Euler-Riesz Difference Sequence Spaces

HACER BILGIN ELLIDOKUZÖLUa,*, SERKAN DEMIRIZb

aDepartment of Mathematics, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, 53020, Rize, Turkey.
bDepartment of Mathematics, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60000, Tokat, Turkey.

Received: 14-09-2017 • Accepted: 03-11-2017

ABSTRACT. Başar and Braha [9], introduced the sequence spaces ℓ_∞, ℓ_c and ℓ_0 of Euler- Cesáro bounded, convergent and null difference sequences and studied their some properties. The main purpose of this study is to introduce the sequence spaces $[\ell_\infty]_{e.r}$, $[\ell_c]_{e.r}$ and $[\ell_0]_{e.r}$ of Euler- Riesz bounded, convergent and null difference sequences by using the composition of the Euler mean E_1 and Riesz mean R_q with backward difference operator Δ. Furthermore, the inclusions $\ell_\infty \subset [\ell_\infty]_{e.r}$, $\ell_c \subset [\ell_c]_{e.r}$ and $\ell_0 \subset [\ell_0]_{e.r}$ strictly hold, the basis of the sequence spaces $[\ell_0]_{e.r}$ and $[\ell_c]_{e.r}$ is constructed and alpha-, beta- and gamma-duals of these spaces are determined. Finally, the classes of matrix transformations from the Euler- Riesz difference sequence spaces to the spaces ℓ_∞, ℓ_c and ℓ_0 are characterized.

2010 AMS Classification: 40C05, 40A05, 46A45.

Keywords: Euler sequence spaces, Riesz sequence spaces, matrix domain, matrix transformations.

1. Preliminaries, Background and Notation

In this section, we give some basic definitions and notations for which we refer to [7,12,17,23].

By a sequence space, we understand a linear subspace of the space $w = \mathbb{C}^\infty$ of all complex sequences which contains ϕ, the set of all finitely non-zero sequences, where $\mathbb{N} = \{0, 1, 2, \ldots\}$. We shall write ℓ_∞, ℓ_c and ℓ_0 for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, ℓ_1 and ℓ_p, we denote the spaces of all bounded, convergent, absolutely and p–absolutely convergent series, respectively, where $1 < p < \infty$.

We shall assume throughout unless stated otherwise that $p, q > 1$ with $p^{-1} + q^{-1} = 1$ and $0 < r < 1$, and use the convention that any term with negative subscript is equal to naught.

Let λ, μ be two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk}, where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ, and we denote it by writing $A : \lambda \rightarrow \mu$, if for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = \{(Ax)_n\}$, the A–transform of x, is in μ; where

$$
(Ax)_n = \sum_k a_{nk}x_k \quad (n \in \mathbb{N}).
$$

*Corresponding Author
Email addresses: haber.bilgin@erdogan.edu.tr (H. Bilgin Ellidokuzoğlu), serkandemiriz@gmail.com (S. Demiriz)
By \((\lambda, \mu)\), we denote the class of all matrices \(A\) such that \(A : \lambda \to \mu\). Thus, \(A \in (\lambda, \mu)\) if and only if the series on the right hand side of (1.1) converges for each \(n \in \mathbb{N}\) and every \(x \in \lambda\), and we have \(Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu\) for all \(x \in \lambda\). A sequence \(x\) is said to be \(A\)–summable to \(\alpha\) if \(Ax\) converges to \(\alpha\) which is called the \(A\)–limit of \(x\).

Let \(X\) be a sequence space and \(A\) be an infinite matrix. The sequence space
\[
X_A = \{x = (x_k) \in w : Ax \in X\}
\]
is called the domain of \(A\) in \(X\) which is a sequence space.

A sequence space \(\lambda\) with a linear topology is called a \(K\)–space provided each of the maps \(p_i : \lambda \to \mathbb{C}\) defined by \(p_i(x) = x_i\) is continuous for all \(i \in \mathbb{N}\). A \(K\)–space is called an \(FK\)–space provided \(\lambda\) is a complete linear metric space. An \(FK\)–space whose topology is normable is called a \(BK\)–space. If a normed sequence space \(\lambda\) contains a sequence \((b_n)\) with the property that for every \(x \in \lambda\) there is a unique sequence of scalars \((\alpha_n)\) such that
\[
\lim_{n \to \infty} \|x - (\alpha_0b_0 + \alpha_1b_1 + \cdots + \alpha_nb_n)\| = 0
\]
then \((b_n)\) is called a Schauder basis (or briefly basis) for \(\lambda\). The series \(\sum \alpha_kb_k\) which has the sum \(x\) is then called the expansion of \(x\) with respect to \((b_n)\), and is written as \(x = \sum \alpha_kb_k\).

