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Abstract: The purpose of this study is twofold. For the first part, theasy of countable partitions on an
effect algebra with the Riesz decomposition property isngefi In addition, the lower and upper entropy
and the conditional entropy considering a suitable statkte@msformation functions are introduced. Then,
some basic properties of these notions are investigatethelsecond part, weak sequential effect algebra
is introduced followed by a definition for the entropy of ctalsle partitions on this structure. Furthermore,
with the help of appropriate state and transformation fionst the notion of entropy, conditional entropy and
relative entropy are introduced. In the final step, somegntigs of these concepts are studied.
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1. Introduction

The Kolmogorov-Sinai entropy was introduced to distinguiso dynamical systems in the clas-

sical probability theory. In fact, the K-S entropy is a dyneah invariant that can be used as a

tool to measure the amount of uncertainty in random evenisryBpair of isomorphic dynamical

systems has the same entropy. This notion was generalizeduy directions ([3,16, 18, 28],

etc.). If (Q,,p) is a probability space, the entropy of a measurable parthie- {Aq, ..., Ay} of

Q is defined a#H (A) = —Elp(Ai)logp(Ai). If T:Q — Qis a measure preserving transforma-
i=

tion, and ifh\_/:Ti(A) denotes the common refinement of the partitiéns —1(A),, T~ (D (A),

=

then there is the limih(T,A) := AL@O%?V;T“(A). The K-S entropy ish(T) := sup{h(T,A) :

Aisameasurable partition of Q}. Probability theory was one of the first fields of mathematics

using fuzzy sets. The main idea of fuzzy entropy is replatimegpartitions with fuzzy partitions.

The fuzzy partition of the probability spa¢€,[3,p) is defied as a finite system of measurable
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n
functions f; : Q — [0,1],i = 1,2,...,n such thaty fi(x) = 1,vx € Q. There are many possi-
i=1
bilities for operations with fuzzy sets. One of the first migdeas introduced by Dumitrescu
[4-11]. In this model , instead of a probability measure, acfion m: F — [0,1] has been

k k k
considered such tham( ¥ gi) = 3 m(gi) whenevery g < 1. The entropy of this fuzzy parti-
i=1 i=1 i=1

tion was given by the classical formuti(A) = — § (m(f;))log(m(fi)) whenevem(f;) # 0 and
H(A) = 0 whenm(f;) = 0. Some researchers hzalve defined fuzzy entropy considdgebraic
structures such as MV-algebras and effect algebras as ahilibp space [3, 20, 21]. One of
the important notions of entropy is the refinement and joitwaf or more partitions. In classi-
cal probability theory, the common refinement®of= {A;,...,An} andB = {By,...,Bn} is simply
C={ANB;j:1<i<m1<j<n}. However, this method cannot be used in more general al-
gebraic structures. The algebraic structures must have spetial conditions. For the first time,
Malicki and B. Riecan [18] suggested a suitable refinemedtjaim of two or more partitions
for defining entropy on structures with fuzzy sets. Effegfedras have been introduced by D.
J. Foulis and M. K. Bennett in 1994 [1] to model unsharp measents in a quantum mechan-
ical system. They are a generalization of many structurashndrise in quantum physics and
mathematical economics [2, 19]. In fact, effect algebrasaageneralization of Boolean algebras,
MV-algebras, orthomodular lattices, orthomodular posets orthoalgebras. For relations among
these structures and some other related structures sed18]g Effect algebras with the Riesz
decomposition property and sequential effect algebrasemeimportant subclasses of effect al-
gebras [17, 22-25]. In order to define the entropy, theselastes have necessary conditions;
therefore, some writers generalize the notion of entropgfiect algebras with the Riesz decom-
position property and sequential effect algebras [3, 2B, 27

In fuzzy entropy, finite partitions have always been studiatl Ebrahimi [13] introduced the
entropy with countable partitions. This notion was furtideveloped and studied in [14, 15].
According to the mentioned sources, entropy on algebraictstires has been defined with finite
partitions.

The notion of countable partitions and entropy on countphhétions in effect algebra with Riesz
decomposition property and weak sequential effect algabeantroduced in Sections 2 and 6,
respectively. In these sections, it is proved that finerifgams have bigger entropy. In addition,
if "P” is a partition that is obtained by joining two partitis "A” and "B”, then the entropy of
"P” is less than that of the summation entropy "A” and entrépy. Conditional entropy and
relative entropy of effect algebra with RDP and weak seqakeffect algebra are defined in
Sections 3 and 7, respectively. The properties of theseaty, especially the relations between
the conditional entropy, the relative entropy, the entropyartitions and the entropy of join of
partitions are investigated. In Section 4, the lower anduhiger entropies of a dynamical system
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on effect algebra with RDP are explored and it is proved thatisomorphic dynamical systems
have the same lower and upper entropies. In Section 5, a girogeration between two effect
algebras with RDP is introduced and it is proved that the pecodf two effect algebras with RDP
is an effect algebra with RDP. Afterwards, it is proved thengrally the entropy of the product of
two effect algebras with RDP is bigger than the summatioropgtof the two effect algebras with
RDP. The entropy of a dynamical system on a weak sequenfiaiteflgebra is defined in Section
8 and some properties of this entropy are proved. Finallhénmost important theorem of this
section it is proved that two isomorphic dynamical systeageththe same entropy.

