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Abstract: In this paper, we present a new approach to obtain the numerical solution of the linear two-
dimensional Fredholm and Volterra integro-differential equations (2D-FIDE and 2D-VIDE). First, we intro-
duce the two-dimensional Chebyshev polynomials and construct their operational matrices of integration.
Then, both of them, two-dimensional Chebyshev polynomialsand their operational matrix of integration, are
used to represent the matrix form of 2D-FIDE and 2D-VIDE. Themain characteristic of this approach is
that it reduces 2D-FIDE and 2D-VIDE to a system of linear algebraic equations. Illustrative examples are
included to demonstrate the validity and applicability of the presented technique.
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1. Introduction

Integral equations have been one of the principal tools in various areas of applied mathematics,

physics and engineering. In this paper, we are concerned with two-dimensional integro-differential

equations. Scientists have investigated the topic of integro-differential equations through their

works in many scientific applications, including heat transfer, diffusion processes, neutron diffu-

sion and biological species coexisting with increasing anddecreasing rates of generation. On the

other hand, two-dimensional integral equations provide animportant tool for modeling numerous

problems in engineering and science. These equations appear in electromagnetism, electrodynam-

ics, molecular physics, population in addition to many other fields.

One of the main problems is how to solve integro-differential equations in one and two-dimensional

space. There are several classical solution techniques to solve some of these equations; it is diffi-

cult to obtain the analytical solutions of most of these equations. Therefore, it is important to de-

velop numerical algorithms which have sufficient accuracy.In recent years, numerous works have

been focusing on the development of more advanced and efficient methods for integro-differential

equations, including the Wavelet-Galerkin method, Lagrange interpolation method, Tau method
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and semi-analytical numerical techniques such as Adomiansdecomposition method and Taylor

polynomials [2, 5, 7, 11, 13].

An usual way to solve functional equations is to express the solution as a linear combination of

the so-called basis functions. These basis functions can, for instance, be either orthogonal or

non-orthogonal bases. Approximation by the orthogonal family of basis functions has found wide

application in science and engineering. The most frequently used orthogonal functions are sine-

cosine functions, block pulse functions, Legendre, Chebyshev and Laguerre polynomials. The

main idea of using an orthogonal basis is that the problem under consideration reduces to a system

of linear or nonlinear algebraic equations [8, 10, 11]. The main purpose of this paper is to apply

the 2D orthogonal Chebyshev polynomials to solve Fredholm and Volterra integro-differential

equations.

The remainder of this paper is organized as follows: in Section 2, we begin by introducing some

necessary definitions. In Section 3, the two-dimensional Chebyshev polynomials and their prop-

erties are defined and their integral operational matrices are obtained. Section 4 is devoted to ap-

plying the two-dimensional Chebyshev operational matrix of integration to solve two-dimensional

linear Fredholm and Volterra integro-differential equations. In Section 5, the proposed method is

applied to several examples followed by conclusion in the final section.

2. Preliminaries

In this section, we give definitions and properties of Chebyshev polynomials in one-dimensional

space. The well known Chebyshev polynomials of the first kindof degree n are defined by [4]:

Tn(x) = cos(ncos−1x), n≥ 0. (1)

Also they are derived from the following recursive formula:

T0(x) = 0,

T1(x) = x,

Tn+1(x) = 2xTn(x)−Tn−1(x) n= 1,2,3, · · ·

These polynomials are orthogonal on[−1,1] with respect to the weight functionw(x) =
1√

1−x2
:

∫ 1

−1
Ti(x)Tj(x)w(x)dx=

{

0, i 6= j,
π
γi
, i = j,

(2)

where

γi =

{

1, i = 0,

2, i ≥ 1,
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Chebyshev polynomials are important in approximation theory and numerical analysis [4, 6].

A function f (x) over [−1,1] may be represented by Chebyshev polynomials series as:

f (x) =
∞

∑
i=0

aiTi(x). (3)

If the infinite series in (3) is truncated, then (3) can be written as:

f (x) ≃
N

∑
i=0

aiTi(x) = T(x)tA, (4)

where
T(x) = [T0(x),T1(x), · · · ,TN(x)]t ,

A= [a0,a1, · · · ,aN]
t
,

(5)

andai =
γi

π
∫ 1
−1 f (x)Ti(x)w(x)dx.