Given a \(BK\)–space \(\lambda \supset \phi\), we denote the \(n\)th section of a sequence \(x = (x_k) \in \lambda\) by \(x^{[n]} = \sum_{k=0}^{n} x_k e^{(k)}\), and we say that \(x\) has the property
\[
AK \text{ if } \lim_{n \to \infty} \|x - x^{[n]}\| = 0 \text{ (abschnittskonvergenz)},
\]
\[
AB \text{ if } \sup_{n \in \mathbb{N}} \|x^{[n]}\| < \infty \text{ (abschnittsbeschränktheit)},
\]
\[
AD \text{ if } x \in \phi \text{ (closure of } \phi \subset \lambda) \text{ (abschnittsdichte)},
\]
\[
KB \text{ if the set } \{x_k e^{(k)}\} \text{ is bounded in } \lambda \text{ (koordinatenweise beschränkt)},
\]
where \(e^{(k)}\) is a sequence whose only non-zero term is a 1 in \(k\)th place for each \(k \in \mathbb{N}\). If one of these properties holds for every \(x \in \lambda\) then we say that the space \(\lambda\) has that property \([16, 23]\). It is trivial that \(AK\) implies \(AD\) and \(AK\) iff \(AB + AD\). For example, \(c_0\) and \(\ell_p\) are \(AK\)–spaces and, \(c\) and \(\ell_\infty\) are not \(AD\)–spaces.

A matrix \(A = (a_{nk})\) is called a triangle if \(a_{nk} = 0\) for \(k > n\) and \(a_{nn} \neq 0\) for all \(n \in \mathbb{N}\). It is trivial that \(A(Bx) = (AB)x\) holds for the triangle matrices \(A, B\) and a sequence \(x\). Further, a triangle matrix \(U\) uniquely has an inverse \(U^{-1} = V\) which is also a triangle matrix. Then, \(x = U(Vx) = V(Ux)\) holds for all \(x \in w\).

Let us give the definition of some triangle limitation matrices which are needed in the text. \(\Delta\) denotes the backward difference matrix \(\Delta = (\Delta_{nk})\) and \(\Delta' = (\Delta'_{nk})\) denotes the transpose of the matrix \(\Delta\), the forward difference matrix, which are defined by
\[
\Delta_{nk} = \begin{cases} (-1)^{n-k}, & n - 1 \leq k \leq n, \\ 0, & 0 \leq k < n - 1 \text{ or } k > n, \end{cases}
\]
\[
\Delta'_{nk} = \begin{cases} (-1)^{n-k}, & n \leq k \leq n + 1, \\ 0, & 0 \leq k < n \text{ or } k > n + 1, \end{cases}
\]
for all \(k, n \in \mathbb{N}\); respectively.

Then, let us define the Euler mean \(E_1 = (e_{nk})\) of order one and Riesz mean \(R_q = (r_{nk})\) with respect to the sequence \(q = (q_k)\)
\[
e_{nk} = \begin{cases} \binom{n}{k}, & 0 \leq k \leq n, \\ \frac{0}{k}, & k > n, \end{cases}
\]
\[
r_{nk} = \begin{cases} \frac{q_k}{q_n}, & 0 \leq k \leq n, \\ 0, & k > n, \end{cases}
\]
for all \(k, n \in \mathbb{N}\) and where \((q_k)\) is a sequence of positive numbers and \(Q_n = \sum_{k=0}^{n} q_k\) for all \(n \in \mathbb{N}\). Their inverses \(E_1^{-1} = (g_{nk})\) and \(R_q^{-1} = (h_{nk})\) are given by
\[
g_{nk} = \begin{cases} \binom{n}{k} (-1)^{n-k} q_k, & 0 \leq k \leq n, \\ 0, & k > n, \end{cases}
\]
\[
h_{nk} = \begin{cases} (-1)^{n-k} \frac{q_k}{q_n}, & n - 1 \leq k \leq n, \\ 0, & \text{otherwise,} \end{cases}
\]
for all \(k, n \in \mathbb{N}\).
We define the matrix $B = (\hat{b}_{nk})$ by the composition of the matrices E_1, R_q and Δ as

$$\hat{b}_{nk} = \begin{cases} \binom{(n_q)k}{q} & 0 \leq k \leq n, \\ 0 & k > n, \end{cases} \quad (1.2)$$

for all $k, n \in \mathbb{N}$.

In the literature, the notion of difference sequence spaces was introduced by Kızmaz [18], who defined the sequence spaces

$$X(\Delta) = \{x = (x_k) \in w : \Delta^j x = (x_k - x_{k+1}) \in X\}$$

for $X \in \{\ell_\infty, c, c_0\}$. The difference space bv_p, consisting of all sequences $x = (x_k)$ such that $\Delta x = (x_k - x_{k-1})$ is in the sequence space ℓ_p, was studied in the case $0 < p < 1$ by Altay and Başar [5] and in the case $1 \leq p \leq \infty$ by Başar and Altay [6], and Çolak et al. [13]. Kirişçi and Başar [19] have introduced and studied the generalized difference sequence space

$$\hat{X} = \{x = (x_k) \in w : B(r, s)x \in X\},$$

where X denotes any of the spaces ℓ_∞, c, c_0 and ℓ_p with $1 \leq p < \infty$, and $B(r, s)x = (sx_{k-1} + rx_k)$ with $r, s \in \mathbb{R} \setminus \{0\}$. Following Kirişçi and Başar [19], Sönmez [21] has examined the sequence space $X(B)$ as the set of all sequences whose $B(r, s, t)$-trasforms are in the space $X \in \{\ell_\infty, c, c_0, \ell_p\}$, where $B(r, s, t)$ denotes the triple band matrix $B(r, s, t) = \{b_{nk}\{r, s, t\}^{\infty}\}$ defined by