2. Countable Partition and Entropy of an Effect Algebra with RDP

In this section, we first define a countable partition, thenegfient of a countable partition and
the join of two countable partitions of an effect algebrahvRDP. Then we define an entropy on
a countable partition and investigate the relations betveggropies of a countable partition, the
refinement of a countable partition and the join of two cohl&gartitions.

Definition 1. An effect algebra is a partial algeba= (E, @, 8,1) with a partially defined oper-
ation ® and two constant elemenfsand 1 such that for all, b,c € E:

() if a®bis defined, the & ais defined anddb=ba a;

(i) if (a®b)@cis defined, them® (b@ c) is defined anda®b)®c=ad (bdc);
(iii) for any a € E, there exists a unique elemaitc E such thab® a’ = 1;
(iv) if ad® 1is defined in E, thea= 0.

Definition 2. We say thaf < b if there exists an elemente E such thatic=Db.

Definition 3. The effect algebrd& has the Riesz decomposition property (RDPY i y1 & y»
implies that there exist two elementg, X, € E with x; <y; andx, <y, such thatx = X1 & X.
This mean$ has RDP iffx; & X, =y, @ Yo implies there exist four elements;, €12, Cr1, Co2 € E

such that; = C11® C12, X2 = C21 @ C2, Y1 = C11P C21, Y2 = C12 Co2.
Example 2.1. LetE = ([0,1],,1,0). Then,a®b:=min{1,a+b}, Va b e [0,1].

Definition 4. Let E be an effect algebra A countable sequeAce {&};>, of elements oE is

called a countable partition &, if eB g; exists inE and 69 a = 1. (EB a meansydaydazgd...).
i=1 i=1

Definition 5. A countable partitionB = {b;}}’_; is a refinement of a countable partitidh=
{&}2; and we writeA < B, if for any a;, there is a subset; C N such thata; = ®jcq,b; and
Uz ai=N,ainaj=0Vi#j.

Definition 6. Let E be an effect algebra. A mappirsg E — [0,1] is said to be a state if:
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(i) s(1) =
(i) whenever@ q; exist and@ a = ethens( @ a)=-s(e) < E S(&);
=]

(i) if a<g bthens( )gs(b). i

Definition 7. LetA= {&}", , B= {b}{>, be two countable partitions of effect algetEawith

RDP. We say thafc;j|i > 1, ] > 1} is a Riesz join refinement @& andB if k% Cik andké Ckj exist
=1 =1

in E and,a = k@ Cik, by = @ | Cj» SUPS(Cij ) = sup(s(a))sup(s(b; ))( by RDP we will be able to

find smaller elements ).

Definition 8. Letsbe a state, and = {& };°; be a countable partition on an effect algebra with
RDP;

we define the entropy gk by H(A) := —logsups().
ieN

Example 2.2. A= {0, 1} is a partition andH (A) = 0.
Corollary 1. If A= {g}>; is a countable partition the (A) > 0.

Proof. @ a=1s01=¢5(1) < E S(a) and this implies there ig; such thats(a) > 0 and so
0< sups( i) <1 - |

Theorem 1. LetC be a Riesz join refinement &= {a };* ; andB = {b;}> ; . Then
max{H (A),H(B)} <H(C) <H(A)+H(B).
Proof. Sincea = @ c.J sos(cij) < s(a) Vi, j, and this impliesup s(cij) < sup s(a;) thusH (C) >
H(A), with the same argument we haw(C) > H(B). On the other handsups(cij) >
<

sup s(aj)sup s(bj), which —logsups(cij) < —logsups(aj) —logsups(b;), that is, H(C)
H(A) +H(B).

Corollary 2. Let A< BthenH(A) <H(B).

Proof. Since foreach,a= @ bj, oy CN,aiNaj=01i+# | and,@lai =N,
jeq i=

by ifjea
we letcij =
6 ow
¢ = {cij}’j_1 is @ Riesz join refinement @, B because

0] @c., @ @b, eaa._l
7]7 i=1
(i) = @ bj) bj—cljajeal;
Jeai

(i) sups(cij) = sup s(bj) > sup s(bj)sup s(a;), thenH(A) <H(C) =H(B).
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Example 2.3. E = ([0,1],®,1,0) is an effect algebra. Considsr. E — [0,1] ass(t) =t then
sequence((3)"}%_, is an countable partition of E. consider partitian= £,a, = 2,0 = ag =
as = --- and partitionby = 3,b, = 3,0 = bz = by = --- then partitioncys = §,C1p = 2,Co1 =
2co=12Lcj=0,Vi,j> 2 isarefinement of sequencés }* ; and{b;}7* ;.

3. Conditional Entropy and Relative Entropy of Effect Algebras with
RDP

Let we begin this section with a definition of conditional rexply.