Chebyshev polynomials have the following useful property [6]:
∫ x

−1
TN−1(s)ds=

1
2N

TN(x)−
1

2(N−2)
TN−2(x)+

(−1)N−1

1− (N−1)2 T0(x), N ≥ 3. (6)

Moreover, forT0(x) andT1(x), we have:

∫ x
−1T0(s)ds= T0(x)+T1(x),
∫ x
−1T1(s)ds= −1

4 T0(x)+ 1
4T2(x).

(7)

Equations (6) and (7) allow us to write:
∫ x

−1
T(s)ds= PT(x), (8)

whereP is the(N+1)× (N+1) operational matrix:

P=



































1 1 0 0 · · · 0 0

−1
4 0 1

4 0 · · · 0 0

−1
3 −1

2 0 1
6 · · · 0 0

...
...

...
...

. ..
...

...

(−1)N−1

1−(N−1)2 0 0 0 · · · 0 1
2N

(−1)N

1−N2 0 0 0 · · · − 1
2N−2 0



































, N ≥ 3. (9)
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3. Two-Dimensional Chebyshev Polynomials

In this section, by considering 1D Chebyshev polynomials, we define an(N+ 1)2 set of two-

dimensional Chebyshev polynomials as:

Ti j (x, t) = Ti(x)Tj(t), i, j = 0, · · · ,N. (10)

Therefore, the two-dimensional Chebyshev basis vector is as follows:

T(x, t) = [T0(x)T0(t), · · · ,T0(x)TN(t), T1(x)T0(t), · · · ,T1(x)TN(t), · · · ,TN(x)TN(t)]t

= (CN ⊗BN)
t
,

(11)

in which CN = [T0(x),T1(x), · · · ,TN(x)], and BN = [T0(t),T1(t), · · · ,TN(t)] are one dimensional

Chebyshev vectors.

The orthogonality property for these polynomials with respect to the weight functionw(x, t) =
1√

1−x2
√

1− t2
on the interval[−1,1]× [−1,1] is:

(Ti, j(x, t),Tk,l (x, t))w(x,t) =

∫ 1

−1

∫ 1

−1
Ti, j(x, t)Tk,l (x, t)w(x, t)dxdt=











































π2

4 , i = k 6= 0, j = l 6= 0

π2

2 , i = k= 0, j = l 6= 0

π2

2 , i = k 6= 0, j = l = 0

π2
, i = k= 0, j = l = 0

0, else

Similarly to the one-dimensional case, a functionf (x, t) on [−1,1]× [−1,1] can be expanded by

two-dimensional Chebyshev polynomials as the following equation:

f (x, t) =
∞

∑
i=0

∞

∑
j=0

ai j Ti, j(x, t) =
∞

∑
i=0

∞

∑
j=0

ai j Ti(x)Tj(t), (12)

where

ai, j =
( f (x, t),Ti j (x, t))w(x,t)

(Ti, j(x, t),Ti j (x, t))w(x,t)
, i, j = 0,1, ...,N. (13)

In practice, only the finite terms of the above series are considered, so we have:

f (x, t) =
N

∑
i=0

N

∑
j=0

ai j Ti(x)Tj (t), (14)

For the two-dimensional Chebyshev polynomialsT0(x)T0(t), T0(x)T1(t), T1(x)T0(t) andT1(x)T1(t),

we have the following property:
∫ x

−1

∫ t

−1
T0(s)T0(r)dsdr= T1(x)T1(t)+T0(x)T1(t)+T1(x)T0(t)+T0(x)T0(t), (15)

∫ x

−1

∫ t

−1
T0(s)T1(r)dsdr=

−1
4

T0(x)T0(t)+
1
4

T0(x)T2(t)+
−1
4

T1(x)T0(t)+
1
4

T1(x)T2(t), (16)



CUJSE 12, No. 2 (2015) Two-dimensional Chebyshev Polynomials 5

∫ x

−1

∫ t

−1
T1(s)T1(r)dsdr=

1
16

T0(t)T0(x)+
−1
16

T0(x)T2(t)+
−1
16

T2(x)T0(t)+
1
16

T2(x)T2(t). (17)

From the above equations and by considering (8), we can write:
∫ x

−1

∫ t

−1
T(s, r)dsdr= QT(x, t), (18)

whereQ= P⊗P is the operational matrix of integration of 2D Chebyshev polynomials, andP is

the matrix that represented in (9).

4. Two-dimensional Fredholm and Volterra Integro-Differential

Equations

In this section, by using two-dimensional Chebyshev polynomials, we solve a special kind of

two-dimensional Fredholm and Volterra integro-differential equations.

