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Abstract: In this work, we present a compact hardware implementation of cryptographic hash algorithms; 

[Keccak, Skein & JH] on Field Programmable Gate Array (FPGA) by using an efficient primitive level 

programming approach. All the logic is not only mapped onto Look-Up-Table (LUT) but also effectively 

utilizes FPGAs internal dedicated logical resource, such as Fast Carry Chain logic with MUXCY and 

XORCY to reduce overall hardware resources. This approach results in the usage of a minimized chip area 

with a good balance between resources and speed for selected hash algorithms. All the implementation has 

been done on the latest Xilinx FPGAs and their results comparisons are presented in the form of chip area 

consumption, throughput and throughput per area with previous up-to-date implementations. The results 

show a substantial improvement as compared to all the previously reported works. 
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1. Introduction 

Cryptographic hash functions are an essential component in many information security 

applications such as digital signatures, message authentication codes (MACs) that require 

authentication, and data integrity. A secure cryptographic hash function must have two 

important properties: it should be irreversible and it should be collision free. However, many 

previous hash functions and cryptographic hash functions, such as SHA-0, SHA-1, RIPEMD, 

MD4, MD5, and HAVAL, have been found vulnerable to pre-image and collision attacks and 

should not be used because of their weaknesses [1-4]. 
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Therefore, to ensure the long-term robustness of applications that use hash functions, the 

National Institute of Standards and Technology (NIST) USA has selected Keccak as a new 

cryptographic hash algorithm called SHA-3 [5] in 2012. Though Keccak is selected as a 

standard hash algorithm, the four remaining proposed hash algorithms candidates (Skein, 

BLAKE, JH and Grøstl) were also equally as good and provide flawless security [6]. 

Similarly, the design of JH and Grøstl are strongly inspired by AES [7] and both can be a 

good choice once we require unified architecture with encryption algorithm, such as AES. 

Therefore, in this paper, we provide an efficient hardware implementation of only three 

selected SHA-3 candidates: Keccak as SHA-3, Skein and JH with respect to unified 

architecture on the latest Field Programmable Gate Array (FPGA) technologies from Xilinx. 

FPGAs are the best known leading reconfigurable platform for hardware implementation. All 

modern Xilinx FPGAs [8] are equipped with Configurable Logic Blocks (CLBs) that contain 

not only Look-Up-Tables (LUTs) but also dedicated hardware resources, such as Fast Carry 

Chain logic, MUXCY and XORCY gates. These resources can be effectively utilized to speed 

up the operation of cryptographic hash algorithms with minimum area resources. 

The remainder of this paper is organized as follows: An overview of related work is discussed 

in Section 2. In Section 3, the methodology adopted for our hardware implementation of 

Keccak, Skein & JH is described. The resource efficient hardware architectures for Keccak, 

Skein & JH with their brief overview are given in Section 4. In Section 5, we present the 

implementation results and comparisons with previously reported work. Section 6 provides 

performance evaluation of Keccak, Skein & JH. Finally, we conclude our work in Section 7. 

 

2. Related Work 

Various groups around the world provide the hardware implementation for the above selected 

algorithms on both the FPGA and ASIC platforms in two main categories of implementation: 

high speed designs and compact designs. The high speed ASIC implementations are reported 

in [9-11]. A number of efficient compact FPGA implementations of these algorithms are 

reported in [12-15]. In this work, we focus on high-speed implementations of FPGAs as it 

provides a direct snapshot of the basic operations cost for a given algorithm. The SHA-3 Zoo 

website [16] reports the comprehensive results of the reported work, in which most are 

focused on high speed architectures. In Table 1, we provide a snapshot of the high-speed 

implementations results for FPGAs from different groups. The comprehensive studies on the 

above selected algorithms are reported by Baldwin et al. [17], Matsuo et al. [18], Gaj et al. 
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[19], Shahid et al. [20] and Homsirikamol et al. [21, 22]. In [17-22], the authors have 

investigated different design strategies and have implemented various architectures for every 

algorithm using pipelining, folding and loop unrolling approaches. However, here we have 

selected only the results of the basic iterative architecture (x1) for Keccak, basic iterative 

architecture with 4 unrolled stages (x4) for Skein and basic iterative architecture (x1) with 

memory for JH. 

