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Abstract: In this paper, we present a new approach to obtain the nuahexddution of the linear two-
dimensional Fredholm and \olterra integro-differentigliations (2D-FIDE and 2D-VIDE). First, we intro-
duce the two-dimensional Chebyshev polynomials and cactstheir operational matrices of integration.
Then, both of them, two-dimensional Chebyshev polynona@ats their operational matrix of integration, are
used to represent the matrix form of 2D-FIDE and 2D-VIDE. Thain characteristic of this approach is
that it reduces 2D-FIDE and 2D-VIDE to a system of linear bigé&c equations. lllustrative examples are
included to demonstrate the validity and applicability e presented technique.
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1. Introduction

Integral equations have been one of the principal tools fioua areas of applied mathematics,
physics and engineering. In this paper, we are concernédwit-dimensional integro-differential
equations. Scientists have investigated the topic of integfferential equations through their
works in many scientific applications, including heat tfansdiffusion processes, neutron diffu-
sion and biological species coexisting with increasing decteasing rates of generation. On the
other hand, two-dimensional integral equations providargiortant tool for modeling numerous
problems in engineering and science. These equations raippgactromagnetism, electrodynam-
ics, molecular physics, population in addition to many offedds.

One of the main problems is how to solve integro-differdrtuations in one and two-dimensional
space. There are several classical solution techniquesv® some of these equations; it is diffi-
cult to obtain the analytical solutions of most of these ¢éigna. Therefore, it is important to de-
velop numerical algorithms which have sufficient accurdicyecent years, numerous works have
been focusing on the development of more advanced and effitiethods for integro-differential
equations, including the Wavelet-Galerkin method, Lageamterpolation method, Tau method
ISSN 1309 - 67880 2015 Cankaya University



2 A. Rivazetal.

and semi-analytical numerical techniques such as Adondaosmposition method and Taylor
polynomials [2, 5, 7, 11, 13].

An usual way to solve functional equations is to express thgtisn as a linear combination of
the so-called basis functions. These basis functions @anin§tance, be either orthogonal or
non-orthogonal bases. Approximation by the orthogonallfaai basis functions has found wide
application in science and engineering. The most frequersttd orthogonal functions are sine-
cosine functions, block pulse functions, Legendre, Chebysand Laguerre polynomials. The
main idea of using an orthogonal basis is that the probleneucahsideration reduces to a system
of linear or nonlinear algebraic equations [8, 10, 11]. Treempurpose of this paper is to apply
the 2D orthogonal Chebyshev polynomials to solve Fredhatiah \éolterra integro-differential
equations.

The remainder of this paper is organized as follows: in $ac®, we begin by introducing some
necessary definitions. In Section 3, the two-dimensionab@shev polynomials and their prop-
erties are defined and their integral operational matrice®hbtained. Section 4 is devoted to ap-
plying the two-dimensional Chebyshev operational matfixtegration to solve two-dimensional
linear Fredholm and Volterra integro-differential eqoas. In Section 5, the proposed method is
applied to several examples followed by conclusion in thal fsection.

2. Preliminaries

In this section, we give definitions and properties of Chkyspolynomials in one-dimensional
space. The well known Chebyshev polynomials of the first kihdegree n are defined by [4]:

Ta(x) = cogncos x), n>0. (1)

Also they are derived from the following recursive formula:

To(X) = O,
T1(X) =X,
Tn+l(x) = 2XTH (X) - Tn,]_(X) n= 17 27 37 T
1
These polynomials are orthogonal ,1] with respect to the weight function(x) = :
poly gonal foril, 1] p g X ="T=2
1 0, i#]j,
[ T00Ti cowixjax = { > ’j @
- Wa = b

where
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Chebyshev polynomials are important in approximation themd numerical analysis [4, 6].
A function f(x) over[—1,1] may be represented by Chebyshev polynomials series as:

f(x) =" aTi(x). 3)
2,
If the infinite series in (3) is truncated, then (3) can be temitas:
N
f(X) ~ %a;'l’i(x) = T(x)'A, (4)
i=
where
T(x) = [To(x), Ta(X), -+, TN,
t (5)
A: [a07a17’” 7aN] )
anda; — 7—"'T Y FO0T (w(x)dx
Chebyshev polynomials have the following useful propeély [
/X T 1985 — —=T() — =T 200+ — 1%, N> 3 ®)
L TN MY TN VAV T N2 O T
Moreover, forTo(x) and Ty (x), we have:
X, To(s)ds= To(X) + T1(X), @
S Ta(s)ds= ZTo(X) + 3 T2(X).
Equations (6) and (7) allow us to write:
X
/ T(s)ds=PT(x), @®)
-1
whereP is the(N + 1) x (N + 1) operational matrix:
1 1 00 0 0]
—%1 0 %1 o -- 0 0
_% _% 0 % 0 0
P= , N>3. 9)
(71)N—1 1
1-(N—1)2 0 00 0 2N
—_1)N
L (1—1312 0 00 - 2N1—2 0 ]
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3. Two-Dimensional Chebyshev Polynomials

In this section, by considering 1D Chebyshev polynomiale, define an(N + 1)? set of two-
dimensional Chebyshev polynomials as:

Tij(x,t) = Ti(X)Tj(t), i,j=0,--- ,N. (20)
Therefore, the two-dimensional Chebyshev basis vecta fslbws:
T(x,1) = [To(¥)To(t), -, To()Tn(t), TL)To(t), -, Ta(}) T (L), -+, TN ) T (1))
= (Cn®By)',

in which Cy = [To(x), T1(X),---, Tn(X)], @and By = [To(t), T1(t), -+, Tn(t)] are one dimensional
Chebyshev vectors.
The orthogonality property for these polynomials with espto the weight functiomv(xt) =

1 ) -
VTVt on the interval—1,1] x [-1,1] is:

(11)

T i=k#0,j=1+#£0
Ti=k=0,j=1#£0

(T, T iy = [ [ 60T mix tarat= 3 2. i=k#0,j=1=0
2, i=k=0,j=1=0
0, else

Similarly to the one-dimensional case, a functifiix,t) on [—1,1] x [-1,1] can be expanded by
two-dimensional Chebyshev polynomials as the followingagmpn:

=5 Bavnacn =5 5 st 02

f(x 1), Tij (Xt
a = (FO60), Tij 051 Doty i,j=0,1,...,N. (13)

(Ti,j (%,1), Tjj (Xat))w(xﬁ)
In practice, only the finite terms of the above series areidensd, so we have:

t) = ii}iaﬂ(xﬁj (t), (14)

For the two-dimensional Chebyshev polynomigj&«) To(t), To(X)T1(t), T1(X) To(t) andTy (X) Ty (t),
we have the following property:

where

/_Xl/_tlTO(S)To(f)defZ To(X)Te(t) + To(X)Te(t) + Ta(X) To(t) + To(X) To(t), (15)

[ ' To(Ty(r)dsdlr = ZT00To(0) + 2T Talt) + 2 Ti(0)Tolt) + g Ta(MTa(t),  (16)
1/
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/xl/tlTl(S)Tl(r)defz 1—16To(t)To(X) + I_QTO(X)Tz(t) - I—éTz(X)TO( t)+ 116T2( X To(t). (17)

From the above equations and by considering (8), we can:write

X t
//T(s,r)dsdr:QT(x,t), (18)
—1J-1

whereQ = P® P is the operational matrix of integration of 2D Chebyshewpohmials, and® is
the matrix that represented in (9).

4. Two-dimensional Fredholm and Volterra I ntegro-Differential
Equations

In this section, by using two-dimensional Chebyshev patyiats, we solve a special kind of
two-dimensional Fredholm and Volterra integro-diffeiehequations.