$$b_{nk}\{r, s, t\} = \begin{cases} r & n = k \\ s & n = k + 1 \\ t & n = k + 2 \\ 0 & \text{otherwise} \end{cases}$$

for all $k, n \in \mathbb{N}$ and $r, s, t \in \mathbb{R} \setminus \{0\}$. Quite recently, Başar has studied the spaces ℓ_p of p-absolutely \hat{B}-summable sequences, in [8]. In [11], Choudhary and Mishra have defined the sequence space $\ell(\hat{p})$ which consists of all sequences whose S-transforms are in the space $\ell(\hat{p})$. Also, many authors have constructed new sequence spaces by using matrix domain of infinite matrices. For instance, e_0^r and e^s_∞ in [1], e_0^r and e_∞^r in [3], $e_0^r(u, p)$, $e^r_\infty(u, p)$ in [14], $e_0^r(\Delta^{(m)})$, $e^r_\infty(\Delta^{(m)})$ and $e_0^r(\Delta^{(m)})$ in [13], $c_0(\Delta^{(m)})$, $c_r(\Delta^{(m)})$ and $\ell_\infty(\Delta^{(m)})$ in [15], $r_0^r(p)$, $r^s_\infty(r)$ and $r_\infty^s(p)$ in [2], $r^q(p, \Delta)$ in [10]. Finally, the new technique for deducing certain topological properties, for example $AB-$, $KB-$, $AD-$properties, solidity and monotonicity etc., and determining the $\beta-$ and $\alpha-$duals of the domain of a triangle matrix in a sequence space is given by Altay and Başar [4].

Then, as a natural continuation of Başar [8], Başar and Braha [9] introduce the spaces $\hat{\ell}_\infty, \hat{c}$ and \hat{c}_0 of Euler-Cesáro bounded, convergent and null difference sequences by using the composition of the Euler mean E_1 and Cesáro mean C_1 of order one with backward difference operator Δ.

In the present paper, we introduce the $[\ell_\infty]_{e, r}, [c]_{e, r}$ and $[c_0]_{e, r}$ of Euler-Riesz bounded, convergent and null difference sequences by using the composition of the Euler mean E_1 and Riesz mean R_q with respect to the sequence $q = (q_k)$ with backward difference operator Δ and prove that the inclusions $\ell_\infty \subset [\ell_\infty]_{e, r}, c \subset [c]_{e, r}$ and $c_0 \subset [c_0]_{e, r}$ strictly hold. We show that the spaces $[c_0]_{e, r}$ and $[c]_{e, r}$ turn out to be the separable BK spaces such that $[c]_{e, r}$ does not possess any of the following: AK property and monotonicity. Furthermore, we investigate some properties and compute alpha-, beta- and gamma-duals of these spaces. Afterwards, we characterize some matrix classes related to Euler-Riesz sequence spaces.
2. The Euler-Riesz Sequence Spaces

In this section, we give some new sequence spaces and investigate their certain properties.

\[[c_0]_{e.r} = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(n)q_k}{2^nQ_n} x_k = 0 \right\} \]
\[[c]_{e.r} = \left\{ x = (x_k) \in w : \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(n)q_k}{2^nQ_n} x_k \right\} \]
\[[\ell_\infty]_{e.r} = \left\{ x = (x_k) \in w : \sup_{n \in \mathbb{N}} \left| \sum_{k=0}^{n} \frac{(n)q_k}{2^nQ_n} x_k \right| < \infty \right\} \]

With the notation (1.2), we may redefine the spaces \([c_0]_{e.r}, [c]_{e.r}\) and \([\ell_\infty]_{e.r}\) as follows:

\[[c_0]_{e.r} = (c_0)_B, \quad [c]_{e.r} = c_B \quad \text{and} \quad [\ell_\infty]_{e.r} = (\ell_\infty)_B. \]

In the case \((q_k) = e = (1, 1, \ldots)\); the sequence spaces \([c_0]_{e.r}, [c]_{e.r}\) and \([\ell_\infty]_{e.r}\) are, respectively, reduced to the sequence spaces \(\tilde{c}_0, \tilde{c}\) and \(\tilde{\ell}_\infty\) which are introduced by Başar and Braha [9]. Define the sequence \(y = (y_k)\), which will be frequently used, as the \(\tilde{B}\)–transform of a sequence \(x = (x_k)\), i.e.,

\[y_k = \sum_{j=0}^{k} \frac{(k)q_j}{2^kQ_k} x_j, \quad k \in \mathbb{N}. \quad (2.1) \]

Throughout the text, we suppose that the sequences \(x = (x_k)\) and \(y = (y_k)\) are connected with the relation (2.1). One can obtain by a straightforward calculation from (2.1) that

\[x_k = \frac{1}{q_k} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} 2^j Q_j y_j, \quad k \in \mathbb{N}. \quad (2.2) \]