Definition 9. LetC = {¢; : 1 <i,1 < j} be Riesz join refinement of two countable partitions
{ai}i2q, {bj }7_, of effect algebré with RDP we define :

H(AJB) == —log sup (534),(bj) > 0.

Remark :bj = écij sos(bj) > s(cij).

Definition 10. We say Riesz join refineme@t= {c;j : 1 <i,1 < j} of countable partitionga; };* ;
and{b;}{_, is independent ibups(cij) = sup(s(a;))sup(s(bj)).

Proposition 1. Let A, B andD be countable partitions of an effect algebras with RDP. Then

() if A<B,Ct=AvDandC? =BV D are independent thea(Av D) <H(BVD);
(ii) if C=AVBthenH(AV B) > Hc(AB).

Proof.

(i) SinceA<D,thereisaj € Nsuchthat = @ di. This impliessups(cjlk) =sups(bj) sups(dy) <

kea;
sups(b;) sups(a) = sups(c5).
(i) s(cij) < 505

[
Definition 11. Let Ay, Ay, ..., A, be countable partitions of effect algelitavith RDP. We define
Ho(A1V...VAy) :=inf{H(C) :C e Ref(Aq,...,An) };

H*(A1V...VA,) :=sup{H(C) :C € Ref(Aq,...,An) }.
In view of (2.12)max{H (Aq),...,H(A))} < H.(A1V ... VA) <H*(ALV...VAY) <H(A]) + ...+
H(An).

Definition 12. Let A,B be two countable partitions we defit&.(A/B) := inf{Hc(A|B) : C €
Ref(A,B)} andH*(A|B) := sup{Hc(A|C) : C € Ref (A,B)}.
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Proposition 2. Let A= {&}*, B= {bj}1; be two countable partitions d& with RDP and
C={cjli>1,j=1,...m} be refinement oA, B then:

(i) H(C) > Hc(AB)+H(B),
(i) H*(AVB) > H*(AB)+H(B),
H.(AV B) > H,(AB) + H(B).

Proof.
i N - s(cj) _ s(Gj) o s s(cij) s(cij)
(i) Letsups(bj) —S((bg)), i=1 (, rr; It holds thatw(ps(;bj) = S(—;) < S((TJ')) S0 s.Jps(ij) < SlJp(s(—ij)).
. - SuUps(Gij S(Gij Sups(cij SUGij
This implies sups(bj') < SlJp(s(—ij))and—Iog sups(ij) > —Iogsups(—jl) soH(C) > Hc(AB) +
H(B).

(i) By (i) the proof is trivial.

Definition 13. LetA= {a;}i>;, B= {bj}{_, be countable partitions & with RDP. The relative
entropy ofA with respect td is defined as following:
: s(a)
H(A | B) :=logsud —— ), whenever s(b;) # 0.
ij (o)
Proposition 3. Let A= {a }i>;, B = {bj}{_; andC = {c}{_; be countable partitions & with
RDP. IfA< Bthen:

() HB|C)<H(A|C),
(i) H(C|IA) <H(C] B),
(i) H(A| B)>0.

Proof.

: s(bj) s(a)
() S’jukp(S(Ti) < Sﬁ(ﬂ@)-

I

s(ck
g

(i) sup(
ik

(i) sup(58) > 1.

ij o0

)Sﬁgﬁ%l

7]
= =
N N

Corollary 3. LetA,B,C be countable partitions & with RDP andA < B thenH(BVD || C) <
H(AVD | C).

Proposition 4. Let A= {a}{>;, B= {bj}{_; andC = {cc}_, be countable partitions @& with
RDP, then:

() H(A[B) > H(A),
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(i) HAVBI||C) <H(AVB| B)+H(B|C).
Proof.
() 0 <s(bj) < 1 thus supSE}) > sups(a).
1,] |

(i) Let AVB={dyj:1<i,1<j}. .Sugi({i:f) < _sglp(m)slukp(m).
|7J7 I‘rJ‘r ?

4. Entropy of a Dynamical System on Effect Algebras with RDP

In this section we introduce dynamical system on an effeglai with RDP.Then we will obtain
some interesting properties of lower and upper entropigbisrdynamical system.

Definition 14. A mappingT : E — E is said to be a transformation of an effect algeri&

(% a)= D T(a) wheneveré: a and D T (&) exist;
i=1 i=1 i=1 i=1
(

(i) s(T(a)) =s(a) Vac E thatsis a state oE.
Atriple (E,s, T) is said to be a dynamical system.

Proposition 5. Let A= {g };> ; be a countable partition of effect algelitawith RDP then:

(i) T(A)is a countable partition;
(i) H(A)=H(T(A)).

Proof.
() & T@)=T(5a)=T(1)=1
(i) s(a) = (T (a))-

Definition 15. Let A be a countable partition anid be a transformation of effect algebEawith
RDP. We define
HMNAT) :=H(AVT(A) V...vT"L(A));

Hi(AT):=H* (AVT(A)V..VvT"(A)).