 

TABLE 1. SHA-3 Candidates Implementations 

SHA-3 
candi-
dates 

Author(s) Device 
256-bit 512-bit 

𝑭𝒎𝒎𝒎 𝑨𝑨𝑨𝒎 𝑻𝑻 𝑻𝑻𝑨 𝑭𝒎𝒎𝒎 𝑨𝑨𝑨𝒎 𝑻𝑻 𝑻𝑻𝑨 

Keccak 

Keccak Team [27] Virtex-5 122.00 1330 5.20 3.91 - - - - 

Strömbergson [23] Spartan-3 85.00 3393 4.80 1.41 - - - - 
Strömbergson [23] Virtex-5 118.00 1483 6.70 4.52 - - -  
Baldwin et al.[17] Virtex-5 195.73 1971 6.26 3.17 195.73 1971 8.52 4.32 
Matsuo et al. [18] Virtex-5 205.00 1433 4.20 2.93 - - - - 
Akin et al. [24] Spartan-3 81.40 2024 3.46 1.71 - - - - 
Akin et al. [24] Virtex-4 142.90 2024 6.07 3.00  - - - 
Gaj et al. [19] Virtex-5 - 1375 12.75 9.27  - 1283 7.18 5.60 
Homsirikamol et al. [22] Virtex-6 - 1165 11.84 10.17 - 1231 7.23 5.87 
Homsirikamol et al. [22] Virtex-5 - 1395 12.77 9.16 - 1220 6.56 5.37 
Shahid et al.[20] Virtex-5 248.2  1338 11.25 8.41 - - - - 

Skein 
 

Baldwin et al. [17] Virtex-5 - - - - 83.58 2756 0.97 0.35 
Matsuo et al. [18] Virtex-5 115.00 854 0.283 0.33 - - - - 
Gaj et al. [19] Virtex-5 - 1245 3.13 2.51 - 1348 2.97 2.20 
 Long [25] Virtex-5 114.94 931 0.407 0.44 114.94 1758 0.82 0.46 
Tillich [26] Virtex-5 68.40 937 1.751 1.87 69.04 1632 3.535 2.17 
Tillich [26] Spartan-3 26.14 2421 0.669 0.28 26.66 4273 1.365 0.32 
Homsirikamol et al. [22] Virtex-6 - 1216 3.52 2.90 - 1591 3.11 1.96 
Homsirikamol et al. [22] Virtex-5 - 1476 2.94 1.99 - 1658 2.81 1.7 
Shahid et al.[20] Virtex-5 95.2  1306 2.56 1.96 - - - - 

JH 

Baldwin et al.[17] Virtex-5 144.11 1763 1.64 0.93 144.11 1763 1.64 0.93 
Matsuo et al. [18] Virtex-5 201.00 2661 0.733 0.27 - - - - 
Gaj et al. [19] Virtex-5 - 1001 4.54 4.54 - 1125 4533 4.03 
Homsirikamol et al. [22] Virtex-6 - 847 5.70 6.73 - 896 5.34 5.95 
Homsirikamol et al. [22] Virtex-5 - 909 4.62 5.09 - 1020 4.73 4.64 
Shahid et al.[20] Virtex-5 354.7  985 5.04 5.12 - - - - 

𝐹𝑚𝑚𝑚 in MHz, 𝐴𝐴𝐴𝐴 in Slices, 𝑇𝑇 in Gbps and 𝑇𝑇𝐴 in Mbps/Slice 
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3. Implementation Methodology 

We have implemented the 256-bit and 512-bit variants of the selected SHA-3 candidates: 

Keccak, Skein & JH. Our designs are fully autonomous with complete I/O interfaces. We 

targeted them for efficient implementations; however, we kept in mind the fair hardware 

performance comparison for these candidates. 

3.1. I/O Interface 

The input/output interface is shown in Fig. 1(a). Each I/O transaction is sampled at the rising 

edge of the system clock. The input cycle is started by setting the load signal to high. After 

that, the Hash Module sets the ack signal to high if it is able to receive input data. The input 

data is then received in the form of 64-bit words at every rising edge of the clock, and during 

this transaction, the ack signal remains high. When the Hash Module has received the desired 

amount of data_in, then this ack signal is set to low by it, and if no further transactions are  

required, then the load signal is pull down to low by the I/O Interface. Similarly, when the 

final hash value becomes available by the Hash Module, then hash_valid is set to high by it. 