4.1. Fredholm Integro-Differential Equations (FIDE):

First, we consider the two-dimensional Fredholm integffedential equation in the form:

1 1
¢xt(x,t)+¢(x,t)+/71/71k(x,t,y,z)rp(y,z)dydz: f(xt), xte[-1,1], (19)
with the initial conditions:
¢(=1,—-1) = ¢o,
¢(=Lt)=g(t), (20)
¢ (x,—1) =h(x),

where f(x,t) andk(x,t,y,z) are known functions ofi—1,1] and [—1,1] x [—1,1] respectively;
¢ (x,t) is an unknown function andl(x,t) is the derivative ofp (x,t) with respect td andx. h(x)
andg(t) are given functions andl is a given number.

The process of our method is obtaining the solution of theatgn as a truncated Chebyshev
series defined by:

o (%,t) = dn(x1) ;Z)auT' )Ti(t) (21)
and

Pt (X, 1) = n(X,1) ;Z)QJ (22)

so in the matrix form, we have:

On(Xt) = THX DA,
(23)
Un(x,t) = THX,1)E,

such that
A:[aoof”7a0N7’”7aN07”'7aNN]t7 (24)
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and
E:[a)o;’”7&)N7”'7a\107”'76\1N]t' (25)

are two unknown vectors, afidx,t) is the 2D Chebyshev vector defined in (11).
Moreover, we can expand the functioh&t), g(x), andh(t) in terms of a 2D Chebyshev basis:

f(xt) ~ TYxt)F, (26)
¢~ TH(x,t)B, (27)
g(t) ~ T'(x,1)G, (28)
h(x) ~ T'(x,t)H, (29)
where:
F = [fOOf" , fON,"' , fNO,"' , fNN]t>

G = oo, »GoN, "+ »ONO, > INN]',
H = [hoo,- - ,hon, -+, o, -+, ',

B = [boo, - ,bon, -+, bno, -+, bun]',
and the components of these vectors can be derived from (13).
Similarly, for the functiork(x,t,y, z), we have:

K(X,t,Y,2) ~ kn(X,1,Y,2) = TH (X, 1)KT(y, 2), (30)

whereK is an(N + 1) x (N + 1) matrix; its elements are given by:

Koqim = (TPQ(th)> (k(x>t>y>Z)aTlm(yaz))W(y,Z) )W(X.t)
P (Toq (1), Tog(%, 1) Jwix) (Tim(¥:2), Tim (¥ 2) Jwiyz

Substituting (23), (26) and (30) in (19), we get:

) pqulymzo,l,...,N.

TCOE+ T X DA T (XK ([11 /4 T (2T (y.2)dyd2 A 1)
=TY(x,t)F,

Now, by letting

1,1

W= / / T(y,2T'(y,2dydz

—1J-1
and by using the orthogonality of the two-dimensional Clséley functions, we have the following
matrix form of (31):

E+A+KYA=F. (32)

On the other hand, we can write:

X t
¢(X7t)+¢(_17_1)_¢(_l>t)_¢(x>_1):/_1/_1Tt(T17T2)EdT1dT27
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then, by the integral operational matrix in (18), we havefdtlewing relation betweer\ andE:
A+B—-G—H=Q'E, (33)

and, from 32) and (33), we can obtain the following equation:
A+B-G-H=Q'(F —A—KWA), (34)

which is a system of linear equations, so by solving the alsgstem, we find the unknown vector
A, and the functiorp (x,t) is obtained in terms of (21).

4.2. Volterra Integro-Differential Equations (VIDE)

In this section, we consider a special kind of 2D linear VIDH@llows:

d)xt(x,t)+¢(x,t)+/Xl/tlk(x,t,y,z)d)(y,z)dydz: f(x 1), (35)
with the initial conditions:
¢(—1,-1) = ¢o,
¢(—1.t) =g(t), (36)
¢(x,—1) = h(x),

whereh(x), g(t), k(x,t,y,z), f(x,t) and¢o are known functions andl(x,t) is an unknown function.
The 2D-VIDE (35) can be solved by using the function appration (23) and the collocation
method through the the following equations:

X s
Ru 0. t5) = B, t5) + O xsts) + [ [ KOty 20n(D = Fxt9) =0, (37)
in which the collocation points are:
rm SIT
X = cos(ﬁ), ts= cos(ﬁ) r,s=0,1,...,N.