Theorem 2. If C=AVBthenT(C)=T(A) Vv T(B).

Proof. C=AVvBsoa = k% Cik andbj = k% Cxj. By definition of T we haveT (&) = k% T(Cik) ,
—1 —1 =1

T(by) = & T(o) andsup (T (G;)) = sup s(cy) > sup (@) sup s(by) = sup (T (&) sup(T (by)).
|
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Theorem 3. Let E be an effect algebra with RDBbe a state and@ be a transformation dt .
For any countable partitioA = {& };* ;, there exist limits

h.(A,T) = lim }HQ(A,T);

n—oo N

h*(AT) = lim ~H: (A T).

n—oo N

Proof. LetC be a refinement of partitions T(A), ..., T"%(A)) andD be a refinement of partitions
AT(A),.., T™L(A). TV(D)is a refinement o "(A), T™1(A),..., T*™L(A). Let nowe be a
join refinement o andT"(D) soe = AVT(A)V..vT"™(A)andA<¢,..., THM1(A) < ¢.
HMMAT) =H, (AVT(A) V..vTH™L(A)) =inf{H(C) : CeRef (A, T(A),..., THM1(A)} <
H(e) <H(c)+H(T(D)) =H(C)+H(D). Cis arbitrary andH!"™(A,T) —H(D) < H(c) so
HM™M(A,T) —H(D) < HI(A T), since D is arbitrary too this implH ™A T) < HMNAT) +

HM(A,T) and existence onfim %. With the same argument we can conclude the existence of
—» 00 * s
i In
M AT "

Definition 16. The lower and upper entroply;(T) andh,(T) are defined as follow:

h.(T) :=sup{h.(A,T)} : Aisa partition of E},

h*(T) :=sup{h*(A,T)} : Aisa partition of E}.
Proposition 6. Let Abe a countable partition of E théh(T,A) < H(A) and alsd,(T,A) <H(A).
Proof. If Cis a Riesz join refinement &, T(A), T?(A),..., T"1(A) thenH (C) < ElH (TYA) =
nH(A) sosupH(C) < nH(A) alsoinf H(C) <nH(A). - ]

Definition 17. Two dynamical systeméEs,s;, T1) and (Ez, s, To) are said to be isomorphic if
there exists a bijective mapping: E; — E, such that:

(i) w(ie:}a a) :Iielw(ai)whenever@lai andiialw(ai) exist;

Theorem 4. If dynamical systemsE;,s;, T1) and(Ez, s, T2) are isomorphic dynamical systems,
whereEj, E; have the property RDP thdn(T;) = h,(T2) andh*(T;) = h*(Ty).

Proof. Let ¢ : E; — E, be an isomorphism.IA = {& }{* ; is a countable partition oE; then
{Y(a}) 4 is a countable partition dE, and vice versa also we hat(A) = —logsups;(a;) =
ieN

—logsups;y(a) = H(W(A)); therefore H(A, T1) = inf{H(c) : c€ Ref (A, T1(A),..., T/ H(A)}
ieN
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= inf{H(Y(c)) : Y(c) € Ref (Y(A), T2(Y(A)),...., T X (w(A))} = HNA,T,) and this proved
h(A, T1)= h(A, T;) andhl(A)= h?(A). In similar way we can prove the second equality. =

Definition 18. Let A= {a}j>; andC = {c;}{_, be two countable partitions of the dynamical
system(E,s T). We sayAéC if for any & there arecj andb;j € E such thatc; = & @ bj; and
s(hij) = 0.

Theorem 5. Let A= {&}21,B = {bj}{1,C = {ca};_1,D = {dm};_, be countable partitions of
effect algebre&E with RDP andAéC, then

() H(C) <H(A);
(i) T(ACT(©):
(i) If P= {pij}i‘f’j:l is independent Riesz join refinementsAofindB andQ = {qnj};szl is
Riesz join refinements & andB thenH (Q) < H(P);
(iv) If for any n and m, Riesz join refinements of
AT(A),T?A),.., T"(A),C,T(C),T%(C),..., T™L(C) are independent then'(T,C) <
h*(T,A) and alsch, (T,C) < h,(T,A).

Proof.

(i) sups(a) < sups(cy).
(i) For any & there arec; andbj; € E such thatc; = & @ by; ands(bj;) = 6. Therefore, for
anyT (&) there areT (cj) andT (bjj) € E such thafl (c;) = T(a) @ T (bjj) ands(T (bjj)) =

S(bij) =0.
(i) sups(pij) = sup_s(ai) sups(bj) < sups(cn) sups(b;j) < sups(an;j)-
i i j n j n,j
(iv) If Pis aRiesz join refinement & T (A), T2(A),..., T""1(A) and Q is a Riesz join refinement
of

C,T(C),T?(C),...,T"(C) by part three we havel (Q) =H(CVT(C)Vv...vT"1(C)) <
H(P) = HAVT(A) V...V T 1(A)).

5. Entropy of Product Effect Algebras with RDP

We begin this section with a proposition that introducesaalpct on the two effect algebras with
RDP.

