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Abstract: We present a quantum chemical study of three small boron nitride clusters B2N2, B3N3 and B4N4. 

Their structure and electronic characteristics are calculated by means of the coupled cluster (CC) and density 

functional theory (DFT) techniques. In order to find the best match with the coupled cluster data the twenty-

four DFT exchange-corrected functionals are analyzed. According to our results, B3P86V5 and B97 

functionals reproduce well the geometry of small boron-nitrides, whereas for the electronic characteristics 

OP and VWN functionals give the closest to CC results. Note that prevalent B3LYP and PBE0 DFT-

functionals demonstrate lower accuracy. 

Keywords: coupled cluster, density functional theory, exchange-corrected functionals, boron nitride 

clusters, boron nitride cubane. 

 
1. Introduction 

After discoveries of fullerenes, nanotubes and 

graphene, many novel carbon architectures were 

proposed and investigated. They include peapods 

[1], fullerites [2], diamonds [3,4], and many others 

[5-8]. In these structures, carbon atoms form k-

membered cycles, in which k value varies mostly 

from 4 to 8. Note, that only a limited number of 

high-strained structures contains triangle cycles 

with k = 3 (for example, tetrahedrane derivatives 

[9-10] and Ladenburg’s benzene [11]). The values 

of k = 4÷8 are prevalent, because it provides more 

energetically favorable valence angles. Larger 

cycles with k > 8 often tend to split into two smaller  
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ones via forming of additional carbon-carbon bond 

between the opposite atoms. 

The square cycles (k = 4) are quite strain. The 

angle between C-C bonds of about 90º is far from 

the typical values of 109.5º (as in diamond) or 120º 

(as in graphite). Nevertheless, a number of 

structures with the square cycles were found to be 

stable, for example, cubane [12-13] and its 

derivatives [14-16], prismanes [17] and 

hypercubane [18]. Moreover, some “non-classical” 

fullerenes with square cycles on its surfaces are 

even more stable than the “classical” ones [19-22]. 

Four-membered rings are also contained in many 

recently proposed carbon structures [23-24]. 
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Boron nitrides form the other promising class of 

new materials. Both boron and nitrogen atoms are 

the nearest neighbors to carbon in the Mendeleev’s 

table. For this reason, many carbon architectures 

have boron nitride analogues, consisted of 

alternated boron and nitrogen atoms instead of 

carbon ones. So, boron nitride fullerenes [25], 

nanotubes [26,27] and other structures [28-30] are 

actively investigated. Construction of boron 

nitrides based on already known carbon cages was 

an efficient way of searching new BN materials. 

Similar to carbon compounds, some boron nitrides 

also include four-membered B-N-B-N cycles [31-

32]. 

Most computational studies of novel boron 

nitrides are based on density functional theory. The 

commonly used exchange-correlation functionals 

are B3LYP [33-34] and PBE [35], because they 

provide high accuracy for many systems [36-37], 

including boron nitride species [38]. Nevertheless, 

these functionals were not tested on high-strained 

boron nitrides with square cycles. For this reason, 

their application to such untypical systems remains 

questionable.  

In this study, we perform a benchmark study of 

24 exchange-correlation functionals on a set of 

small boron nitride clusters including those with the 

square cycles. The results, obtained with the density 

functional theory, were compared with the more 

accurate data derived from coupled clusters 

calculations [39-41]. 

 

2. Materials and Methods 

To test different density functional methods, we 

chose three boron nitride clusters C2N2, C3N3 and 

C4N4 with alternated boron and nitrogen atoms. 

Their structures are presented at Figure 1. 

Geometries of all three systems were optimized 

within the density functional and coupled clusters 

methods until the forces acting on atoms become 

smaller than 10-4 Ha/Bohr. No symmetry constrains 

were introduces. To confirm that the obtained 

geometries are true minima on the potential energy 

hypersurface, we calculate the Hessian matrix at the 

same level of theory. All considered structures have 

not any imaginary frequencies and therefore 

correspond to metastable states. 

 

 

  
Figure 1. Structures of small boron nitride 

clusters B2N2 (a), B3N3 (b) and B4N4 (c). 