The output data is then transferred in the form of 64-bit words on each rising edge of the clock 

until the desired hash length is received. 

3.2. Control and Data Paths 

The hash module has two major parts: the control path and the data path. The block diagram 

of the hash module is given in Fig. 1(b). The control path consists of the Finite State Machine, 

State register, clock and counter, while the data path consists of input and output registers, the 

Hash Core and intermediate registers. The input registers of the data path consists of registers 
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FIGURE 1. (a) Common I/O Interface (b) Hash Module separated in Control and Data paths 
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to store messages and other input parameters, such as the Initialization Vector (IV) in the case 

of JH. The Hash Core is the main arithmetic logic unit of the hash algorithm. Intermediate 

registers are utilized to store intermediate results of the hash algorithm. The output register 

contains the resulting hash output. 

 

3.3. Xilinx FPGA Architecture and its Implication on the Design of SHA-3 

Algorithms 

The architectures of the latest FPGA families from Xilinx (Virtex-6, Virtex-7, and Spartan 6) 

are based on 6-input LUTs, named LUT6 [8]. A CLB Slice of a Xilinx FPGA consists of four 

such LUTs and the Fast Carry Chain logic. Each LUT6 has six independent inputs and two 

independent outputs. These LUTs may be configured and used in many different ways. A 

LUT6 may be used as an independent 5-input LUT using the LUT5 primitive from the Xilinx 

HDL library, as shown in Fig. 2(a). On the other hand, it is possible to implement any two 5-

input logic functions with shared inputs using the LUT6_2 primitive, as shown in Fig. 2(b). In 

this case, the LUT input 𝑖5 selects between two 5-input logic functions to connect to output 
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FIGURE 2. LUT5, LUT6_2 and CARRY4 primitives in the Xilinx HDL library 
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𝑂6. The same LUT6_2 primitive may be used to draw two independent outputs from a LUT6 

with shared 5-inputs. In this case, input 𝑖5 should be tied to logic high (i.e. 1). The INIT value 

in hexadecimal, shown under the attributes in Fig. 2(a) and 2(b), configures the LUT to 

perform the desired operation at its inputs. The INIT value is derived by laying down the truth 

table for all possible combinations of the LUT inputs and outputs. The Fast Carry Chain logic 

in Fig. 2(c) is useful for the implementation of logical functions such as AND, OR and NOT. It 

consists of four multiplexers and four XOR gates that connect to the LUTs in the same Slice 

through dedicated routing to form more complex functions. We have used these primitives 

excessively in the architectural designs of Keccak, Skein & JH. We also exploit the techniques 

presented in [28] for efficient utilization of modern FPGA resources. 

 

4. Proposed Implementation 
4.1. Keccak Design 

 

Keccak [27] is a family of sponge functions (Keccak [r, c]) parameterized by bitrate r and 

capacity c. It is restricted to the set of seven permutations {25, 50, 100, 200, 400, 800, and 

1600} formed by the sum of r + c. Keccakf[1600] is the initial proposal for SHA-3 with 

different r and c values for each desired length of the hash output. For the 256-bit hash output 

r = 1088 and c = 512, and for the 512-bit hash output r = 576 and c = 1024, Keccak-f[1600] 

consists of 1600 bits of an input state array that are arranged in the form of a 5×5 matrix of 

64-bit words. The permutation function of Keccak-f[1600] comprises 24 rounds, with each 

round having a total of five steps: theta (𝜃), rho (𝜌), pi (𝜋), chi (𝜒) and iota (𝑖). These five 

steps consists of bitwise operations such as XOR, NOT, AND and bitwise cyclic shift operators 

[27].  
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FIGURE 3. Architectural detail of Keccak 
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The sequential design of Keccak is shown in Fig. 3(a). The Reg represents the 𝐴 matrix 

register on which processing of the Keccak algorithm takes place with the width defined to 

r + c (bits). As defined above for Keccak-256, r is specified as 1088-bits while c is specified 

as 512-bits; similarly for Keccak-512, r is specified as 576-bits and c as 1024-bits. 

Accordingly Reg will be 1600-bits. Initially, the content of Reg is initialized with all zeros.  