The kernel functiork(x,t,y, z), can be expressed as a truncated Chebyshev series fox.emuth
ts in the form:

N N
k(xl’at57y7 Z) — XI’ tS7y7 z z XI’7tS T| Tm(z)a (38)

I=0m=0
wherekm(X,ts), r,s=0,1,...,N are determined by means of the Cleanshaw-Kurtis rule [8], as
follows:
4
N2

N N
km XI’7tS = z Z Xl'7t57yp7 TI(Yp)Tm(Zq)7

wherey, = cog &), zg = cog{7), p,q=0,1,...,N.
kn (X, ts, Y, 2) can be represented in the matrix form:

kN(XI'7tS7 Y, Z) = Tt (ya Z) k(xl’ ’t5)7 (39)
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where

k(% ts) = [koo(%, ts), kow(Xr. ts), -+ s Kon (% ), -+, kno(Xe, ts), -+ kun O, ts)] . (40)
Substituting (22) and (39) in (37), we get:

T (%, ts)E + T (%, ts) A+ k‘(xr,ts)(/_xi /_tZT(y,z)Tt(y,z)dydaA: f (X, ts), (41)

forr,s=0,1,...,N.
By using the following relation:

20t = [ [ T2 . 2)ayaz
equation (41) is written in the matrix form:
T, ts)E 4 T (%, ts) A+ K (X, ts) Z (X, ts)A = f (X, ts), 1,s=0,1,...,N. (42)
Substituting (33) in (42), we get:
(T4 1)Q 4 TH (1) + K (e, 1) Z(% te))A = F (%0, 1s) = T! (%, 1)Q H(B-G—H),  (43)

forr,s=0,1,...,N.
Then we have:

(Trt,sQi1 + Trt.s"i' K—rsZ_)A =F - Trt,sQil(B -G—H), (44)
where
T (Xo,t0) f(xo,t0)
Tr,s: F= :
t
TN (4 1y20 2 FON ] (12,00
and
K(x,t0) O 0 |
Z(Xo,to) 0 K (0.t 0
Z_: K_ns = i . . i
Z(XN,IN)
N+1)4x (N+1)2 t
( + ) X( + ) I O 0 k (XNatN)_ (N+1)2><(N+1)4

Therefore, (44) is a system of linear equations, so by sglthis system, we find vecté.

5. Numerical Results

In this section we apply the proposed method to obtain nuwalesolutions of two-dimensional
Fredholm and Volterra integro-differential equationsygfe (19) and (35).
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Example5.1. First, consider the following Fredholm integro-differetequation:

1 r
¢>(x,t)+¢xt(x,t)+/71/71(x+t)¢(y,z)dydz:2t+xt2,

which is subject to the initial conditions(—1,—1) = —1, ¢ (x,—1) = 1 and¢ (—1,t) = —t2.
Table 1 shows that the numerical solutions are in a good agreewith the exact solution
¢ (x,t) = xt? for the small values oi.

TABLE 1. Absolute error inp (x,t) for different values oN for Example 5.1

(x.t)

N=4

N=6

N=8

(-0.5,-0.5)

3.5379E-3

1.6285E-4

1.6883E-5

(-0.4,-0.4)

4.4622E-3

5.6044E-4

1.6721E-5

(-0.3,-0.3)

4.8532E-3

3.4887E-4

2.8474E-5

(-0.2,-0.2)

4.7109E-3

1.0994E-4

1.9494E-5

(-0.1,-0.1)

4.0352E-3

1.6911E-4

9.5782E-6

(0.0)