Proposition 7. Let (E,®g,0g,1g) and (F,®r,0r, 1) be two effect algebras with RDE, =

EoF={(gf):ecE,feF}, (e, 1)@ (e, f2) = (e1@ee, f1®F f2) and(ey, f1) < (&, o) iff
e; <g & andf; <g f, thenC is an effect algebra with RDP and we call it the produdEatndF.
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Proof. We just prove the Riesz decomposition property. (&) < (e, f1) ® (e, f2). Then
e<ge®ee, f < f1@®f fy; therefore, there existg, xo € E andyy, Yy, € F such thae= x; B X
andf =y; OF y2 andxy <g e1,% <g & ,y1 <f f1,yo < f2. m

Proposition 8. A= {(e, fi)} ;is a countable partition & = E® F iff Az = {g}>; andAr =
{fi}i>, are countable partitions & andF respectively. We call sequencég andAg related
sequences ta.

Proof. Since_%l(a, fi)= (é"Ea,é"F f;), the proof is obvious. ]
i= i=1 =1

Proposition 9. LetA= {(g, fi)}i>,, B= {(d, f{)}>.; be two countable partitions & =EQF.
If A=< B, thenAg < Bg andAr < Bg.

Proof. A=< B; hence, for anye, fi) € A, there is a subset; C N such thaie, f;) = (e(J, fi) =
je

(@ €, @ f/) and this completes the proof.
jeai  jea
]
Definition 19. Let E andF be effect algebras with RDP aisdl , S be states oE andF respec-
tively. A mappingS, : E®F — [0,1] is said to be a product state if

() Sp(ef)=S(e) S(F);
(i) wheneveré(e,, fi) and(ey, f1) ® (e, f2)are defined ani«é( g, fi)=(
(& ) thensp((€, f1) ® (€2, f2)) = sp(€, T), Sp((€1, 1) ® (&, T2)) < (e (&1) DS (€2), 5 (12)) B

e,
( 5 (e
% (12))). Su( €, (8. 1) = Sle. ) andSy( & (. 1) < (3 se(@). 5 ¢ (1).

i=1

f),(er, fi) @ (&, f2) =

Proposition 10. S, : E® F — [0, 1] is a state of the effect algebEax F.

F)=1.

Proof. By definition of product state, the first condition is tr@(1g,1r) = S(1g) S-(1
<S(€, ).

If (e, f) <(€,f)thene<g€, f <r f'soS(e) <S(¢), S(f) <S(f')soSy(e f)

Definition 20. Let S, be a product state di ® F andA = {(e, f;)}{*; be a countable partition.
We define the entropy of the product effect algelbra F by Hp(A) := —IogsupSp(a fi).

Remark: Sinces, is a state of effect algebra, all of the previous propostiare true for entropy
Hp.

Proposition 11. Let A= {(e, fi)};>,, B={(€, f/)}>.; be two countable partitions & © F and
C = {(cij, Gjj)}ij>1 be a Riesz join refinement @fandB. If supSe(cij) > supSe(e) supSe(€)
i i i
andsupS:(cf j) > supS(fi) supSe(f/), thenCeg = Ag vV Bg andCr = Ar V Be. We callC with
ij ’ i i

this property a strong Riesz join refinementtcdndB.
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Proof. k<§>1(cik,c{k) = (élcik,élc{k) = (g, ;) andél(ckj,c’kj) = (élckj,élc’kj) = (€,f)). =
Proposition 12. Let A= {(g, fi)};>; be a countable partition & © F. Then
H(A) > H(Ag) + H(Ar)
Proof. S(g) S (fi) < SlinSE(e»,) SlinS.:(fi). That is,
upSy(e, fi) :slilpse(a) S (fi) Ssgpse(a) Sl'ilpsz(fi)-
u

Definition 21. Let Te : E — E andTg : F — F be transformations of effect algebras with RDP
andSbe a state oE ® F. A mappingTp: E®Q F — E®F is said to be a product transformation
of EQF if:

(i) To(e f) = (Te(e), Tr(f));
(i) S(Te(e, f)) =Se ) V(e f) cERF.

Proposition 13. T, : E F — E®F is a transformation of effect algebras.

Proof.

() If Gee and@r f are defined, then
i=1 i=1

To(& (e, £)) = (Te(@e ), Te (BF £) = (e Te(8), or Te ().
i=1 i=1 i=1 i=1 i=1

(i) To(1le,1r) = (Te(1e), Tr(1r)) = (1e,1F).

Definition 22. Let A, A1, Ao, ..., An be countable partitions & ® F. We define
HP(ALV ...V Ay) :=inf{Hp(C) : Ce Srong Ref (A1, Ay, ..., An)}.

HP (A Tp) :=HP(AVTp(A) V.. VTIL(A)).

h. (A, Tp) = liMy0 HP (A Tp).

Proposition 14. Hf(Al V.. VA > HN(AE)1 V... V (Ag)n) + HY((AR)1 V ... V (AR)n) and
h.(A,Tp) = h.(Ae, (Tp)e) +ha(Ar, (Tp)F).