Theorem 2.1. The sets \([c_0]_{e.r}, [c]_{e.r}\) and \([\ell_\infty]_{e.r}\) are linear spaces with coordinatewise addition and scalar multiplication that are BK–spaces with norm \(\|x\|_{[c_0]_{e.r}} = \|x\|_{[c]_{e.r}} = \|x\|_{[\ell_\infty]_{e.r}} = \|\tilde{B}x\|_\infty\)

Proof. The proof of the first part of the theorem is a routine verification, and so we omit it. Furthermore, since (2.1) holds, \(c_0, c\) and \(\ell_\infty\) are BK–spaces with respect to their natural norm, and the matrix \(\tilde{B}\) is a triangle, Theorem 4.3.2 of Wilansky [23] implies that the spaces \([c_0]_{e.r}, [c]_{e.r}\) and \([\ell_\infty]_{e.r}\) are BK–spaces. \(\Box\)

Therefore, one can easily check that the absolute property does not hold on the spaces \([c_0]_{e.r}, [c]_{e.r}\) and \([\ell_\infty]_{e.r}\), because \(\|x\|_{[c_0]_{e.r}} \neq \|x\|_{[c]_{e.r}}\) and \(\|x\|_{[\ell_\infty]_{e.r}} \neq \|x\|_{[\ell_\infty]_{e.r}}\) for at least one sequence in the spaces \([c_0]_{e.r}, [c]_{e.r}\) and \([\ell_\infty]_{e.r}\), where \(|x| = (|x_k|)\). This says that \([c_0]_{e.r}, [c]_{e.r}\) and \([\ell_\infty]_{e.r}\) are the sequence spaces of nonabsolute type.

Theorem 2.2. \([c_0]_{e.r}, [c]_{e.r}\) and \([\ell_\infty]_{e.r}\) are linearly isomorphic to the spaces \(c_0, c\) and \(\ell_\infty\), respectively, i.e., \([c_0]_{e.r} \cong c_0, [c]_{e.r} \cong c\) and \([\ell_\infty]_{e.r} \cong \ell_\infty\).

Proof. To prove this theorem, we should show the existence of a linear bijection between the spaces \([c_0]_{e.r}\) and \(c_0\). Consider the transformation \(S\) defined, with the notation of (2.1), from \([c_0]_{e.r}\) to \(c_0\) by \(y = Sx = \tilde{B}x\). The linearity of \(S\) is clear. Further, it is obvious that \(x = \theta\) whenever \(Sx = \theta\) and hence \(S\) is injective, where \(\theta = (0, 0, 0, \ldots)\).

Let \(y \in c_0\) and define the sequence \(x = \{x_n\}\) by

\[x_n = \frac{1}{q_n} \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} 2^k Q_k y_k, \quad \text{for all} \ n \in \mathbb{N}. \]
Then, we have
\[
\lim_{n \to \infty} (\tilde{B} x)_n = \lim_{n \to \infty} \left[\sum_{k=0}^{n} \left(\frac{n}{k} \right) Q_n x_k \right] = \lim_{n \to \infty} \left[\sum_{k=0}^{n} \frac{n}{k} q_k \frac{1}{k} \sum_{j=0}^{k} \left(\begin{array}{c} k \\ j \end{array} \right) (-1)^{k-j} 2^j y_j \right] = \lim_{n \to \infty} y_n = 0
\]
which says us that \(x \in [c_0]_{e.r} \). Additionally, we observe that
\[
\|x\|_{[c_0]_{e.r}} = \sup_{n \in \mathbb{N}} \left\| \sum_{k=0}^{n} \frac{n}{k} q_k \frac{1}{k} \sum_{j=0}^{k} \left(\begin{array}{c} k \\ j \end{array} \right) (-1)^{k-j} 2^j y_j \right\| = \sup_{n \in \mathbb{N}} |y_n| = \|y\|_\infty < \infty.
\]
Consequently, \(S \) is surjective and is norm preserving. Hence, \(S \) is a linear bijection which therefore says us that the spaces \([c_0]_{e,r} \) and \(c_0 \) are linearly isomorphic, as desired.

It is clear that if the spaces \([c_0]_{e.r} \) and \(c_0 \) are replaced by the spaces \([c]_{e,r} \) and \(c \) or \([\ell_\infty]_{e.r} \) and \(\ell_\infty \) respectively, then we obtain the fact that \([c]_{e,r} \cong c \) and \([\ell_\infty]_{e.r} \cong \ell_\infty \). This completes the proof. \(\square \)

We wish to exhibit some inclusion relations concerning with the spaces \([c_0]_{e,r} \), \([c]_{e,r} \) and \([\ell_\infty]_{e,r} \), in the present section. Here and after, by \(\lambda \) we denote any of the sets \([c_0]_{e,r} \), \([c]_{e,r} \) and \([\ell_\infty]_{e,r} \) and \(\mu \) denotes any of the spaces \(c_0, c \) or \(\ell_\infty \).

Theorem 2.3. The inclusions \(\mu \subset \lambda \) hold.