The input message block of r is directly copied to Reg after concatenating it with c number of 

zeros with the help of the Concat block in Fig. 3(a). The compression function of Keccak 

consists of five steps;  𝜃,𝜌,𝜋,𝜒 and i. In Fig. 3(a), each step is denoted by the symbol as 

specified in the Keccak specifications. Wherever possible, we have combined these steps 

during implementation. We have implemented the second and third equations of 𝜃 and 𝜌 as a 

single step. Moreover, we integrated  𝜋,𝜒 and i in the next step. The arithmetic operations, 

and the XOR, AND & NOT operations are implemented using LUT primitives from Xilinx 

specific libraries. The following are details of the implementation of each step: 

4.1.1. Theta (𝜽) and Rho (𝝆) Step 

There are three equations in the  𝜃 step. The first equation is implemented using the LUT5 

primitive for XOR logic, as shown in Fig. 3(b). The INIT value in hexadecimal, shown under 
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attributes in figure, configures the LUT to perform an XOR operation at its inputs. The INIT 

value is derived by laying down the truth table for all possible combinations of LUT inputs. 

To XOR five 64-bit operands of the equation, the LUT5 primitive is instantiated 64 times. For 

complete implementation of the equation, five 64 LUT5 primitives are required. We combine 

the remaining two equations of the theta step with 𝜌. The cyclic shift constant r[x,y] is fixed 

and known for each position of matrix A. The LUT3 primitive is used for XOR logic in the 

second equation of θ, as shown in Fig. 3(c), while the one-bit rotation of the last operand in 

the third equation of θ and 𝜌 are implemented through rewiring. 

 

4.1.2. Pi  (𝝅), Chi (𝝌) and Iota (𝒊) Steps 

The π is a permutation step and it is also combined with Chi (χ) and Iota (i) Steps. In the  𝜒 

step, three logical operations, XOR, NOT and AND, are implemented by using Fast Carry 

Chain logic with in same CLB instead of using the FPGA LUT primitive, as shown in 

Fig. 3(c). The𝑖 step involves a simple XOR of a round constant with the least significant 64 

bits of Reg, i.e. A[0,0]. It is also combined with the equations of the  𝜃 step and implemented 

using the LUT4 primitive, as shown in Fig. 3(c). 

The round constants (RC) are stored in a distributed ROM of 24×64 bits, implemented by 

using LUTs in a single port configuration. The round constant for each round is selected by 

means of a round number which is used as the ROM address. The whole Keccak algorithm 

takes 24 clock cycles to complete 24 rounds. After completion of 24 rounds on a message 

block, resulting r-bits of the state of Reg are XORed with the next message block and the same 

round sequence is repeated. This process continues until the end of all message blocks. 

Finally, the state of Reg is truncated to the desired length of the hash output. 
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4.2. Skein Design 

Skein [29] is a group of cryptographic hash functions for the three internal state sizes: 256, 

512 and 1024 bits. It consists of three components: Threefish Block Cipher, Unique Block 

Iteration (UBI), and Optional Argument System. The core of Skein is built upon the tweakable 

block cipher that makes every instant of the compression function of Skein unique. For every 

input message, it divides the block into equal sizes of 64-bit words and performs a simple 

non-linear MIX operation and permutation for every pair of words. The MIX function consists 

of an addition, a cyclic shift and an XOR operation. 

The data path implemented for Skein is shown in Fig. 4(a). The Add_Subkey module consists 

of eight 64-bit adders that are implemented using fast carry chain logic available in Xilinx 

FPGAs. The Threefish compression function of Skein is implemented in the form of Round_A 

and Round_B. Both of these modules are identical except for the value of the left shift 

constant R involved in the MIX operation, which is different. Initially, the plaintext message 

has been added to the input key before being provided to the system. The first multiplexer 

selects between the input data only for the first clock cycle and for the feedback data for the 

remaining 72 rounds. The resulting output is then passes to the de-multiplexer that assigned 

date to either Round_A or Round_B. Both the de-multiplexer and second multiplexer are 

control by the same select input S2. The output of second multiplexer is then fed to the 

Add_Subkey module to add it with round subkey. 

FIGURE 4. Architectural detail of Skein 
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The complete design for both the Round_A and Round_B modules are given in Fig. 4(b). In 

the Round_A module, four unrolled rounds are partially implemented from 1 to 4 with their 

rotational constants, while in the Round_B module, rounds 5 to 8 are implemented. Each 

round consists of MIX and Permutation operations with constant R values and these four 

rounds are then iteratively used to complete 72 rounds of the compression function. We have 

efficiently implemented the second step in the MIX module using a LUT2 primitive depicted 

in Fig. 7(c). The Add_Subkey module is a 256-bit adder having input keys from the key 

scheduler; however, here in our design, we calculate the subkeys on-the-fly. The execution of 

both the modules (Round_A and Round_B) which occurs on the rising edge of each clock 

pulse and the next subkey is available on the falling edge of the same clock. In this manner, 

the complete four rounds of the module and subkey addition is executed in one clock cycle. 

