Turk. J. Math. Comput. Sci.
7(2017) 59-62
(c) MatDer
http://dergipark.gov.tr/tjmcs
http://tjmcs.matder.org.tr
MATDER

Pell and Pell-Lucas Numbers Associated with Brocard-Ramanujan Equation

Dursun TAşç̧ ${ }^{a}{ }^{a, *}$, Emre Sevgi ${ }^{a}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Gazi University, 06500, Ankara, Turkey

Received: 07-09-2017 • Accepted: 11-12-2017
Abstract. In this paper, the diophantine equations of the form $A_{n_{1}} A_{n_{2}} \cdots A_{n_{k}} \pm 1=B_{m}^{2}$ where $\left(A_{n}\right)_{n \geq 0}$ and $\left(B_{m}\right)_{m \geq 0}$ are either the Pell sequence or Pell-Lucas sequence are solved by applying the Primitive Divisor Theorem. This is another version of Brocard-Ramanujan equation.

2010 AMS Classification: 11B39, 11D99.
Keywords: Pell number, Pell-Lucas number, Brocard-Ramanujan equation, Diophantine equation.

1. Introduction

The problem of finding all solutions to

$$
n!+1=m^{2}
$$

is known as Brocard-Ramanujan problem. Some authors [1,3,4] have been worked on this problem. Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and the recurrence relation $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. The variant of this problem, the diophantine equation

$$
F_{n} F_{n+1} \cdots F_{n+k-1}+1=F_{m}^{2}
$$

was investigated by Marques [5]. Also, Szalay [7] and Pongsriiam [6] worked on another version of this diophantine equation.

In this article we will give a new version of Brocard-Ramanujan equation in terms of Pell and Pell-Lucas sequence.
Let $\left(P_{n}\right)_{n \geq 0}$ be the Pell sequence given by $P_{0}=0, P_{1}=1$ and $P_{n}=2 P_{n-1}+P_{n-2}$ for $n \geq 2$ and let $\left(Q_{n}\right)_{n \geq 0}$ be the Pell-Lucas sequence given by the same recurrence relation as the Pell sequence with the initial values $Q_{0}=Q_{1}=2$.

[^0]
2. Preliminaries and Lemmas

Before giving the Primitive Divisor Theorem, we first give some remarks about it. Let α and β be algebraic numbers such that $\alpha+\beta$ and $\alpha \beta$ are nonzero coprime integers and $\alpha \beta^{-1}$ is not a root of unity. Let $\left(u_{n}\right)_{n \geq 0}$ be the sequence given by

$$
u_{0}=0, u_{1}=1, \text { and } u_{n}=(\alpha+\beta) u_{n-1}-(\alpha \beta) u_{n-2} \text { for } n \geq 2
$$

Then we have Binet's formula for u_{n} given by

$$
u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \text { for } n \geq 0
$$

If $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$ then u_{n} is the Pell sequence.
A prime p is said to be a primitive divisor of u_{n} if $p \mid u_{n}$ but p does not divide $u_{1} u_{2} \cdots u_{n-1}$.
Theorem 2.1 (Primitive Divisor Theorem [2]). Suppose α and β are real numbers such that $\alpha+\beta$ and $\alpha \beta$ are nonzero coprime integers and $\alpha \beta^{-1}$ is not a root of unity. If $n \neq 1,2,6$, then u_{n} has a primitive divisor except when $n=12$, $\alpha+\beta=1$ and $\alpha \beta=-1$.

Lemma 2.2. For every $m \geq 1$, we have

$$
P_{m-1} P_{m+1}= \begin{cases}P_{m}^{2}-1, & \text { if } m \text { is odd } \\ P_{m}^{2}+1, & \text { if } m \text { is even } .\end{cases}
$$