4.1. Fredholm Integro-Differential Equations (FIDE):

First, we consider the two-dimensional Fredholm integro-differential equation in the form:

ϕxt(x, t)+ϕ(x, t)+
∫ 1

−1

∫ 1

−1
k(x, t,y,z)ϕ(y,z)dydz= f (x, t), x, t ∈ [−1,1], (19)

with the initial conditions:
ϕ(−1,−1) = ϕ0,

ϕ(−1, t) = g(t),

ϕ(x,−1) = h(x),

(20)

where f (x, t) and k(x, t,y,z) are known functions on[−1,1] and [−1,1]× [−1,1] respectively;

ϕ(x, t) is an unknown function andϕxt(x, t) is the derivative ofϕ(x, t) with respect tot andx. h(x)

andg(t) are given functions andϕ0 is a given number.

The process of our method is obtaining the solution of the equation as a truncated Chebyshev

series defined by:

ϕ(x, t)≃ ϕN(x, t) =
N

∑
i=0

N

∑
j=0

ai j Ti(x)Tj(t), (21)

and

ϕxt(x, t) ≃ ψN(x, t) =
N

∑
i=0

N

∑
j=0

ei j Ti(x)Tj(t), (22)

so in the matrix form, we have:
ϕN(x, t) = Tt(x, t)A,

ψN(x, t) = Tt(x, t)E,
(23)

such that

A= [a00, · · · ,a0N, · · · ,aN0, · · · ,aNN]
t
, (24)
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and

E = [e00, · · · ,e0N, · · · ,eN0, · · · ,eNN]
t
. (25)

are two unknown vectors, andT(x, t) is the 2D Chebyshev vector defined in (11).

Moreover, we can expand the functionsf (x, t), g(x), andh(t) in terms of a 2D Chebyshev basis:

f (x, t) ≃ Tt(x, t)F, (26)

ϕ0 ≃ Tt(x, t)B, (27)

g(t)≃ Tt(x, t)G, (28)

h(x)≃ Tt(x, t)H, (29)

where:
F = [ f00, · · · , f0N, · · · , fN0, · · · , fNN]

t
,

G= [g00, · · · ,g0N, · · · ,gN0, · · · ,gNN]
t
,

H = [h00, · · · ,h0N, · · · ,hN0, · · · ,hNN]
t
,

B= [b00, · · · ,b0N, · · · ,bN0, · · · ,bNN]
t
,

and the components of these vectors can be derived from (13).

Similarly, for the functionk(x, t,y,z), we have:

k(x, t,y,z) ≃ kN(x, t,y,z) = Tt(x, t)KT(y,z), (30)

whereK is an(N+1)× (N+1) matrix; its elements are given by:

kpqlm=
(Tpq(x, t), (k(x, t,y,z),Tlm(y,z))w(y,z) )w(x,t)

(Tpq(x, t),Tpq(x, t))w(x,t)(Tlm(y,z),Tlm(y,z))w(y,z)
, p,q, l ,m= 0,1, ...,N.

Substituting (23), (26) and (30) in (19), we get:

Tt(x, t)E+Tt(x, t)A+Tt(x, t)K (
∫ 1
−1

∫ 1
−1T(y,z)Tt(y,z)dydz) A

= Tt(x, t)F,
(31)

Now, by letting

Ψ =

∫ 1

−1

∫ 1

−1
T(y,z)Tt(y,z)dydz,

and by using the orthogonality of the two-dimensional Chebyshev functions, we have the following

matrix form of (31):

E+A+KΨA= F. (32)

On the other hand, we can write:

ϕ(x, t)+ϕ(−1,−1)−ϕ(−1, t)−ϕ(x,−1) =
∫ x

−1

∫ t

−1
Tt(τ1,τ2)Edτ1dτ2,
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then, by the integral operational matrix in (18), we have thefollowing relation betweenA andE:

A+B−G−H = QtE, (33)

and, from 32) and (33), we can obtain the following equation:

A+B−G−H = Qt(F −A−KΨA), (34)

which is a system of linear equations, so by solving the abovesystem, we find the unknown vector

A, and the functionϕ(x, t) is obtained in terms of (21).