Therefore, to complete 72 rounds and 19 subkey additions of Skein-256, 18 clock cycles will 

be required instead of 72 clock cycles. The final hash value will be available after the latency 

of 18 cycles at the output of the XOR gate. 

4.3. JH Design 

JH [30] is based on the idea that large block ciphers can be constructed through small 

components and a constant key. Its methodology is highly inspired by the AES design to high 

dimensions. It uses two types of S-boxes and a selection of each S-box for a given 4-bit 

substitution is controlled by the respective bit value of a round constant. JH has four variants, 

i.e. JH-224, JH-256, JH-384 and JH-512, with only a difference in the initial values (IV) and 

the output hash lengths. The JH compression function is constructed from the bijective 

function 𝐸 with a total of 42 rounds. Each round is composed of a 4-bit S-box substitution, a 

linear transformation and a series of three permutations [30]. 

The data path implemented for JH is shown in Fig. 5(a). The state_reg represents the 

intermediate JH state register, on which processing of the JH algorithm takes place and is 

initialized with the IV of a desired hash digest size. The JH hash function uses the same 

algorithm for all JH variants with only a difference in IV and the hash output registers. Then a 

complete JH compression is processed by setting msg and the round constant RC to zero. The 

higher order 512 bits of the resulting state of the JH compression is then XORed with first 

message block and stored in state_reg. Then the contents of state_reg are processed through a 

JH compression function with their respective round constants. The Trunc. block represents 

the truncation operation, while the Concat. block represents the concatenation operation. The 

grouping and de-grouping blocks are used to perform grouping and de-grouping of JH state 
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bits into 4-bit pairs as specified in JH [30]. In terms of hardware implementation, these steps 

are achieved through a simple rewiring of the interconnects at no cost to resources. 

 

4.3.1. JH Arithmetic Logic Unit (ALU) 

JH ALU consists of S-boxes (S) and linear transformation units (L). For S-box, we used the 

LUT6_2 primitive (Fig. 2(b)) and we used both of its outputs, i.e. 𝑂5 and 𝑂6. Using this 

approach, the 4 S-boxes are adjusted within a single slice. Here, the S-box logic of JH ALU 

consists of only 128 slices. The implementation of a single S-box using this approach is 

depicted in Fig. 5(b). The INIT values (in hexadecimal), shown in the figure, are actual 

configuration values for each LUT to perform the S-box operation. The linear transformation 

is also implemented using the same optimized approach. The LUT6_2 primitive, with both 

outputs 𝑂5 and 𝑂6, is used. Implementation of a single linear transformation unit (L) is 

depicted in Fig. 5(c). The INIT values (in hexadecimal), shown in the figure, are actual 

configuration values for each LUT to perform the L operation. The same variables are shown 

for the inputs and outputs in Fig. 5(c), as denoted in the linear transformation equations in the 

specification document [30]. 

FIGURE 5. Architectural detail of JH 
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INIT=966969963 6-Input Look-Up 
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𝐶1 

LUT5 

LUT5 
 

𝐵3 
𝐴0 
𝐴2 

Attributes 
INIT=969696963 6-Input Look-Up 

 

LUT6_2 
 

𝐷3 

𝐶0 

LUT5 

LUT5 
𝐵1 
𝐴0 
𝐴2 
𝐴3 

Attributes 
INIT=6996699696 6-Input Look-Up 

 

LUT6_2 
 

𝐷1 

𝐶2 

LUT5 

LUT5 
  

𝐵2 
𝐴1 
𝐴3 

Attributes 
INIT=969696963 6-Input Look-Up 

 

LUT6_2 
 

𝐷2 

𝐶3 
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The round constants (RC) are stored in a single port distributed ROM of 43×256 bits. The 

round constant for each round is selected by means of a round number which is used as the 