Proof. Hp(C) > Hg(C) +Hg(C) for all C € Strong Ref (A1, Az, ...,An) SO
inf{Hp(C) : C € Srong Ref(A1,Az,...,An)} > inf{He(C) : C € Srong Ref(A1,As,....,An)} +
inf{Hg(C) : C € Strong Ref(A1,A2,...,An)}. |
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6. Countable Partition and Entropy of Weak Sequential Effec
Algebra

We start this section with a definition of weak sequentiad@falgebra, followed by the definition
of the countable partition and the join of two countable ifiaris. Afterwards, some notable
propositions in this section are given.

Definition 23. Let (E,®, 8,1) be an effect algebra, define another binary operation E, satis-
fying:

(i) If b cis defied thermob@ aocandboad coaare definedao (b@c) =aobdaocand
(b&c)oa=boadcoaforallacE;
(i) 1oa=aforanyacE;
(i) If aocb= 6, thenacb=bog;

(iv) If acb=boa, thenaobr = broaand for eactt € E, ao (boc) = (aob)oc;

(v) If coa=aocandcob=Dboc, thenco(aoh) = (aoh)ocandco(a®b) = (adb)oc
whenevera® b is defined,;

(vi) If éai is defined, theriliéla; ob andiiélboa; are defined antho (&2 ;&) = é(boa‘)’

(,5 g)ob= ,%(ai ob).
i=1 i=1

We call (E,®,0,0,1) weak sequential effect algebra and its short form WSEA wéll used
throughout the article.

Example 6.1. LetE = [0,1] ,a®b=min{ 1, a+b} andacb=ab. (E =10,1],4,0,0,1) is a
WSEA.

Definition 24. Let (E,®,0,0,1) be a WSEA. A countable sequende= {g }* ; of elements of

E is called a countable partition _i%la; exists inE and_%la; = 1. and we say countable partition
1= 1=

B = {bj}{_, is arefinement of the partitioh = {&}}*, , if for any & there is a subset; C N such

thatay = & by andﬁl a=N,aina;=0V i+ jandwe writeA < B.
i=

jeai
Proposition 15. Let (E,®,0,0,1) be a WSEAA = {a}>; andB = {b;};> ; be two countable
partitions ofE. ThenAoB = {ajob;: aeA bieB,i=1,2,...} is a countable partition &, A< AoB
andB < Ao B . We callAo B the join refinement oA andB.
Proof. Since% a and % b; are defined by propertivi) of Definition 23, % é aj obj is defined
i=1 j=1 j=1i=1
and &7, & gob; = ® g o & bj = 101 = 1, therefore,Ao B is a partition. For any;€A,
i=1 =1 j=1

g = & g obj and for anyb;, bj = ® g obj, which meansA < AcBandB < AoB. u
j=1 i=1



32 Z. Eslami Giskiet al.

Definition 25. Let E be a WSEA. A mapping: E — [0,1] is said to be a state if

(i) s(1)=1;
(i) wheneverii:élai , ad b exist andii:éla; =eandadb=f thens(ii:élai) =s(e) <
s(@®b) = (f) < s(a) +s(b);
(i) If a<g b, thens(a) < s(b);
(iv) s(acb) >s(a)s(b).

E S(g) and
S

Definition 26. Letsbe a state on WSEA;, andA = {a };° ; be a countable partition of unity 1.

We define the entropy A by H(A) := —logsups(&).
ieN

Proposition 16. Let Ao B be a join refinement oA = {&};* ; andB = {b;};* ;. Then
max{H (A),H(B)} <H(AoB) <H(A)+H(B)

Proof. & =ajobj®ao b’j soa obj < &. By definitions of state and entropy, we had¢A) <
H (Ao B); moreoverH (B) < H(AoB) with the same argument.

s(ai obj) > s(a)s(b;); therefore,sup(s(a o bj)) > s(a)s(bj), which impliessup(s(aj o b)) >
IsJ I7J
Silp(s(ai))s(bj) and alsosiU_p(s(a obj))ij > Stfp(S(a))Slij(S(bj))-

7]

Proposition 17. If a WSEA (E, &, 0, 0,1) has the Riesz decomposition propekty; {&;};> ; and
B = {bi};>; are two countable partitions of unity 1, thé&w B is a Riesz join refinement & and
B.

Proof. Since_élai and é;lbj are defined by property (6) of Definition ﬁlai ob; and _élai ob;
1= = 1= |=

exist andp, = _élaa obj, g = _é;lai ob;
i= =

Proposition 18. If A< BthenH(A) <H(B).

Proof. SinceA < B then for anya; € Athere isa; C N, such thatg = @ bj sobj <g & and this
JEQi

impliessups(b;j) < sups(a). ]
i i

7. Conditional Entropy and Relative Entropy of Weak Sequenial
Effect Algebras
As we introduce the conditional entropy and the relativeaayt on an effect algebra with RDP, in

this section we will also define the conditional entropy arelrelative entropy on weak sequential
effect algebra. Furthermore, we will investigate the felabetween these entropies.
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Definition 27. Let AoB = {g;0bj : & € A b; € B} be a join refinement oA andB of WSEA
(E,®,0,0,1). We define conditional e4ntropy as follows:

S(ai obj)
s(bj)
Proposition 19. Let A= {& };>;, B= {bi};>; andC = {¢;};*; be three countable partitions of

unity 1 of WSEA(E,®,0,0,1). Then

H(AB) := —log sup ( ),8(bj) > 0.

