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Some Generalized Suborbital Graphs
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Abstract. In this paper, we consider suborbital graphs formed by the group action of the normalizer of Γ0(N) in
PS L2(R) which is a finitely generated Fuchsian group. Firstly, conditions for being an edge are provided, then we
give necessary and sufficient conditions for the suborbital graphs to contain a circuit. This paper is an extension of
some results in [4, 6].
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1. Introduction

The modular group Γ = PS L2(Z) is the group of all linear fractional transformations

T : z→
az + b
cz + d

,where a, b, c and d are integer and ad − bc = 1.

In terms of matrix representation, the elements of Γ correspond to the matrices

±

(
a b
c d

)
; a, b, c, d ∈ Z and ad − bc = 1.

The modular group is important because it forms a subgroup of the group of isometries of the hyperbolic plane. If
we consider the upper half-plane model H := {z ∈ C : Im(z) > 0} of hyperbolic plane geometry, then the group of all
orientation-preserving isometries of H is Γ [9].

Important subgroups of the modular group Γ, called congruence subgroups, are given by imposing congruence
relations on the associated matrices. One of them is

Γ0(N) =

{(
a b
c d

)
≡ ±

(
∗ ∗

0 ∗

)
modN

}
.

Conway and Norton gave a complete description of the elements of the normalizer Nor(N) of Γ0(N) in PS L(2,R).
It consists exactly of matrices (

ae b/h
cN/h de

)
,
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where e ‖ N
h2 and h is the largest divisor of 24 for which h2|N with understandings that the determinant e of the matrix

is positive, and that r ‖ s means that r|s and (r, s/r) = 1 (r is called an exact divisor of s) [1].
This normalizer has acquired significance because it is related to the Monster simple group. It has also played

an important role in work on Weierstrass points on Riemann surfaces associated to Γ0(N), on modular forms and on
ternary quadratic forms [1].

Figure 1. Farey graph

It is well-known that the graph of a group provides a method by which a group can be visualized. Such a construction
is illustrated in Fig. 1, which shows the Farey graph arising from the action of Γ on Q̂. From this point of view, one can
regard these combinatorial structures as pictures of the group. In this light, suborbital graphs of the normalizer have
been studied under various restrictions.

• N is a square-free positive integer [7],
• N satisfy the condition of transitive action [8],
• Some non-transitive cases [3, 4, 6].

Clearly, a general statement is an open problem but seems to be not easy. We think this study can be seen as a step
in the way towards the arbitrary N.

2. Group Action

Every element of the extended set of rationals Q̂ = Q∪{∞} can be represented as a reduced fraction
x
y

, with x, y ∈ Z

and (x, y) = 1. ∞ is represented as 1
0 = −1

0 . The action of the matrix
(
a b
c d

)
∈ Γ on

x
y

is(
a b
c d

)
:

x
y
→

ax + by
cx + dy

.

The following results can be found with more detailed in [3].

Lemma 2.1. Let k
s be an arbitrary rational number with (k, s) = 1. Then there exists some element A ∈ Γ0(N) such

that A( k
s ) = k1

s1
with s1|N.

Lemma 2.2. Let d|N and (a, d) = (b, d) = 1. Then
(

a
d

)
and

(
b
d

)
are conjugate under Γ0(N) if and only if b ≡ a

(mod (d, d
N )).
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Lemma 2.3. Let d|N. Then the orbit
(

a
d

)
of a

d under Γ0(N) is the set x
y ∈ Q̂ : (N, y) = d, a ≡ x · y

d (mod (d, d
N )).

Furthermore the number of orbits
(

a
d

)
with d|N under is just ϕ(d, d

N ) where ϕ is Euler’s function.

By divisors of qp2, direct computation shows the following result,

Theorem 2.4. The orbits of the action of Γ0(N) on Q̂ are
(

1
1

)
,
(

1
q

)
,
(

1
p2

)
,
(

1
qp2

)
,
(

2
p

)
, . . . ,

(
p − 1

p

)
,
(

1
qp

)
,(

t2
qp

)
,. . . ,

(
tp−1
qp

)
where any two of 1, t2, . . . , tp−1 are not congruent modp, and that ti, i = 2, 3, . . . , p − 1, is i or p + i

according as q 6 |i or q|i.