ROM address. The completion of 42 rounds of the JH compression function (ALU) takes a 

total of 42 clock cycles. After the completion of 42 rounds, the resulting lower order 512 bits 

of the JH compression state is XORed with msg in order to obtain the next chaining hash 

value, while the higher order 512 bits of the resulting chaining hash value is XORed with the 

next message block. It is then stored in state_reg and the same compression sequence is 

repeated on it. This process continues until the end of all the message blocks. Finally, the 

resulting lower 512 bits of chaining hash value is truncated to the desired length of the hash 

output 

 

5. Implementation Results and Comparisons 

All the proposed designs have been implemented using the Xilinx ISE 14.7 platform by 

targeting latest Xilinx Virtex-7 as well as the Virtex-5 family devices. All the designs were 

synthesized using Xilinx Synthesis Technology (XST) v.14.7. Furthermore, the functionality 

of each design was tested and verified by an ISim simulator. Detailed device specifications 

include: Virtex-5 LX30T, speed grade 3, package FF323 (5vlx30tff323-3) and Virtex-7 

LX585T, speed grade 3, and package FFG1761 (7vlx585ffg1761-3). 

Table 2 shows the achieved area consumption (Area), clock frequency (F_max), throughput 

(TP) and throughput per area (TPA) for our implemented designs. The Block Size is the block 

size of the message in bits and N_clk is the number of clock cycles required for the hash of a 

single message block. The results for Virtex-5 were provided for comparison purposes as no 

implementation results were available on Virtex-7, while the Virtex-7 results were provided 

for future applications that will be using the new technology of FPGAs in their designs. 
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TABLE 2. Implementation results for the 256-bit and 512-bit variants for the SHA-3 

candidates 

SHA-3 
Candi-
dates 

Device 

256-bit 512-bit 

𝑩𝑩𝑩𝑩𝑩 
𝑺𝒊𝑺𝑨 
[bits] 

𝑵𝑩𝑩𝑩  
[cycles] 

𝑭𝒎𝒎𝒎 
[MHz] 

𝑨𝑨𝑨𝒎 
[Slices] 

𝑻𝑻 
[Gb/s] 

𝑻𝑻𝑨  
[Mbps/ 
slice] 

𝑩𝑩𝑩𝑩𝑩 
𝑺𝒊𝑺𝑨 
[bits] 

𝑵𝑩𝑩𝑩  
[cycles] 

𝑭𝒎𝒎𝒎 
[MHz] 

𝑨𝑨𝑨𝒎 
[Slices] 

𝑻𝑻 
[Gb/s] 

𝑻𝑻𝑨 
[Mbps
/slice] 

Keccak 
Virtex-5 1088 24 277 1217 12.56 10.31 576 24 270 1200 6.48 5.4 

Virtex-7 1088 24 300 998 13.60  13.63 576 24 298.68 983 7.17 7.27 

Skein 
Virtex-5 256 18 109.63 450 1.56 3.46 512 18 110 980 3.13 3.19 
Virtex-7 256 18 139.23 465 1.98 4.26 512 18 120 1020 3.41 3.34 

JH 
Virtex-5 512 42 287.44 865 3.50 4.05 512 42 292.48 888 3.57 4.02 
Virtex-7 512 42 329.49 587 4.02 6.84 512 42 338.41 679 4.13 6.08 

 

For comparison purposes, we repeat only the Xilinx Virtex-5 results given by previous 

implementations in Table 1, as Table 3 with the inclusion of our Virtex-5 FPGA results only 

as no implementation results are available on Xilinx Virtex-7 FPGA. We achieved significant 

improvements in the implementation results from previously reported work. We take 

advantage of LUT and Carry Chain resources, available in Xilinx FPGAs, to reduce chip area 

consumption with a balanced area and speed ratio. The use of resource primitives from Xilinx 

specific libraries allowed us to design optimal hardware with a minimal use of resources. 