Proof. Let \(x = (x_k) \in \mu \). Then, since it is immediate that
\[
\|x\|_\lambda = \|\tilde{B} x\|_\infty = \sup_{n \in \mathbb{N}} \left\| \sum_{k=0}^{n} \frac{n}{k} q_k \frac{1}{k} \sum_{j=0}^{k} \left(\begin{array}{c} k \\ j \end{array} \right) (-1)^{k-j} 2^j y_j \right\| \leq \|x\|_\infty \sup_{n \in \mathbb{N}} \sum_{k=0}^{n} \frac{n}{k} = \|x\|_\infty.
\]
The inclusion \(\mu \subset \lambda \) holds. \(\square \)

Theorem 2.4. The space \([c_0]_{e,r} \) has \(AK \)-property.

Proof. Let \(x = (x_k) \in [c_0]_{e.r} \) and \(x^{[n]} = \{x_1, x_2, \ldots, x_n, 0, 0, \ldots\} \). Hence,
\[
x - x^{[n]} = \{0, 0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots\} \Rightarrow \|x - x^{[n]}\|_{[c_0]_{e.r}} = \|(0, 0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots)\|
\]
and since \(x \in [c_0]_{e,r} \),
\[
\|x - x^{[n]}\|_{[c_0]_{e.r}} = \sup_{k \geq n+1} \left\| \sum_{j=0}^{k} \frac{k}{j} q_j x_j \right\| = \sup_{k \geq n+1} \left\{ \sum_{j=0}^{k} \frac{k}{j} q_j x_j \right\}
\]
Then the space \([c_0]_{e,r} \) has \(AK \)-property. \(\square \)

Since the isomorphism \(S \), defined in Theorem 2.1, is surjective, the inverse image of the basis of the spaces \(c_0 \) and \(c \) are the basis of the new spaces \([c]_{e,r} \) and \([c_0]_{e.r} \), respectively. Since the space \(\ell_\infty \) has no Schauder basis, \([\ell_\infty]_{e,r} \) has no Schauder basis. Therefore, we have the following theorem without proof.

Theorem 2.5. Define the sequence \(b^{(k)} = \{b_n^{(k)}\}_{n \in \mathbb{N}} \) of elements of the space \([c_0]_{e,r} \) for every fixed \(k \in \mathbb{N} \) by
\[
b_n^{(k)} = \begin{cases} \frac{(-1)^{k-n} 2^n Q_k}{q_n}, & 0 \leq k < n, \\ 0, & k \geq n. \end{cases}
\]
Let \(\lambda_k = (\tilde{B}x)_k \) for all \(k \in \mathbb{N} \). Then the following assertions are true:

(i): The sequence \(\{b^{(k)}\}_{k \in \mathbb{N}} \) is a basis for the space \([c_{0}]_{e,r}\) and any \(x \in [c_{0}]_{e,r} \) has a unique representation of the form

\[
x = \sum_{k} \lambda_k b^{(k)}.
\]

(ii): The set \(\{e, b^{(k)}\}_{k \in \mathbb{N}} \) is a basis for the space \([c]_{e,r}\) and any \(x \in [c]_{e,r} \) has a unique representation of the form

\[
x = le + \sum_{k} [\lambda_k - l] b^{(k)},
\]

where \(l = \lim_{k \to \infty} (\tilde{B}x)_k \).

Remark 2.6. It is well known that every Banach space \(X \) with a Schauder basis is separable.

From Theorem 2.5 and Remark 2.6, we can give the following corollary:

Corollary 2.7. The spaces \([c_{0}]_{e,r}\) and \([c]_{e,r}\) are separable.

3. Duals of The New Sequence Spaces

In this section, we state and prove the theorems determining the \(\alpha-, \beta- \) and \(\gamma- \) duals of the sequence spaces \([c_{0}]_{e,r}, [c]_{e,r}\) and \([\ell_{\infty}]_{e,r}\) of non-absolute type.

The set \(S(\lambda, \mu) \) defined by

\[
S(\lambda, \mu) = \{ z = (z_k) \in w : xz = (x_k z_k) \in \mu \text{ for all } x = (x_k) \in \lambda \}
\]

is called the multiplier space of the sequence spaces \(\lambda \) and \(\mu \). One can easily observe for a sequence space \(\nu \) with \(\lambda \supset \nu \supset \mu \) that the inclusions

\[
S(\lambda, \mu) \subset S(\nu, \mu) \text{ and } S(\lambda, \mu) \subset S(\lambda, \nu)
\]

hold. With the notation of (3.1), the alpha-, beta- and gamma-duals of a sequence space \(\lambda \), which are respectively denoted by \(\lambda^{\alpha}, \lambda^{\beta} \) and \(\lambda^{\gamma} \), are defined by

\[
\lambda^{\alpha} = S(\lambda, \ell_1), \lambda^{\beta} = S(\lambda, cs) \text{ and } \lambda^{\gamma} = S(\lambda, bs).
\]

For giving the alpha-, beta- and gamma-duals of the spaces \([c_{0}]_{e,r}, [c]_{e,r}\) and \([\ell_{\infty}]_{e,r}\) of non-absolute type, we need the following Lemma:

Lemma 3.1. [22]

(i): \(A \in (c_0 : \ell_1) = (c : \ell_1) = (\ell_{\infty} : \ell_1) \) if and only if

\[
\sup_{K \in \mathcal{F}} \sum_{n=0}^{\infty} \left| \sum_{k \in K} a_{nk} \right| < \infty.
\]

(ii): \(A \in (c_0 : \ell_{\infty}) = (c : \ell_{\infty}) = (\ell_{\infty} : \ell_{\infty}) \) if and only if

\[
\sup_{n \in \mathbb{N}} \sum_{k=0}^{\infty} |a_{nk}| < \infty.
\]

(iii): \(A \in (c : c) \) if and only if (3.2) holds, and

\[
\exists (\alpha_k) \in w \text{ such that } \lim_{n \to \infty} a_{nk} = \alpha_k \text{ for all } k \in \mathbb{N},
\]

\[
\exists \alpha \in \mathbb{C} \text{ such that } \lim_{n \to \infty} \sum_{k=0}^{\infty} a_{nk} = \alpha.
\]

Now, we may give the theorems determining the \(\alpha-, \beta- \) and \(\gamma- \) duals of the Euler-Riesz sequence spaces \([c_{0}]_{e,r}, [c]_{e,r}\) and \([\ell_{\infty}]_{e,r}\).
Theorem 3.2. Define the set a_q as follows:

$$a_q = \left\{ a = (a_k) \in w : \sup_{K \subset F} \sum_{n=0}^{\infty} \left(\sum_{k \in K} \binom{n}{k} (-1)^{n-k} 2^k a_n \frac{Q_k}{q_n} \right) < \infty \right\}.$$

Then, $\{[c_0]_{e,r} \}^\alpha = \{[c]_{e,r} \}^\alpha = \{[\ell_\infty]_{e,r} \}^\alpha = a_q$.

Proof. We give the proof for the space $[c_0]_{e,r}$. We chose the sequence $a = (a_k) \in w$. We can easily derive with (2.2) that

$$a_n x_n = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} 2^k a_n \frac{Q_k}{q_n} k y_k = (By)_n, \quad (n \in \mathbb{N});$$

where $B = (b_{nk})$ is defined by the formula

$$b_{nk} = \left\{ \binom{n}{k} (-1)^{n-k} 2^k a_n \frac{Q_k}{q_n} , \quad (0 \leq k \leq n), \quad (0 \leq n, k \in \mathbb{N}). \right\}$$

It follows from (3.4) that $ax = (a_n x_n) \in \ell_1$ whenever $x \in [c_0]_{e,r}$ if and only if $By \in \ell_1$ whenever $y \in c_0$. This gives the result that $\{[c_0]_{e,r} \}^\alpha = a_q$. □

Theorem 3.3. The matrix $D(r) = (d_{nk})$ is defined by

$$d_{nk} = \left\{ \sum_{j=k}^{n} \binom{n}{j} (-1)^{j-k} 2^j a_j \frac{Q_j}{q_j} , \quad (0 \leq k \leq n), \quad (k > n). \right\}$$

for all $k, n \in \mathbb{N}$. Then, $\{[c_0]_{e,r} \}^\beta = b_1 \cap b_2$ and $\{[c_{e,r}] \}^\beta = b_1 \cap b_2 \cap b_3$ where

$$b_1 = \left\{ a = (a_k) \in w : \sup_{n \in \mathbb{N}} \sum_{k=0}^{n} |d_{nk}| < \infty \right\},$$

$$b_2 = \left\{ a = (a_k) \in w : \lim_{n \to \infty} d_{nk} = \alpha_k \right\},$$

$$b_3 = \left\{ a = (a_k) \in w : \lim_{n \to \infty} \sum_{k=0}^{n} d_{nk} \text{ exists} \right\}.$$

Proof. We give the proof for the space $[c_0]_{e,r}$. Consider the equation

$$\sum_{k=0}^{n} a_{k} x_k = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} 2^j a_j \frac{Q_j}{q_j} y_k = (Dy)_n,$$

where $D = (d_{nk})$ defined by (3.5).

Thus, we decude by (3.6) that $ax = (a_k x_k) \in cs$ whenever $x = (x_k) \in [c_0]_{e,r}$ if and only if $Dy \in c$ whenever $y = (y_k) \in c_0$. Therefore, we derive from (3.2) and (3.3) that

$$\lim_{n \to \infty} d_{nk} \text{ exists for each } k \in \mathbb{N},$$

$$\sup_{n \in \mathbb{N}} \sum_{k=0}^{n} |d_{nk}| < \infty$$

which shows that $\{[c_0]_{e,r} \}^\beta = b_1 \cap b_2$. □

Theorem 3.4. $\{[c_0]_{e,r} \}^\gamma = \{[c_{e,r}] \}^\gamma = b_1$.