Proof. Let m be an even integer. We know that the roots of quadratic equation of Pell numbers are $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$. So by the help of Binet's formula it can be proved as follows:

$$
\begin{aligned}
P_{m-1} P_{m+1} & =\frac{\alpha^{m-1}-\beta^{m-1}}{\alpha-\beta} \frac{\alpha^{m+1}-\beta^{m+1}}{\alpha-\beta} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-\alpha^{m-1} \beta^{m+1}-\alpha^{m+1} \beta^{m-1}}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-(\alpha \beta)^{m-1}\left(\alpha^{2}+\beta^{2}\right)}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-6(\alpha \beta)^{m-1}}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}+6(\alpha \beta)^{m}}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-2(\alpha \beta)^{m}+8}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-2(\alpha \beta)^{m}+(\alpha-\beta)^{2}}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-2(\alpha \beta)^{m}}{(\alpha-\beta)^{2}}+1 \\
& =P_{m}^{2}+1 .
\end{aligned}
$$

Similarly, let m be an odd integer. It can be proved as follows:

$$
\begin{aligned}
P_{m-1} P_{m+1} & =\frac{\alpha^{m-1}-\beta^{m-1}}{\alpha-\beta} \frac{\alpha^{m+1}-\beta^{m+1}}{\alpha-\beta} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-\alpha^{m-1} \beta^{m+1}-\alpha^{m+1} \beta^{m-1}}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-(\alpha \beta)^{m-1}\left(\alpha^{2}+\beta^{2}\right)}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-6(\alpha \beta)^{m-1}}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}+6(\alpha \beta)^{m}}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-2(\alpha \beta)^{m}-8}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-2(\alpha \beta)^{m}-(\alpha-\beta)^{2}}{(\alpha-\beta)^{2}} \\
& =\frac{\alpha^{2 m}+\beta^{2 m}-2(\alpha \beta)^{m}}{(\alpha-\beta)^{2}}-1 \\
& =P_{m}^{2}-1 .
\end{aligned}
$$

Lemma 2.3. For every $m \geq 1$, we have
(i) $Q_{m}^{2}-1=\left\{\begin{array}{cc}8 P_{m-1} P_{m+1}+3, & \text { if } m \text { is odd } ; \\ P_{3 m} / P_{m}, & \text { if } m \text { is even } .\end{array}\right.$
(ii) $Q_{m}^{2}+1=\left\{\begin{array}{cc}P_{3 m} / P_{m}, & \text { if } m \text { is odd } ; \\ 8 P_{m-1} P_{m+1}-3, & \text { if } m \text { is even } .\end{array}\right.$

Proof. This can be checked easily by using Binet's formula.

3. Main Results

Theorem 3.1. The diophantine equation

$$
\begin{equation*}
P_{n_{1}} P_{n_{2}} \cdots P_{n_{k}}+1=P_{m}^{2} \tag{3.1}
\end{equation*}
$$

in positive integers k, m and $3 \leq n_{1}<n_{2}<\cdots<n_{k}$ has an infinite family of solutions given by

$$
P_{m-1} P_{m+1}+1=P_{m}^{2}
$$

Proof. Taking a solution of (3.1) by Lemma 2.2 we get

$$
P_{n_{1}} P_{n_{2}} \cdots P_{n_{k}}=P_{m-1} P_{m+1} .
$$

Suppose that $m \geq 14$. Then $13 \leq m-1 \leq m+1$ and therefore, by Primitive Divisor Theorem, P_{m+1} has a primitive divisor. Then $n_{k}=m+1$ and hence (3.1) reduces to

$$
\begin{equation*}
P_{n_{1}} P_{n_{2}} \cdots P_{n_{k-1}}=P_{m-1} \tag{3.2}
\end{equation*}
$$

Now $P_{m-1}>1$ and this implies $k \geq 2$. Using the same arguments linked to primitive divisors as above (3.2) provides $n_{k-1}=m-1$. As a result, $k=2$, i.e. there are no more terms on the left hand side of (3.2). Thus we get the infinite family of solution $P_{m-1} P_{m+1}+1=P_{m}^{2}, m \geq 14$.