4.2. Volterra Integro-Differential Equations (VIDE)

In this section, we consider a special kind of 2D linear VIDE as follows:

ϕxt(x, t)+ϕ(x, t)+
∫ x

−1

∫ t

−1
k(x, t,y,z)ϕ(y,z)dydz= f (x, t), (35)

with the initial conditions:
ϕ(−1,−1) = ϕ0,

ϕ(−1, t) = g(t),

ϕ(x,−1) = h(x),

(36)

whereh(x), g(t), k(x, t,y,z), f (x, t) andϕ0 are known functions andϕ(x, t) is an unknown function.

The 2D-VIDE (35) can be solved by using the function approximation (23) and the collocation

method through the the following equations:

RN(xr , ts) = ϕxt(xr , ts)+ϕN(xr , ts)+
∫ xr

−1

∫ ts

−1
k(xr , ts,y,z)ϕN(y,z)− f (xr , ts) = 0, (37)

in which the collocation points are:

xr = cos(
rπ
N

), ts = cos(
sπ
N

) r,s= 0,1, ...,N.

The kernel functionk(x, t,y,z), can be expressed as a truncated Chebyshev series for eachxr and

ts in the form:

k(xr , ts,y,z)≃ kN(xr , ts,y,z) =
N

∑
l=0

N

∑
m=0

kml(xr , ts)Tl (y)Tm(z), (38)

wherekml(xr , ts), r,s= 0,1, ...,N are determined by means of the Cleanshaw-Kurtis rule [8], as

follows:

kml(xr , ts) =
4

N2

N

∑
q=0

N

∑
p=0

k(xr , ts,yp,zq)Tl (yp)Tm(zq),

whereyp = cos( pπ
N ),zq = cos(qπ

N ), p,q= 0,1, ...,N.

kN(xr , ts,y,z) can be represented in the matrix form:

kN(xr , ts,y,z) = Tt(y,z)k(xr , ts), (39)
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where

k(xr , ts) = [k00(xr , ts),k01(xr , ts), · · · ,k0N(xr , ts), · · · ,kN0(xr , ts), · · · ,kNN(xr , ts)]
t
. (40)

Substituting (22) and (39) in (37), we get:

Tt(xr , ts)E+Tt(xr , ts)A+kt(xr , ts)(
∫ xr

−1

∫ ts

−1
T(y,z)T t(y,z)dydz)A = f (xr , ts), (41)

for r,s= 0,1, ...,N.

By using the following relation:

Z(xr , ts) =
∫ xr

−1

∫ ts

−1
T(y,z)T t(y,z)dydz,

equation (41) is written in the matrix form:

Tt(xr , ts)E+Tt(xr , ts)A+kt(xr , ts)Z(xr , ts)A= f (xr , ts), r,s= 0,1, ...,N. (42)

Substituting (33) in (42), we get:

(Tt(xr , ts)Q
−1+Tt(xr , ts)+kt(xr , ts)Z(xr , ts))A= f (xr , ts)−Tt(xr , ts)Q

−1(B−G−H), (43)

for r,s= 0,1, ...,N.

Then we have:

(Tt
r,sQ

−1+Tt
r,s+ K̄r,sZ̄)A= F −Tt

r,sQ
−1(B−G−H), (44)

where

Tr,s =









Tt(x0, t0)
...

Tt(xN, tN)









(N+1)2×(N+1)2

F =









f (x0, t0)
...

f (xN, tN)









(N+1)2×1

and

Z̄ =









Z(x0, t0)
...

Z(xN, tN)









(N+1)4×(N+1)2

K̄r,s =















kt(x0, t0) 0 ... 0

0 kt(x0, t1) 0
...

.. .
...

0 0 kt(xN, tN)















(N+1)2×(N+1)4

Therefore, (44) is a system of linear equations, so by solving this system, we find vectorA.

5. Numerical Results

In this section we apply the proposed method to obtain numerical solutions of two-dimensional

Fredholm and Volterra integro-differential equations of type (19) and (35).
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Example 5.1. First, consider the following Fredholm integro-differential equation:

ϕ(x, t)+ϕxt(x, t)+
∫ 1

−1

∫ 1

−1
(x+ t)ϕ(y,z)dydz= 2t +xt2,

which is subject to the initial conditionsϕ(−1,−1) =−1, ϕ(x,−1) = 1 andϕ(−1, t) =−t2
.

Table 1 shows that the numerical solutions are in a good agreement with the exact solution

ϕ(x, t) = xt2 for the small values ofN.