(1) H(A|B) > 0;

(2) If A<XCthenH(A|B) <H(C]|
(3) If A< BthenH(AB) < H(A);
(4) H(AoB|C) > H(A|C) + H(B|AoC);
(5) H(AoC) > H(A) +H(C|A);

(6) H(A) > H(AC);

(7) H(AIC) <H(A0BIC);

(8) If AxXBthenH(AoC) <H(BoC);
(9) H(AoB) > H(AB);

(10) If A< BandC < D thenAocC <BoD

(ClB);

Proof. (1) aob; <gb;.
(2) SinceA=<C, foralla; € Athere isaj such thag; = @ cj,a0bk= @ cjobysos(cjoby) <

jea jea
s(cjobw)

(g o by) andsup s(b)
s(aiobj)

(3) By definition of states(a; ob-) S(&)s(b;); therefore sup =) >sups(a).

(aobk)

<sup st -

ob o jobj )o e obj)o obi)o o
(4) d& J % — S((a‘s(cg %) SE: g‘g and this impliesup 2 J% % < sup ((an‘c)kfk) sup (a(‘ C>k).
(5) s(a oc,> 2229 s(ay) sosup's(ai oc;) < sup 222 C”sup s(@).
(6) aocJ >S(a|)
) A j Ao B.
(8) A= Bimplies for anyi andk we havea = jg% b; andajock = (jg%_ bj)ock = & & (bjocy);
therefore AocC < BoC.
(9) H(AIB) <H(A) <H(AoB).
(10) For anyi andk, we havea = @© bj andcy= @ dnagock=(® bj)o( ® dn) =
j€a; me oy jeai meay
@ (bjodm)Vik
Jeai,meay
[ ]

Definition 28. LetA= {a}{*, andB = {b;}{_; be countable partitions of WSER. The relative
entropy ofA with respect td is defined as follows:

- s(a) ,
H(A| B):=log sihlqs(—bj)), whenever s(b;) # 0.



34 Z. Eslami Giskiet al.

Proposition 20. LetA= {a }i>;, B= {b;}_; andC = {c}_, be countable partitions of WSEA
E.If A<B. Then

() H(B[C) <H(A[C),

<H
(i) HCC[A)<H(C| B),
(i) H(A| B)> 0.

Proof. The proof is similar to the proof of proposition 3. [

Corollary 4. Let A B,C andD be countable partitions of WSEB. Then

(i) if A< B, thenH(BoD || C) <H(AoD || C);
(ii) if A<BandC <D, thenH(BoD || E) < H(AoC || E).

Proposition 21. LetA= {a }i>;, B= {b;}{_; andC = {ci}_; be countable partitions of WSEA
E. Then

() H(A[B) = H(A);
(i) H(AoB| C)<H(AoB|B)+H(B|C).

Proof. (i) 0 <s(bj) <1.

. s(ajobj) S(aiobj) s(by)
® 3O <R s

8. Entropy of Dynamical Systems on WSEA

In this section, we define the entropy of dynamical systemsveak sequential effect algebra.
Then, we show that the two isomorphic dynamical systems ti@/eame entropy.

Definition 29. A mappingT : E — E is said to be a transformation of a weak sequential effect
algebraE if:

(i) T(éa) - élT(ai) Wheneveréla; andélT(ai) exist;
(i) T(1) =1,
(iii) s(T(a)) =s(a) Vac E thatSis a state of;
(V) T(aoh) =T(a)oT(b).

Proposition 22. Let A= {a };> ; be a countable partition of unity 1. Then
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(i) T(A) is a countable partition of unity 1,
(i) H(A)=H(T(A)).

Theorem 6. Let E be a WSEAS be a state andl be a transformation dE . For any countable
partitionA = {&}2 ; there exists the limit

h(T,A) := |im}H(AOT(A)O...OTn_l(A))

n—oo N

Proof. LetC = AoT(A)o...oT"L(A) , D =AoT(A)o...oT™LA) and T"(D) = T"(A) o

THY(A)o...oT™MM1(A), Bypartbofthe previous proposition,we hat#T"(D)) = H (D) on the

other handH (Ao T(A)o...o T™N1(A)) =H(C+T"(D)) < H(C) +H(T"(D)) =H(C) +H(D)
]

The dynamical entropi(T) is defined as follows:
h(T) :=sup{h(A,T)} : Aisa partition of E}
Theorem 7. LetA= {g}7*;,B={bj}{_;andC = {c,};;_; be countable partitions &. Then

(1) h(T,A) <H(A);

(2) if aob=boaforanya,b € E thenh(T,AcC) <h(T,A)+h(T,C);

(3) h(T.T(A)) = h(T,A);

(4) ifaocb=boafor anyab € E thenh(T,AcT(A)o...oT"1(A)) < nh(T,A),n > 1;
(5) if A< BthenT (A) < T(B);

(6) if A< Bthenh(T,A) <h(T,B);

(7) h(TK, Ao T(A)o.. TK"1(A)) = kh(T,A) for k > 0;

(8) h(Tk) = kh(T) for k > 0.