If one can just examine the actions of the elements of Nor(qp2) on the orbit
(
1
1

)
, the following result is easily

obtained:

Theorem 2.5. The orbits of the action of Nor(qp2) on Q̂ are as follows. Let l ∈ {1, 2, . . . , p − 1}. Then

(1) (a) If q 6 |l and l . ( mod q), then
(

l
p

)
∪

(
p − l

p

)
∪

(
l

qp

)
∪

(
p − l
qp

)
,

(b) If q 6 |l and l ≡ ( mod q), then
(

l
p

)
∪

(
p − l

p

)
∪

(
l

qp

)
∪

(
2p − l

qp

)
,

(2) If q|l, then
(

l
p

)
∪

(
p − l

p

)
∪

(
p + l
qp

)
∪

(
p − l
qp

)
,

(3)
(

l
1

)
∪

(
l
p

)
∪

(
l

p2

)
∪

(
l

qp2

)
.

Corollary 2.6. The set Q̂(qp2) =

(
l
1

)
∪

(
l
q

)
∪

(
l

p2

)
∪

(
l

qp2

)
is a maximal subset of Q̂ on which Nor(qp2) acts

transitively.

A general discussion of primitivity of permutation groups was given in [5]. In this paper G is the normalizer
Nor(qp2), Ω is Q̂, and H is N0 which is generated by Γ0(qp2) and some element T of the form

T =

(
qa b

qp2c qd

)
.

That is N0 =< Γ0(qp2),T >. In this case it is easily seen that we have just two blocks as

[∞] :=
(

1
p2

)
∪

(
1

qp2

)
and [0] :=

(
1
1

)
∪

(
1
q

)
.

Therefore
∣∣∣Nor(qp2) : N0

∣∣∣ = 2.

3. Main Results

We now investigate the suborbital graphs for the action Nor(qp2) on Q̂(qp2). Since the action Nor(qp2) on Q̂(qp2)
is transitive, Nor(qp2) permutes the blocks transitively; so the subgraphs are all isomorphic. Hence it is sufficient to
study with only one block [10]. On the other hand, it is clear that each non-trivial suborbital graph which are shown by
Gu,p2 contains a pair (∞, u/p2) for some u/p2 ∈ Q̂(qp2) where (u, p2) = 1. Therefore, we work on the following case:
We denote by Fu,p2 the subgraph of Gu,p2 such that its vertices are in the block [∞].

Theorem 3.1. Let r/s and x/y be in the block [∞]. Then there is an edge r/s→ x/y in Fu,p2 iff

(i) If p2 | s but qp2 - s then x ≡ ±qur (mod p2), y ≡ ±qus (mod qp2), ry − sx = ±p2,
(ii) If qp2 | s, then x ≡ ±ur (mod p2), y ≡ ±us (mod p2), ry − sx = ±p2,

(Plus and minus sign correspond to r/s > x/y and r/s < x/y, respectively)
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Proof. Assume first that r/s
>
−→ x/y is an edge in Fu,p2 , and p2 | s but qp2 - s. It means that there exists some

T in the normalizer Nor(qp2) such that T sends the pair (∞, u/p2) to the pair (r/s, x/y), that is T (∞) = r/s and

T (u/p2) = x/y. Since qp2 - s, T must be of the form
(

qa b
qp2c qd

)
. T (∞) =

qa
qp2c

=
r
s

gives that r = a and s = p2c.

T (u/p2) =
qau + bp2

qp2cu + qdp2 =
r
s

gives that x ≡ ur(modp2), y ≡ us(modqp2). Furthermore, we get ry − sx = p2 from the

equation
(

qa b
qp2c qd

) (
1 u
0 p2

)
=

(
qr x
qs y

)
. Similar calculations are done by the element

(
a b

qp2c d

)
for (ii).

For the opposite direction, we assume that p2 | s, qp2 - s and that x ≡ qur(modp2), y ≡ qus(modp2), ry − sx = p2.
In this case, there exist b, d ∈ Z such that x = qur +bp2 and y = qus+dp2. If we put these equivalences in ry− sx = p2,

we obtain qrd − bs = 1. So the element T0 =

(
qr b
qs d

)
is clearly in N0. For minus sign and another conditions, similar

calculations are done. �

Definition 3.2. [2] Let v1, v2, . . . , vn be in Q̂(qp2). Then a configuration v1 −→ v2 −→ . . . −→ vn−1 −→ vn −→ v1 is
called a circuit of lenght n. If n is a 4, then the circuit is called a rectangle, if n is a 3 (resp. 2), then the circuit is called
a triangle (resp. a self paired edge).

If we represent the edges of Fu,p2 as hyperbolic geodesics in the upper half plane H, then we have:

Proposition 3.3. The subgraph Fu,p2 of Nor(qp2) does not cross in H.