 

TABLE 3. Comparison with previous work 

SHA-3 
Candidate Author(s) FPGA 

256-bit 512-bit 

𝑭𝒎𝒎𝒎 𝑨𝑨𝑨𝒎 𝑻𝑻𝑨 𝑭𝒎𝒎𝒎 𝑨𝑨𝑨𝒎 𝑻𝑻𝑨 

Keccak 

Our work Virtex-5 277 1217 10.31 270 1200 5.4 
Baldwin et al.[17] Virtex-5 195.73 1971 3.17 195.73 1971 4.32 

Matsuo et al. [18] Virtex-5 205.00 1433 2.93 - - - 
Gaj et al. [19] Virtex-5 - 1375 9.27 - 1283 5.60 
Shahid et al.[20] Virtex-5 296.7  1369 9.83 - - - 
Homsirikamol et al. [22] Virtex-5 - 1395 9.16 - 1220 5.37 
Strömbergson [23] Virtex-5 118.00 1483 4.52 - -  
Keccak Team [27] Virtex-5 122.00 1330 3.91 - - - 

Skein 

Our work Virtex-5 109.63 450 3.46 110 980 3.19 
Baldwin et al. [17] Virtex-5 - - - 83.58 2756 0.35 
Matsuo et al. [18] Virtex-5 115.00 854 0.33 - - - 
Gaj et al. [19] Virtex-5 - 1245 2.51 - 1348 2.20 
Shahid et al.[20] Virtex-5 95.2  1306 1.96 - - - 
Homsirikamol et al. [22] Virtex-5 - 1476 1.99 - 1658 1.7 
Long [25] Virtex-5 114.94 931 0.44 114.94 1758 0.46 
Tillich [26] Virtex-5 68.40 937 1.87 69.04 1632 2.17 
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In Table 3, we show our exceeding results in bold font. Most of our results for Virtex-5 are 

exceeding from the previously reported work in terms of throughput per area. Only JH is the 

case where our throughput per area results are slightly less than that of [20] and [22] on 

Virtex-5. However, in the case of Keccak and Skein, our throughput per area results are ahead 

of previously reported work with an exceptional use of a smaller area. 

 

6. Performance Comparison of Keccak, Skein & JH 

Figures 8 and 9 represent the performance comparison of 256-bit and 512-bit variants, 

respectively, in a graphical view based on our results. It is clear from the graphs that Keccak 

is far ahead of the other two candidates, on both Virtex-5 and Virtex-7, in terms of throughput 

(TP) and throughput per area (TPA) for both 256-bit and 512-bit variants. The difference is 

large for the 256-bit variant; however, in the case of the 512-bit variants, the performance of 

JH and Skein is nearer to Keccak. For 256-bit variants, JH gives better throughput per area 

performance than Skein. In terms of area consumption, Skein leads all of the other candidates 

by consuming less area for the 256-bit variants, while for the 512-bit variants, the area 

consumption by JH is lower. 

JH 

Our work Virtex-5 287.44 865 4.05 292.48 888 4.02 
Baldwin et al.[17] Virtex-5 144.11 1763 0.93 144.11 1763 0.93 
Matsuo et al. [18] Virtex-5 201.00 2661 0.27 - - - 
Gaj et al. [19] Virtex-5 - 1001 4.54 - 1125 4.03 
Shahid et al.[20] Virtex-5 403.5  1004 5.72 - - - 
Homsirikamol et al. [22] Virtex-5 - 909 5.09 - 1020 4.64 

𝐹𝑚𝑚𝑚 in MHz, 𝐴𝐴𝐴𝐴 in Slices and 𝑇𝑇𝐴 in Mbps/Slice 
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FIGURE 8. Performance comparison of 256-bit variants of SHA-3 finalists 

 

 
FIGURE 9. Performance Comparison of 512-bit variants of SHA-3 Finalists 
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Hence, in a resource constrained environment, Skein (256-bit variants) is the better option 

because of its lower area consumption as compared to Keccak and JH, whereas for 512-bit 

variants, JH is compact. In terms of throughput, again Keccak is far ahead for 256-bit digest 

sizes. For TP and TPA, Skein is well behind the performances of Keccak and JH. Skein has 

computationally intensive designs as compared to other algorithms. If we consider throughput 

per area as the major deciding factor for performance comparisons, we can easily rank Keccak 

first followed by JH and Skein. 

7. Conclusions 

In this work, we have presented efficient hardware implementations of Keccak as SHA-3, 

Skein and JH with respect to a unified architecture. Dedicatedly mapped LUT resources on 

FPGAs with a combination of Fast Carry Chain, MUXCY and XORCY are used to enhance 

the hardware performance of these cryptographic hash algorithms in terms of area. Reported 

implementation results of 256-bit and 512-bit variants of each algorithm on Xilinx Virtex-5 

and Virtex-7 FPGA shows significant improvements in terms of area, throughput and 

throughput per area. 
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