Theorem 3.2. The diophantine equation

$$
\begin{equation*}
Q_{n_{1}} Q_{n_{2}} \cdots Q_{n_{k}}+1=Q_{m}^{2} \tag{3.3}
\end{equation*}
$$

in positive integer k,even integer m and in non-negative integers $n_{1}<n_{2}<\cdots<n_{k}\left(n_{i} \neq 1\right)$ has no solution.
Proof. Since we know that $P_{n} Q_{n}=P_{2 n}$, (3.3) reduces to

$$
\begin{equation*}
\frac{P_{2 n_{1}}}{P_{n_{1}}} \frac{P_{2 n_{2}}}{P_{n_{2}}} \cdots \frac{P_{2 n_{k}}}{P_{n_{k}}}=\frac{P_{3 m}}{P_{m}} . \tag{3.4}
\end{equation*}
$$

Suppose that $m \geq 14$. Then $P_{3 m}$ has a primitive divisor. Thus, $2 n_{k}=3 m$, i.e. $n_{k}=\frac{3 m}{2}>m$. If $k=1$ (3.4) reduces to $P_{m}=P_{n_{1}}$, and we get a contradiction by $m=n_{1}$. Supposing $k=2$, (3.4) simplies to

$$
\frac{P_{2 n_{1}}}{P_{n_{1}}} P_{m}=P_{n_{2}}
$$

Since $n_{2}>m, P_{n_{2}}$ contains a primitive divisor. Thus $n_{2}=2 n_{1}$, and $m=n_{1}$ follows. This contradicts to $n_{2}=\frac{3 m}{2}$. If $k \geq 3$ then observe that $n_{k-1}<m$ holds, otherwise we could cause a contradiction by $Q_{n_{k-1}} Q_{n_{k}}>Q_{m}^{2}$. Thus the equation

$$
\begin{equation*}
\frac{P_{2 n_{1}}}{P_{n_{1}}} \cdots \frac{P_{2 n_{k-2}}}{P_{n_{k-2}}} P_{m}=P_{n_{k-1}} \tag{3.5}
\end{equation*}
$$

has no solution since $m \geq 14$, therefore P_{m} has a primitive divisor on the left hand side of (3.5), which can not exist on the right hand side.
Theorem 3.3. The diophantine equation

$$
\begin{equation*}
P_{n_{1}} P_{n_{2}} \cdots P_{n_{k}}+1=Q_{m}^{2} \tag{3.6}
\end{equation*}
$$

in positive integer k,even integer m and in non-negative integers $n_{1}<n_{2}<\cdots<n_{k}\left(n_{i} \neq 1\right)$ has no solution.
Proof. Suppose that $m>3$. We can write (3.6) as:

$$
\begin{equation*}
P_{n_{1}} P_{n_{2}} \cdots P_{n_{k}} P_{m}=P_{3 m} \tag{3.7}
\end{equation*}
$$

Then $P_{3 m}$ has a primitive divisor. This implies that $n_{k}=3 m$. Then (3.7) reduces to

$$
P_{n_{1}} P_{n_{2}} \cdots P_{n_{k}-1} P_{m}=1
$$

Thus, $1=P_{n_{1}} P_{n_{2}} \cdots P_{n_{k}-1} P_{m}>P_{m}>P_{3}=5$ which is a contradiction. Therefore $m<3$, it means $m=0$ or 2. In this situation one can check that there is no solution.

References

[1] Berndt, B. C., Galway, W. F., On the Brocard-Ramanujan Diophantine equation $n!+1=m^{2}$, Ramanujan J., 4(1)(2016), 41-42. 1
[2] Carmichael, R. D., On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math. Second S., 15(1/4)(1913), 30-48. 2.1
[3] Dabrowski, A., On the Brocard-Ramanujan problem and generalizations, Colloq. Math., 126(1)(2012), 105-110. 1
[4] Luca, F., The Diophantine equation $P(x)=n$! and a result of M. Overholt, Glas. Math. Ser. III, 37(2)(2002), 269-273. 1
[5] Marques, D., The Fibonacci version of the Brocard-Ramanujan diophantine equation, Portug. Math., 68(2011), 185-189. 1
[6] Pongsriiam, P., Fibonacci and Lucas numbers associated with Brocard-Ramanujan equation, Commun. Korean Math. Soc., 32(3)(2017), 511-522. 1
[7] Szalay, L., Diophantine equations with binary recurrences associated to Brocard-Ramanujan problem, Port. Math., 69(3)(2012), 213-220. 1

[^0]: *Corresponding Author
 Email addresses: dtasci@gazi.edu.tr (D. Taşçı), emresevgi@gazi.edu.tr (E. Sevgi)

