

lattice defects, thermal conductivity can start by T2 function 

[2]. The mean free path of the Debye bosons therefore is 

~T-1. 

  

3. Thermal Conductivity of Metals 

In metals thermal conductivity is exclusively due to 

electronic degrees of freedom. The T3 term due to Debye 

bosons is completely absent in the thermal conductivity 

data of the metals. This is not a matter of different absolute 

thermal conductivity values of metals and of insulators 

(compare Figure 7 and Figure 10). Note that at low 

temperatures, thermal conductivity of insulators with high 

crystal perfection can be much larger than for metals 

(Figure 12). As is well known, at low temperatures thermal 

conductivity of all metals starts as a linear function of 

temperature, independent of crystal quality (Figure 10) [3]. 

Agreement with the linear temperature dependence of the 

electronic heat capacity indicates that in metals the mean 

free path of the carriers of heat transport must be very large.  
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Figure 10. Thermal conductivity of metals starts as the heat 

capacity of the CB bosons as a linear function of 

temperature [3]. This indicates that the mean free path of 

the CB bosons must be very large. Note that the T3 term due 

to Debye bosons is completely absent (compare Figure 7). 

 

Linear temperature dependence of the electronic heat 

capacity seems to be in accord with conventional band 

theories [25]. This, however, is fortuitous. According to the 

band theories the linear-in-T electronic heat capacity should 

persist up to a considerable fraction of Fermi temperature, 

possibly modified by a small additional term quadratic in 

temperature. This is not confirmed experimentally. It turns 

out that for temperatures of larger than ~300 K where the 

lattice heat capacity increases only slowly as a function of 

temperature the linear-in-T electronic heat capacity can no 

longer be identified and, as a consequence, must have 

largely disappeared. This is as for the T3 function of the 

heat capacity of the Debye bosons, which is completely 

absent for temperatures of larger than crossover 

temperature at 10…30 K.  Subtracting from the 

experimental high-temperature heat capacity data of the 

metals [26] the linear electronic heat capacity as evaluated 

at low temperatures [27], results in a decreasing heat 

capacity as a function of increasing temperature (Figure 

11). This unphysical result shows that the linear-in-T 

electronic heat capacity must pass a maximum (crossover) 

and afterwards falls to zero. Qualitatively this behavior 

conforms to the heat capacity of the Debye boson field 

which also has dropped down to a very small value at 

ambient temperature. Otherwise the heat capacity of all 

solids, including metals, would not saturate reasonably at 

atomistic Dulong-Petit limit. As a conclusion, low 

temperature electronic heat capacity and low temperature 

thermal conductivity must be due to bosons. Apparently, 

the conduction band has properties as a spatially continuous 

(translational invariant) medium with freely propagating 

bosons as low temperature excitations. The bosons could be 

charge density waves [28]. We will call them CB bosons. 

From the large mean free path of the CB bosons it becomes 

evident that the CB bosons cannot have charge. In contrast 

to the linear dispersion of the Debye bosons the dispersion 

of the CB bosons is completely unknown. Presumably, the 

CB bosons have no mass and therefore have linear 

dispersion.  
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heat capacity of the metals [26] the linear-in-T electronic 
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a decreasing temperature dependence results. This shows 

that at high temperatures the electronic heat capacity must 

be much smaller than ce=γ·T. 
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Figure 12.  Typical difference between thermal conductivity 

of an insulator (NaF) and of a metal (Ta) [3, 23]. For both 

classes of materials the maximum is at a similar 

temperature but is due to different types of bosons. In 

metals thermal conductivity is entirely electronic and starts 

as ~T. In insulators it is due to Debye bosons and starts as 

~T3. Heat transport by phonons is negligible. The nearly 

constant high-temperature thermal conductivity of the 

metals is due to the conventional electronic band states.  
 

As Figure 10 shows, in the thermal conductivity of the 

metals Debye´s T3 function is completely absent. This is 

surprising since in the heat capacity the T3 function can 

clearly be identified. Superposition of the terms ~T and ~T3 

in the low temperature heat capacity of the metals indicates 

that CB bosons and Debye bosons interact very weakly. In 

other words, CB bosons are nearly not coupled to the elastic 

degrees of freedom. This conforms to their large mean free 

path. Note that this is different in ordered magnets. In 

ordered magnets the heat capacity contributions of Debye 

bosons and of Goldstone bosons appear alternatively in the 

heat capacity [29]. This shows that the two boson types 

interact significantly. In fact, as the phenomenon of 

magnetostriction shows, elastic and magnetic degrees of 

freedom are coupled.    