0

0

0

(0.1,0.1)

1.0839E-3

1.3984E-4

2.8326E-6

(0.2,0.2)

1.1916E-3

2.5139 E-4

2.3270E-6

(0.3,0.3)

4.0005E-3

2.4705 E-4

3.3032E-6

(0.4,0.4)

1.1916E-3

2.5139 E-4

2.3270E-6

(0.5,0.5)

4.0005E-3

2.4705 E-4

3.3032E-6

Example 5.2. We consider the following integro-differential equation:

¢>(x,t)+¢xt(x,t)+/11/11(y3+yxsir(t))¢(y,z)dydz: X°sin(t) + 2xcost),

where

¢(=1,-1) = —sin(1),
¢ (=1t) =sin(t),
¢ (x,—1) = —xsin(1).

Table 2 shows the numerical solutions for varidiiswith the exact solutiorf (x) = xsin(t).

Example 5.3. Consider a Volterra integro-differential equation asdoi:

Xt
D0t +balx )+ [ [ Kixty.2)p(.2)dydz= f(xD).

where
¢(_17 _l) = e_2>
¢(_17t) —e 1M
B(x—1) =e 1,

such thatf(x,t) = 28" + 2(e? — e 2)(e® — e72) andk(xt,y,2) = &Zsin(x+t). The exact
solution is¢ (x,t) = e**t,
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TABLE 2. Absolute error inp (x,t) for different values oN for Example 5.2

X, N=4 N=7 N=9
(-0.5,-0.5)| 4.6379E—2 1.5165E—3| 2.1286E—4
(-0.4,-0.4)| 4.9622E—2 4.2034E—3| 3.5921E—4
(-0.3,-0.3)| 3.7532E—2 4.3788E—4| 3.8375E—4
(-0.2,-0.2)| 5.8109E—3 2.0459E—3| 2.9984E—4
(-0.1,-0.1)| 6.0051E—2 3.7811E—3| 5.5782E—4

(0,0) |2.8262E-3 7.1241E—6| 7.0985E—6
(0.1,0.1) | 8.0839E—3 1.4983E—3| 6.7336E—4
(0.2,0.2) | 4.3916E—2 6.4211 E—3 7.4240E—4
(0.3,0.3) | 7.0205E—2] 6.3805 E—3 8.3134E—4
(0.4,0.4) | 5.5913E—2| 7.4228 E—3 8.2250E—4
(0.5,0.5) | 5.1915E—2| 7.8704 E—3 6.9012E—4

For some points in—1,1] x [—1,1], we yield the approximate and exact solution. The numerical
results are given in Table 3.

TaBLE 3. Numerical results for Example 5.8l & 16)

X0 exact solution| our method| Absolute error|
(-0.5,-0.5)] 0.36788 0.36790 | 0.21341E-4
(-0.4,-0.4)| 0.44933 0.44935 | 0.18796E-4
(-0.3,-0.3)| 0.54881 0.54886 | 0.46728E-4
(-0.2,-0.2)| 0.67032 0.67033 | 0.83274E-5
(-0.1,-0.1)| 0.81873 0.81879 | 0.59823E-4

(0,0) 1 1.0000009| 0.00951E-4
(0.1,0.2) 1.22140 1.22146 | 0.63565E—4
(0.2,0.2) 1.49182 1.49191 | 0.92407E-4
(0.3,0.3) 1.822119 1.822125 | 0.63348E-5
(0.4,0.4) 2.22554 2.22560 | 0.62504E-4
(0.5,0.5) 2.71828 2.71831 | 0.27822E-4

6. Conclusion

Two-dimensional integro-differential equations are Uigudifficult to solve analytically. In many
cases, itis necessary to obtain approximate solutionghisgourpose, an orthogonal basis, named
2D Chebyshev polynomials, is introduced for approximafungctions in linear two-dimensional
Fredholm and Volterra integro-differential equations.isliechnique is simple and involves less
computation.
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