Proof. Without loss generality, since the action on Q̂(qp2) is transitive, suppose that ∞ −→ u
p2 , x1

y1 p2 −→
x2

y2 p2 and
x1

y1 p2 <
u
p2 <

x2
y2 p2 , where all letters are positive integers. Since x1

y1 p2 −→
x2

y2 p2 and x1
y1 p2 <

u
p2 <

x2
y2 p2 then x1y2 − x2y1 = −1

and x1
y1
< u < x2

y2
, respectively. Therefore x1

y1
−

x2
y2
< u − x2

y2
< 0. Then x1y2−x2y1

y1y2
< uy2−x2

y2
< 0. So −1

y1
< uy2 − x2 < 0, a

contradiction. �

Now we give one of our main theorems:

Theorem 3.4. The subgraph Fu,p2 of Nor(qp2) contains a rectangle if and only if q = 2 and 2u2±2u+1 ≡ 0 (mod p2).

Proof. Assume first that Fu,p2 has a rectangle k0
l0
−→

m0
n0
−→

s0
t0
−→

x0
y0
−→

k0
l0

. Since N0 permutes the vertices
and edges of Fu,p2 transitively, the rectangle is transformed under N0 to a rectangle 1

0 −→
m
p2 −→

x
y −→

k
l −→

1
0 .

Furthermore, without loss of generality, suppose m
p2 <

x
y <

k
l . Here we repeatedly use Theorem 3.1 we get l = p2 from

the edge k
l −→

1
0 . From the edge 1

0 −→
m
p2 we have m ≡ umodp2. The edge m

p2 −→
x
y gives that x ≡ −qmu( mod p2),

y ≡ −qum (mod qp2), and my − p2x = −p2. So we have that there exists some y1 ∈ Z such that y = qp2y1, and that
x ≡ −qu2 (mod p2). Furthermore,

mqy1 − x = −1. (3.1)

From the edge k
p2 −→

1
0 we get,

quk ≡ −1 (mod p2). (3.2)

Using (3.1) and the edge x
qp2y1

−→ k
p2 we conclude that

k ≡ −u(mqy1 + 1) (mod p2) and (mqy1 + 1) − qy1k = −1. (3.3)

Then
qy1(m − k) = −2.

Consequently, q = 1 or q = 2. If q = 1 then y1 = 1 or 2, m − k = −1,−2. If y1 = 1 then k = m + 2. Using (3.3)
we have m + 2 ≡ −u(m + 1) (mod p2). So we get u2 + 2u + 2 ≡ 0 (mod p2). By (3.3) u(m + 2) + 1 ≡ 0 (mod p2).
So 1 ≡ 0 (mod p2), a contradiction. Now let y1 = 2. Then m − k = −1, that is k = m + 1. From (3.2) we have
u2 + 2u + 2 ≡ 0 (mod p2). From (3.1) we have x = 1 + 2m. Since x ≡ −qu2 (mod p2) then we get 2m + 1 ≡ −u2

(mod p2) or u2 + 2u + 2 ≡ 0 (mod p2). Hence, with u2 + 2u + 2 ≡ 0 (mod p2) we obtain that u ≡ 0 (mod p2). It gives
again a contradiction. Consequently, q must be 2 and therefore y1 = 1. x ≡ −qu2 (mod p2) and mqy1 − x = −1 gives
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that 2u2 + 2u + 1 ≡ 0( mod p2). If the inequalities m
p2 >

x
y >

k
l hold then we conclude that 2u2 − 2u + 1 ≡ 0 (mod p2).

Conversely, suppose that q = 2 and 2u2 ± 2u + 1 ≡ 0 (mod p2). Then, using Theorem 3.1, we see that
1
0
−→

u
p2 −→

2u ± 1
2p2 −→

u ± 1
p2 −→

1
0

is a rectangle in Fu,p2 . �

Now we give a theorem saying that under which conditions Fu,p2 contains hexagons.

Theorem 3.5. The subgraph Fu,p2 of Nor(qp2) contains a hexagon H if and only if q = 3 and 3u2 ± 3u + 1 ≡ 0
(mod p2).

Proof. Because of the transitive action, the hexagon H can be taken, as in the proof of Theorem 3.1, as:

1
0
−→

u
p2 −→

x1

qy1 p2 −→
x2

y3 p2 −→
x3

qy3 p2 −→
x4

p2 −→
1
0
. (3.4)

Here all letters are positive integers and the order is in increasing order. From the second edge we get that x1 ≡ −qu2(
mod p2) and that x1 = quy1 + 1. Therefore we have the congruence

qu2 + quy1 + 1 ≡ 0 (mod p2).