Proof. This is obtained in the similar way used in the proof of Theorem 3.3. □
4. Matrix Transformations Related to the New Sequence Spaces

In this section, we characterize the matrix transformations from the spaces \([c_0]_{e,r}, [c]_{e,r}\) and \(\ell_\infty\) into any given sequence space \(\mu\) and from the sequence space \(\mu\) into the spaces \([c_0]_{e,r}, [c]_{e,r}\) and \(\ell_\infty\).

Since \([c_0]_{e,r} \cong c_0\) (or \([c]_{e,r} \cong c\) and \(\ell_\infty \cong \ell_\infty\)), we can say: The equivalence “\(x \in [c_0]_{e,r}\) (or \(x \in [c]_{e,r}\) and \(x \in \ell_\infty\))”, if and only if \(y \in c_0\) (or \(y \in c\) and \(y \in \ell_\infty\)” holds.

In what follows, for brevity, we write,

\[
\tilde{a}_{nk} := \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} 2^k Q_k a_{nk}
\]

for all \(k, n \in \mathbb{N}\).

Theorem 4.1. Suppose that the entries of the infinite matrices \(A = (a_{nk})\) and \(E = (e_{nk})\) are connected with the relation

\[
e_{nk} := \tilde{a}_{nk}
\]

for all \(k, n \in \mathbb{N}\) and \(\mu\) be any given sequence space. Then,

(i): \(A \in ([c_0]_{e,r} : \mu)\) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \in [c_0]_{e,r}^{\beta}\) for all \(n \in \mathbb{N}\) and \(E \in (c_0 : \mu)\).

(ii): \(A \in ([c]_{e,r} : \mu)\) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \in \{(c)_{e,r}\}^\beta\) for all \(n \in \mathbb{N}\) and \(E \in (c : \mu)\).

(iii): \(A \in (\ell_\infty : \mu)\) if and only if \(\{a_{nk}\}_{k \in \mathbb{N}} \in \{(\ell_\infty)_{e,r}\}^\beta\) for all \(n \in \mathbb{N}\) and \(E \in (\ell_\infty : \mu)\).

Proof. We prove only Part (i). Let \(\mu\) be any given sequence space. Suppose that (4.1) holds between \(A = (a_{nk})\) and \(E = (e_{nk})\), and take into account that the spaces \([c_0]_{e,r}\) and \(c_0\) are linearly isomorphic.

Let \(A \in ([c_0]_{e,r} : \mu)\) and take any \(y = (y_k) \in c_0\). Then \(EB\) exists and \(\{a_{nk}\}_{k \in \mathbb{N}} \in b_1 \cap b_2\) which yields that \(\{e_{nk}\}_{k \in \mathbb{N}} \in c_0\) for each \(n \in \mathbb{N}\). Hence, \(Ey\) exists and thus

\[
\sum_k e_{nk} y_k = \sum_k a_{nk} x_k
\]

for all \(n \in \mathbb{N}\).

We have that \(Ey = Ax\) which leads us to the consequence \(E \in (c_0 : \mu)\).

Conversely, let \(\{a_{nk}\}_{k \in \mathbb{N}} \in \{(c)_{e,r}\}^\beta\) for each \(n \in \mathbb{N}\) and \(E \in (c_0 : \mu)\), and take any \(x = (x_k) \in [c_0]_{e,r}\). Then, \(Ax\) exists. Therefore, we obtain from the equality

\[
\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} \sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} 2^j Q_j a_{kj} y_k
\]

for all \(n \in \mathbb{N}\), that \(Ey = Ax\) and this shows that \(A \in ([c_0]_{e,r} : \mu)\). This completes the proof of Part (i). \(\square\)

Theorem 4.2. Suppose that the elements of the infinite matrices \(A = (a_{nk})\) and \(B = (b_{nk})\) are connected with the relation

\[
b_{nk} := \sum_{j=0}^{k} \binom{k}{j} Q_j a_{jk} 2^{k} Q_k a_{nk} \quad \text{for all } k, n \in \mathbb{N}.
\]

Let \(\mu\) be any given sequence space. Then,

(i): \(A \in (\mu : [c_0]_{e,r})\) if and only if \(B \in (\mu : c_0)\).

(ii): \(A \in (\mu : [c]_{e,r})\) if and only if \(B \in (\mu : c)\).

(iii): \(A \in (\mu : [\ell_\infty]_{e,r})\) if and only if \(B \in (\mu : \ell_\infty)\).

Proof. We prove only Part (iii). Let \(z = (z_k) \in \mu\) and consider the following equality.

\[
\sum_{k=0}^{m} b_{nk} z_k = \sum_{j=0}^{k} \binom{k}{j} Q_j a_{jk} z_k \quad \text{for all } m, n \in \mathbb{N}
\]

which yields as \(m \to \infty\) that \((Bz)_n = \{B(Az)_n\}_n\) for all \(n \in \mathbb{N}\). Therefore, one can observe from here that \(Az \in [\ell_\infty]_{e,r}\) whenever \(z \in \mu\) if and only if \(Bz \in \ell_\infty\) whenever \(z \in \mu\). This completes the proof of Part (iii). \(\square\)
The following results were taken from Stieglitz and Tietz [22]:

$$\lim_{k} a_{nk} = 0 \text{ for all } n,$$ \hspace{1cm} (4.2)

$$\lim_{n} \left| \sum_{k} a_{nk} \right| \text{ exist,}$$ \hspace{1cm} (4.3)

$$\lim_{n \to \infty} \sum_{k} |a_{nk}| = \sum_{k} \left| \lim_{n \to \infty} a_{nk} \right|,$$ \hspace{1cm} (4.4)

$$\lim_{n \to \infty} \sum_{k} |a_{nk}| = 0,$$ \hspace{1cm} (4.5)