TABLE 1. Absolute error inϕ(x, t) for different values ofN for Example 5.1

(x,t) N = 4 N = 6 N = 8
(-0.5,-0.5) 3.5379E–3 1.6285E–4 1.6883E–5
(-0.4,-0.4) 4.4622E–3 5.6044E–4 1.6721E–5
(-0.3,-0.3) 4.8532E–3 3.4887E–4 2.8474E–5
(-0.2,-0.2) 4.7109E–3 1.0994E–4 1.9494E–5
(-0.1,-0.1) 4.0352E–3 1.6911E–4 9.5782E–6

(0,0) 0 0 0
(0.1,0.1) 1.0839E–3 1.3984E–4 2.8326E–6
(0.2,0.2) 1.1916E–3 2.5139 E–4 2.3270E–6
(0.3,0.3) 4.0005E–3 2.4705 E–4 3.3032E–6
(0.4,0.4) 1.1916E–3 2.5139 E–4 2.3270E–6
(0.5,0.5) 4.0005E–3 2.4705 E–4 3.3032E–6

Example 5.2. We consider the following integro-differential equation:

ϕ(x, t)+ϕxt(x, t)+
∫ 1

−1

∫ 1

−1
(y3+yxsin(t))ϕ(y,z)dydz= x2sin(t)+2xcos(t),

where
ϕ(−1,−1) =−sin(1),

ϕ(−1, t) = sin(t),

ϕ(x,−1) =−x2sin(1).

Table 2 shows the numerical solutions for variousN, with the exact solutionf (x) = x2sin(t).

Example 5.3. Consider a Volterra integro-differential equation as follows:

ϕ(x, t)+ϕxt(x, t)+
∫ x

−1

∫ t

−1
k(x, t,y,z)ϕ(y,z)dydz= f (x, t),

where
ϕ(−1,−1) = e−2

,

ϕ(−1, t) = e−1+t
,

ϕ(x,−1) = e−1+x
,

such that f (x, t) = 2ex+t + 1
4(e

2t − e−2)(e2x − e−2) and k(x, t,y,z) = ey+zsin(x+ t). The exact

solution isϕ(x, t) = ex+t .
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TABLE 2. Absolute error inϕ(x, t) for different values ofN for Example 5.2

(x,t) N = 4 N = 7 N = 9
(-0.5,-0.5) 4.6379E–2 1.5165E–3 2.1286E–4
(-0.4,-0.4) 4.9622E–2 4.2034E–3 3.5921E–4
(-0.3,-0.3) 3.7532E–2 4.3788E–4 3.8375E–4
(-0.2,-0.2) 5.8109E–3 2.0459E–3 2.9984E–4
(-0.1,-0.1) 6.0051E–2 3.7811E–3 5.5782E–4

(0,0) 2.8262E–3 7.1241E–6 7.0985E–6
(0.1,0.1) 8.0839E–3 1.4983E–3 6.7336E–4
(0.2,0.2) 4.3916E–2 6.4211 E–3 7.4240E–4
(0.3,0.3) 7.0205E–2 6.3805 E–3 8.3134E–4
(0.4,0.4) 5.5913E–2 7.4228 E–3 8.2250E–4
(0.5,0.5) 5.1915E–2 7.8704 E–3 6.9012E–4

For some points in[−1,1]× [−1,1], we yield the approximate and exact solution. The numerical

results are given in Table 3.

TABLE 3. Numerical results for Example 5.3 (N = 16)

(x,t) exact solution our method Absolute error
(-0.5,-0.5) 0.36788 0.36790 0.21341E–4
(-0.4,-0.4) 0.44933 0.44935 0.18796E–4
(-0.3,-0.3) 0.54881 0.54886 0.46728E–4
(-0.2,-0.2) 0.67032 0.67033 0.83274E–5
(-0.1,-0.1) 0.81873 0.81879 0.59823E–4

(0,0) 1 1.0000009 0.00951E–4
(0.1,0.1) 1.22140 1.22146 0.63565E–4
(0.2,0.2) 1.49182 1.49191 0.92407E–4
(0.3,0.3) 1.822119 1.822125 0.63348E–5
(0.4,0.4) 2.22554 2.22560 0.62504E–4
(0.5,0.5) 2.71828 2.71831 0.27822E–4

6. Conclusion

Two-dimensional integro-differential equations are usually difficult to solve analytically. In many

cases, it is necessary to obtain approximate solutions. Forthis purpose, an orthogonal basis, named

2D Chebyshev polynomials, is introduced for approximatingfunctions in linear two-dimensional

Fredholm and Volterra integro-differential equations. This technique is simple and involves less

computation.
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