From the sixth edge it is evident that x4 ≡ u + y1 (mod p2). Since the pattern is periodic with period 1, that means that
if we add 1 to each the vertex we simply get an hexagon as well, we must have 0 < y1 ≤ p2. Because otherwise from
Proposition 3.3 one of y1, y2, y3 must be zero, which is impossible. From (3.4) we get that the element

T =

 −qu qu2+quy1+1
p2

qp2 qu + qy1


is in N0. Then it is immediate that x1

qy1 p2 =
quy1+1
qy1 p2 = T 2( 1

0 ). Next we show that x2
y2 p2 = T 3( 1

0 ). For this we see that
x2

y2 p2 ≤ T 3( 1
0 ). Otherwise, suppose that T 3( 1

0 ) < x2
y2 p2 . That is, u(qy2

1−1)+y1

p2(qy2
1−1) <

x2
y2 p2 . So we have,

uy2(qy2
1 − 1) + y1y2 < x2(qy2

1 − 1). (3.5)

Since quy1+1
qy1 p2 −→

x2
y2 p2 and u

p2 <
x2

y2 p2 , using theorem 11, we have quy2
1y2 +y1y2 = qx2y2

1−y1 and −uy2 > −x2 respectively.
From (3.5) we get that quy2

1y2−uy2+y1y2 < qx2y2
1−uy2. Then −y1+y1y2 < 0, is a contradiction. Therefore x2

y2 p2 ≤ T 3( 1
0 ).

The hexagon H must have T 3( 1
0 ) has a vertex, otherwise we prove a contradiction by Proposition 3.3. Therefore if the

equality does not hold then T 3( 1
0 ) must equal x4

p2 (= u+y1
p2 ) which is impossible. Consequently x2

y2 p2 = T 3( 1
0 ). Let us now

finally obtain the equality x3
qy2 p2 = T 4( 1

0 ) =
quy1(qy2

1−2)+qy2
1−1

qp2y1(qy2
1−2) . As in the above suppose that x3

qy3 p2 > T 4( 1
0 ). Then,

quy3y1(qy2
1 − 2) + qy2

1y3 − y3 < x3y1(qy2
1 − 2).

Since u(qy2
1−1)+y1

p2(qy2
1−1) −→

x3
qy3 p2 then, by Theorem 3.1, we have,

y1x3(qy2
1 − 1) = y1 + qy2

1y3 + quy1y3(qy2
1 − 1). (3.6)

Inserting this into (3.6) we get the inequality

y1(x3 − quy3) < y1 + y3.

Since x3
qy3 p2 −→

u+y1
p2 , we have

x3 = quy3 + qy1y3 − 1.
Then we obtain the inequality

qy2
1y3 < 2y1 + y3. (3.7)

On the other hand, by Theorem 3.1, the hexagon gives the following five congruences

x1 ≡ −qu2 (mod p2),

x2 ≡ −ux1 (mod p2),
x3 ≡ −qux2 (mod p2),
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x4 ≡ −ux3 (mod p2),
1 ≡ −qux4 (mod p2).

From these congruences it is immediate that q3u6 + 1 ≡ 0 (mod p2). From this congruence and the congruence (3.2)
we get that

y1(qy2
1 − 3) ≡ 0 (mod p2). (3.8)

Now, let us turn back to (3.7). This is satisfied only if qy2
1 = 2, 3or4. But the congruence (3.8) proves a contradiction.

Therefore x3
qy3 p2 ≤ T 4( 1

0 ). As in above, T 4( 1
0 ) must be a vertex in hexagon H. Hence, T 4( 1

0 ) =
x3

qy3 p2 or x4
p2 or 1

0 .

If T 4( 1
0 ) =

quy1(qy2
1−2)+qy2

1−1
qp2y1(qy2

1−2) = x4
p2 =

u+y1
p2 , then qy1(qy2

1 − 2) is equal to 1, which is impossible. If T 4( 1
0 ) = 1

0 then

qy2
1 − 2 = 0. But this contradicts to (3.8). Therefore T 4( 1

0 ) =
x3

qy3 p2 . So we have

quy1(qy2
1 − 2) + qy2

1 − 1

qp2y1(qy2
1 − 2)

−→
x4

p2 =
u + y1

p2 .

Then, quy1(qy2
1 − 2) + qy2

1 − 1 − (u + y1)qy1(qy2
1 − 2) = −1. From this we get that qy2

1(3 − qy2
1) = 0. This gives q = 3

and y1 = 1. So, in the end, we obtain that q = 3 and 3u2 + 3u + 1 ≡ 0 (mod p2). If the decreasing order is taken then
we arrive at the result q = 3 and 3u2 − 3u + 1 ≡ 0 (mod p2). To prove the converse, let 3u2 ± 3u + 1 ≡ 0 (mod p2).
Then, by Theorem 3.1, we have a hexagon as

1
0
−→

u
p2 −→

3u ± 1
3p2 −→

2u ± 1
2p2 −→

3u ± 2
3p2 −→

u ± 1
p2 −→

1
0
.

Therefore the proof is completed.
�
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