Lemma 4.3. Let $A = (a_{nk})$ be an infinite matrix. Then

(i): $A = (a_{nk}) \in (c_0 : \ell_\infty) = (c : \ell_\infty) = (\ell_\infty : \ell_\infty)$ if and only if (3.2) holds.

(ii): $A = (\hat{a}_{nk}) \in (c_0 : c_0)$ if and only if (3.2) and (4.2) hold.

(iii): $A = (a_{nk}) \in (c : c_0)$ if and only if (3.2), (4.2) and (4.5) hold.

(iv): $A = (a_{nk}) \in (\ell_\infty : c_0)$ if and only if (4.5) holds.

(v): $A = (\hat{a}_{nk}) \in (c_0 : c)$ if and only if (3.2) and (3.3) hold.

(vi): $A = (a_{nk}) \in (c : c)$ if and only if (3.2), (3.3) and (4.3) hold.

(vii): $A = (a_{nk}) \in (\ell_\infty : c)$ if and only if (3.3) and (4.4) hold.

Now, we can give the following results:

Corollary 4.4. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i): $A \in ([c_0]_{c,r} : c_0)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([c_0]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (3.2) and (4.2) hold with \hat{a}_{nk} instead of a_{nk}.

(ii): $A \in ([c_0]_{c,r} : c)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([c_0]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (3.2) and (3.3) hold with \hat{a}_{nk} instead of a_{nk}.

(iii): $A \in ([c_0]_{c,r} : \ell_\infty)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([c_0]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (3.2) holds with \hat{a}_{nk} instead of a_{nk}.

Corollary 4.5. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i): $A \in ([c]_{c,r} : c_0)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([c]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (3.2), (4.2) and (4.5) hold with \hat{a}_{nk} instead of a_{nk}.

(ii): $A \in ([c]_{c,r} : c)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([c]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (3.2), (3.3) and (4.2) hold with \hat{a}_{nk} instead of a_{nk}.

(iii): $A \in ([c]_{c,r} : \ell_\infty)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([c]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (3.2) holds with \hat{a}_{nk} instead of a_{nk}.

Corollary 4.6. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i): $A \in ([\ell_\infty]_{c,r} : c_0)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([\ell_\infty]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (4.5) holds with \hat{a}_{nk} instead of a_{nk}.

(ii): $A \in ([\ell_\infty]_{c,r} : c)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([\ell_\infty]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (3.3) and (4.4) hold with \hat{a}_{nk} instead of a_{nk}.

(iii): $A \in ([\ell_\infty]_{c,r} : \ell_\infty)$ if and only if $\{a_{nk}\}_{k \in \mathbb{N}} \in ([\ell_\infty]_{c,r})^\beta$ for all $n \in \mathbb{N}$ and (3.2) holds with \hat{a}_{nk} instead of a_{nk}.

Corollary 4.7. Let $A = (a_{nk})$ be an infinite matrix. The following statements hold:

(i): $A = (a_{nk}) \in (c_0 : [c_0]_{c,r})$ if and only if (3.2) and (4.2) hold with b_{nk} instead of a_{nk}.

(ii): $A = (a_{nk}) \in (c : [c_0]_{c,r})$ if and only if (3.2), (4.2) and (4.5) hold with b_{nk} instead of a_{nk}.

(iii): $A = (a_{nk}) \in (\ell_\infty : [c_0]_{c,r})$ if and only if (4.5) holds with b_{nk} instead of a_{nk}.

(iv): $A = (a_{nk}) \in (c_0 : [c]_{c,r}) = (c : [c]_{c,r}) = (\ell_\infty : [c]_{c,r})$ if and only if (3.2) and (3.3) hold with b_{nk} instead of a_{nk}.

(v): $A = (a_{nk}) \in (c : [c]_{c,r})$ if and only if (3.2), (3.3) and (4.3) hold with b_{nk} instead of a_{nk}.

(vi): $A = (a_{nk}) \in (\ell_\infty : [c]_{c,r})$ if and only if (3.3) and (4.4) hold with b_{nk} instead of a_{nk}.
(vii): $A = (a_{nk}) \in (c_0 : [\ell_\infty]_{c,r}) = (c : [\ell_\infty]_{c,r}) = (\ell_\infty : [\ell_\infty]_{c,r})$ if and only if (3.2) holds with b_{nk} instead of a_{nk}.

5. ACKNOWLEDGMENTS

We have benefited a lot from the referee’s report. So, we thank to the reviewer for his/her careful reading and making some useful comments which improved the presentation of the paper.

REFERENCES