 

The values of lBN, aBNB and aNBN for each cluster 

are calculated as the arithmetic means of all B-N 

bonds lengths, B-N-B and N-B-N angles, 

respectively (note, that all averaged numbers, 

corresponding to the same molecule, are almost the 

same due to the symmetries of the considered 

systems). The chemical potentials μ are evaluated 

according to the Koopmans theorem [42] as μ = 

(EHOMO + ELUMO)/2, where EHOMO and ELUMO are the 

energies of the highest occupied molecular orbital 

(HOMO) and the lowest unoccupied molecular 

orbital (LUMO), respectively. 

 In our density functional calculations, we 

compare the follow exchange-correlation 

functionals: B3LYP [33-34], B3LYPV1R [43], 

B3P86V5 [34], B3PW91 [34], B97 [44], B97-2 

[45], B97-3 [46], B97-K [47], CAMB3LYP [48], 

28 
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LYP [49], M11 [50], OP [49], PBE0 [51], 

PW91C [52], VWN [53], VWN1RPA [54], wB97 

[55-56], wB97X [55-56], wB97X-D [55-56], 

X3LYP [57], BMK [47], dLDF [58], M05 [59], 

M06 [60]. The results are compared with the data 

obtained with the coupled clusters CCSD(T) 

method [61]. For all calculations, we use the same 

6-311G(2d,2p) basic set [62]. Since we restrict our 

study by the only singlet configurations, the 

restricted Hartree-Fock method of self-consistent 

field calculation is applied. All calculations are 

performed with the GAMESS software [63]. 

 As a measure of difference between 

geometries, obtained with coupling clusters and 

density functional methods, we use the value 

𝜀𝑔 =  
1

𝑁
∑ |𝑥𝐶𝐶 − 𝑥𝐷𝐹𝑇|/𝑥𝐶𝐶 .        (1) 

Here x is one of the geometric parameters (lBN, 

aBNB or aNBN), N = 9 is the number of terms, 

summation is performed over all parameters of all 

considered clusters, indices “CC” and “DFT” 

correspond to coupled clusters and density 

functional methods, respectively. A very similar 

value εe is used as a measure of difference of 

electronic properties. In this case, x is the chemical 

potential μ or it means partial Mulliken qM or 

Lowdin qL charge of boron atoms. 
 

3. Results and Discussion 

In all three considered boron nitride structures, 

optimized with the coupled clusters method, all 

obtained B-N bonds lengths are the same. They are 

equal to 1.409, 1.363 and 1.511 Å for B2N2, B3N3 

and B4N4 clusters, respectively. The value for 

cubane B4N4 (see Figure 1c) slightly differs from 

the earlier reported coupled clusters results (1.492 

[64] and 1.505 Å [65]). However, the authors of 

Ref. [64] performed only single point calculation of 

pre-optimized structure, whereas the authors of Ref. 

[65] applied the CCSD method with symmetry 

constrains. So, reported here CCSD(T) results are 

obtained with the higher level of theory and should 

be regarded as the most accurate.  

In Table 1, we present all geometry parameters 

of considered boron nitride clusters. We can see that 

the bonds lengths and valence angles, obtained with 

the density functional methods, differ from the 

coupled clusters data by ~0.01 Å and ~1º, 

respectively. The calculated electronic parameters 

are listed at Table 2. Chemical potentials are 

compared well with the each other, whereas partial 

charges demonstrate huge dispersions.

 

Table 1. Geometric parameters lBN (Å), aBNB and aNBN (degree) of clusters B2N2, B3N3 and B4N4, 

obtained with the CCSD(T) method. The differences between lBN, aBNB and aNBN values, calculated with 

the CCSD(T) and DFT approaches, are also listed. 