Complete unimportance of Debye bosons (and 

phonons) for heat transport in metals shows that there must 

be a symmetry selection rule deciding which boson type is 

relevant for thermal conductivity. This seems to be a matter 

of which boson type has the largest mean free path.  

It is reasonable to identify the maximum of thermal 

conductivity of the metals (Figure 12) with the assumed 

maximum of the heat capacity of the CB bosons. For 

temperatures above maximum the heat capacity of the CB 

bosons can be assumed to fall to a very small value. 

However thermal conductivity assumes a rather low but 

finite and nearly temperature independent value. In this 

temperature range atomistic dynamics prevails, and band 

theories might be correct [25,27]. It is evident that the 

calculated pre-factor of the linear-in-T electronic heat 

capacity of the band theories must be much smaller than the 

observed low temperature value (γ). Fair agreement of the 

observed low temperature γ-values with the γ-values 

calculated for the free electron gas is much surprising and 

physically hard to understand [27]. At high temperatures 

the heat capacity of the conventional conduction band states 

can be assumed to be ~T but with a pre-factor of much 

smaller than for the CB bosons.  Since the high temperature 

thermal conductivity of metals is constant the scattering 

probability for the conventional band electrons should be 

~T. As a conclusion, in contrast to CB bosons the atomistic 

carriers of heat transport -the conventional band states- are 

coupled to the lattice. Note that at room temperature 

thermal conductivity of metals is much larger than thermal 

conductivity of insulators. However, for insulators with a 

high crystal perfection thermal conductivity at maximum 

can be larger by two orders of magnitude compared to the 

conductivity maximum of metals (see Figure 12). 
 

4. Conclusions 

Heat transport in solids proceeds independent of the 

atomistic structure. It is common to call this type of 

behaviour universal. Quite generally, whenever 

thermodynamic observables show universality 

(independence of lattice structure), the dynamics is 

controlled by a boson field. Universality results because the 

bosons propagate ballistic, independent of lattice structure. 

For instance, universality is well known to hold for spin 

dynamics in the vicinity of the magnetic ordering 

transitions. As was shown by RG theory [7,8], on 

approaching the magnetic ordering temperature from the 

paramagnetic side, spins and interactions between spins 

become of no importance on the critical spin dynamics. 

Spin dynamics is as for a continuous medium. Note that in 

a continuous medium there are no atoms or spins. Since the 

excitations of a continuous medium are bosons, the 

universal critical spin dynamics is controlled by a boson 

field [30,31]. In [29] it could be shown that the bosons of 

the magnetic continuum are essentially magnetic dipole 

radiation generated by the processing spins. Only 

sufficiently above ordering temperature spin dynamics is 

determined by local exchange interactions between 

individual pairs of spins. Change from exchange defined 

dynamics to boson defined dynamics is a crossover. The 

crossover occurs at a distinguished temperature above 

ordering transition.  

In diamagnetic solids a quite analogous crossover from 

atomistic dynamics to boson dynamics occurs on 

approaching T=0. In other words, the functionality of the 

magnetic ordering transition has shifted to T→0. In this 

sense T=0 has the character of a critical temperature. Quite 

generally, in the vicinity of critical temperatures the 

dynamics seems to be determined by a boson field. 

However, in most cases the bosons are not yet identified. 

This applies to the bosons of the conduction band 

continuum in metals as well. We have called these bosons 
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CB bosons. Fortunately, the bosons of the elastic 

continuum are well known from practical experience as 

Debye bosons or sound waves. As we now know, the 

bosons of the continuous solid have a different excitation 

spectrum compared to the atomistic excitations of phonons 

(Figures 2 and 3). In insulators, thermal conductivity is 

exclusively by Debye bosons, and reaches a maximum at 

about 10...30 K. In this temperature range phonons are 

negligible (not relevant). For larger temperatures phonons 

become the relevant excitations and thermal conductivity 

decreases dramatically. In the temperature dependence of 

the observed heat capacity, the crossover of thermal energy 

from boson field to lattice system appears as gradual 

change between concave up and concave down curvature. 

Thermal conductivity allows for a much clearer 

visualization of this crossover. This is because heat 

transport by phonons is negligibly small in insulators and in 

metals as well. As a consequence, thermal conductivity 

drops to zero when phonons are the relevant excitations.  In 

metals thermal conductivity is exclusively due to the 

electronic degrees of freedom. Surprisingly, in spite of 

completely different boson types, in metals and in 

insulators the maxima of thermal conductivity are at 

comparable temperatures (10...30 K).  
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