Method B2N2 B3N3 B4N4 

lBN aBNB aNBN lBN aBNB aNBN lBN aBNB aNBN 

CCSD(T) 1.409 63.81 116.19 1.363 88.32 151.68 1.511 75.37 102.91 

B3LYP -0.017 0.46 -0.46 -0.010 0.87 -0.87 -0.010 0.18 -0.14 

B3LYPV1R -0.017 0.46 -0.46 -0.010 0.88 -0.88 -0.010 0.18 -0.14 

B3P86V5 -0.015 0.31 -0.31 -0.008 0.03 -0.04 -0.011 -0.13 0.10 

B3PW91 -0.016 0.27 -0.27 -0.009 -0.22 0.23 -0.012 -0.26 0.20 

B97 -0.012 0.56 -0.57 -0.005 -0.09 0.09 -0.006 0.19 -0.15 

B97-2 -0.014 0.15 -0.15 -0.008 -0.36 0.36 -0.012 -0.60 0.46 

B97-3 -0.017 0.49 -0.49 -0.010 0.03 -0.03 -0.013 0.01 -0.01 

B97-K -0.013 0.68 -0.68 -0.007 0.37 -0.37 -0.007 0.00 0.00 

CAMB3LYP -0.025 0.71 -0.71 -0.016 1.50 -1.50 -0.018 0.18 -0.14 

LYP -0.045 1.42 -1.42 -0.036 2.87 -2.87 -0.042 0.15 -0.12 

M11 -0.019 0.84 -0.84 -0.010 0.86 -0.86 -0.011 -0.78 0.59 

OP -0.042 1.36 -1.36 -0.033 2.58 -2.58 -0.039 0.00 0.00 

PBE0 -0.017 0.25 -0.25 -0.228 -0.37 0.37 -0.014 -0.40 0.31 

PW91C -0.044 1.23 -1.23 -0.035 1.94 -1.93 -0.043 -0.25 0.19 

VWN -0.045 1.43 -1.43 -0.036 2.87 -2.86 -0.018 0.19 -0.14 

VWN1RPA -0.047 1.44 -1.44 -0.037 2.80 -2.86 -0.043 0.06 -0.04 

wB97 -0.017 0.42 -0.42 -0.008 -0.30 0.30 -0.013 -1.13 0.86 

wB97X -0.020 0.59 -0.59 -0.011 0.27 -0.27 -0.015 -0.53 0.41 

wB97X-D -0.020 0.78 -0.78 -0.011 0.19 -0.18 -0.015 -0.02 0.01 
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Table 1 continued 

X3LYP -0.018 0.50 -0.50 -0.011 0.98 -0.98 -0.011 0.19 -0.15 

BMK -0.026 1.32 -1.32 -0.015 -0.97 0.97 -0.019 0.15 -0.11 

dLDF -0.014 0.38 -0.38 -0.009 1.62 -1.62 -0.006 -0.95 0.72 

M05 -0.017 -0.13 0.13 -0.007 -3.23 3.23 -0.014 -1.89 1.42 

M06 -0.022 0.19 -0.19 -0.015 -0.24 0.24 -0.018 -0.67 0.51 

 

 

Table 2. Chemical potentials μ (eV), mean Mulliken qM or Lowdin qL charges of boron atoms (|e|, where 

e is the elementary charge) of clusters B2N2, B3N3 and B4N4, obtained with the CCSD(T) method. The 

differences between the values, calculated with the CCSD(T) and DFT approaches, are also listed. 

Method B2N2 B3N3 B4N4 

μ qM qL μ qM qL μ qM qL 

CCSD(T) -5.73 -0.437 0.040 -5.60 -0.275 0.128 -6.37 -0.513 0.146 

B3LYP -0.20 0.144 0.083 -0.21 0.166 0.066 -0.04 0.178 0.081 

B3LYPV1R -0.29 0.143 0.083 -0.30 0.165 0.066 -0.12 0.177 0.081 

B3P86V5 -0.39 0.128 0.082 -0.43 0.142 0.069 -0.25 0.157 0.087 

B3PW91 -0.29 0.129 0.081 -0.33 0.140 0.069 -0.16 0.155 0.087 

B97 -0.18 0.125 0.072 -0.22 0.150 0.064 -0.04 0.158 0.075 

B97-2 -0.18 0.139 0.074 -0.19 0.134 0.061 -0.04 0.169 0.083 

B97-3 -0.21 0.116 0.070 -0.26 0.141 0.061 -0.10 0.138 0.075 

B97-K -0.17 0.104 0.061 -0.21 0.138 0.057 -0.10 0.135 0.067 

CAMB3LYP -0.39 0.147 0.084 -0.41 0.174 0.066 -0.24 0.185 0.084 

LYP -0.74 0.018 0.024 -0.75 0.032 0.013 -0.73 0.053 0.038 

M11 -0.45 -0.014 0.075 -0.56 -0.055 0.059 -0.40 0.043 0.085 

OP -0.62 0.001 0.016 -0.63 0.001 0.006 -0.62 0.027 0.031 

PBE0 -0.28 0.141 0.081 -0.34 0.152 0.072 -0.17 0.189 0.092 

PW91C -0.82 0.003 0.021 -0.87 -0.002 0.015 -0.85 0.025 0.045 

VWN -1.13 -0.006 0.010 -1.12 -0.003 -0.004 -1.12 0.021 0.022 

VWN1RPA -1.60 -0.009 0.009 -1.59 -0.004 -0.004 -1.59 0.020 0.022 

wB97 -0.28 0.134 0.069 -0.37 0.145 0.059 -0.21 0.165 0.082 

wB97X -0.29 0.130 0.070 -0.36 0.148 0.060 -0.24 0.184 0.088 

wB97X-D -0.26 0.103 0.066 -0.32 0.130 0.059 -0.14 0.118 0.073 

X3LYP -0.25 0.146 0.084 -0.27 0.170 0.067 -0.10 0.845 0.082 

BMK -0.30 0.024 0.054 -0.39 0.135 0.069 -0.20 0.094 0.071 

dLDF -0.66 0.081 0.033 -0.66 0.069 0.008 -0.62 0.099 0.033 

M05 -0.13 0.120 0.066 -0.28 0.171 0.066 -0.04 0.124 0.086 

M06 -0.27 0.074 0.068 -0.33 0.095 0.053 -0.13 0.038 0.074 

 

The mean geometry and electronic errors (εg 

and εe), calculated with different exchange-

corrected functionals using formula (1), are 

collected at Table 3. We conclude that B3P86V5 

and B97 functionals reproduce well the geometries, 

whereas the OP and VWN provide the best matches 

of electronic properties. OP and VWN functionals 

also provide the minimal values of εg + εe. Using of 

popular B3LYP and PBE0 functionals results in 

higher errors εg and εe. 
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Table 3. The values of mean errors εg and εe for 

different exchange-corrected functionals (see 

formula (1) for details). The sums of two errors 

are also presented. 

functional εg εe εg + εe 

B3LYP 0.0063 0.5003 0.5066 

B3LYPV1R 0.0063 0.5045 0.5108 

B3P86V5 0.0038 0.4981 0.5019 

B3PW91 0.0047 0.4892 0.4939 

B97 0.0039 0.4476 0.4515 

B97-2 0.0051 0.4558 0.4609 

B97-3 0.0045 0.4319 0.4364 

B97-K 0.0047 0.3905 0.3952 

CAMB3LYP 0.0099 0.5224 0.5323 

LYP 0.0195 0.1777 0.1972 

M11 0.0089 0.3862 0.3951 

OP 0.0177 0.1151 0.1328 

PBE0 0.0233 0.5108 0.5341 

PW91C 0.0172 0.1605 0.1777 

VWN 0.0178 0.1190 0.1368 

VWN1RPA 0.0196 0.1438 0.1634 

wB97 0.0073 0.4501 0.4574 

wB97X 0.0069 0.4631 0.4700 

wB97X-D 0.0061 0.4082 0.4143 

X3LYP 0.0069 0.6547 0.6616 

BMK 0.0105 0.3620 0.3725 

dLDF 0.0087 0.2304 0.2391 

M05 0.0140 0.4413 0.4553 

M06 0.0068 0.3708 0.3776 

 

4. Conclusion 

In the study presented, we perform a 

comparable analysis of density functional 

approaches applied to the small boron nitride 

clusters. The data obtained provide a reasonable 

choice of the most suitable exchange-corrected 

DFT-functional for strained BN-systems numerical 

simulation. We consider that the reported results 

stimulate further density functional studies not only 

of pristine boron nitrides, but also of their strained 

analogues such as prismanes, non-classical 

fullerenes, and silicic cages both in molecular and 

crystalline forms.  
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