Proof. (1) h(T,A):AL@O%H(AoT(A)o...oT”‘l(A)) lim g _z H(T'(A)) =H(A).

(2) H((AoC)oT(AcC)o...oT"(AoC)) =H(AoT(A)o...T" 7(A)oCoT(C)o...oT”_1(C)) <
H(AoT(A)o..oT"1(A)) +H(CoT(C)o...oT(C)).

(3) H(T(A)oT?(A)o...oT"H(A)) =H(T(AcT(A)o...oT"1(A))) =H(AcT(A)o...oT"1(A)).

(4) By part b and c the proof is trivial.

(5) A < B; therefore, for any, we haveg; = 2 bj and this impliesT (&) = gea T(bj),Vi.

(6) By part e, we hava@'(A) < T'(B) for an;/i _ 1,..,n—1. Part mof 19 |Jorolposition implies
thatH (Ao T(A)o...oT"1(A)) <H(BoT(B)o...oT"(B)).

(7) h(TK, AoT(A)o...oTKL(A)) :Airg%H(AoT(A)o...oT”kfl(A)):rl\irg KH(AoT(A)o...0
T=1(A)) = kh(T,A). - -
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(8) kh(T) =ksuph(T,A) =sup h(TK, Ao T(A)o...oT¥L(A)) < suph(TK,C) = h(TX). On the
A A C
other hand, sincé < AoT(A)o...o TK"1(A) by part f, h(TK,A) < h(TK, Ao T(A)o...0
T<1(A)) =kh(T,A).

Definition 30. Let (E,$,0,60,1) and(E',¢',o’,0’,1") be two WSEA. The two dynamical systems
(E,s, T)and(E',s,T’) are said to be isomorphic if there exist, a bijective ngapE — E’ such
that

)
(iv) T'(¢(a) = (T (a))vacE;
(V) w(aecb) =y(@)oy/(b).

Proposition 23. Let two dynamical system&,s, T) and(E’,s, T’) be isomorphic. Then

(i) A={a}, is a countable partition of E iffy(A) = {¢/(a)}{" ; is a countable partition of

E’;
(i) H(A)=H(y(A);
(i) h(T,A) =h(T",g(A)).

Proof. (i) By propertyi andii of the above definition, the proof is trivial.
(i) s(¢(a)) =s(a) imply H(A) =H(@(A)).

(i) HAoT(A)o...oT"1(A)) =H(WAT(A)o...oT"1(A))) = H(Y(A) o Y(T(A))o...0
YT H(A)) =HW(A) o T'(Y(A)) 0. o T H(y(A))) soh(T,A) = h(T', y(A)).

Theorem 8. If dynamical systemsE,s, T) and (E’,s,T’) are isomorphic dynamical systems,
whereE, E" are WSEA, the(T) = h(T’).

Proof. By the previous proposition for any countable partitioh®f E andB of E/, we have
h(T,A) = h(T’, @(A)) andh(T, ¢ ~1(B)) = h(T’,B); therefore suph(T,A) = suph(T’, B). |
A B

Definition 31. Let E be a WSEAA = {&}{2; andC = {c;}{_, be two countable partitions . We
sayAéC if for any & there arecj andb;; € E such that; = a @ by; ands(b;;) = 6.

Theorem 9. Let E be a WSEAA = {&a}{* ;,C = {cn};;_; be countable partitions & andAéC
then
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(i) H(C) <H(A),
(i) T(ACT(C).

Proof.

() sups(a) < sups(cy).
(i) For anya there arec; andbj; € E such thatcj = & @ bjj ands(bjj) = 0 so for anyT (&)
there areT (cj) andT (bjj) € E such thafl (¢cj) = T (&) ® T (bij) ands(T (bij)) = s(bij) = 0.

Theorem 10. Let E be a WSEAA = {&};* ;,C = {cn};_1,D = {dm}_; be countable partitions
of E, Aéc and for anya,b € E, acb=boathen

(i) H(COD) < H(AOD);
(i) H(C|D) <H(AD);
(i) h(T,C) < h(T,A).

Proof.

(i) Foranya; there arecj andby; € E such that; = & @ bj; so for anyk , cjody = (ajodk) ®

(bij o dk) this impliessups(a; o dy) < sups(c; o dg).
ik ik

. : j O jod
() By part a,5(3 0di) < sc; 0d) sosup 554 < sp “Z55.

(iiiy By parta,H(CoT(C)o...oT"1(C)) <H(AoT(A)o...oT"1(A)).

9. Concluding Remarks

In this paper, entropy with countable partitions on two imtant subclasses of effect algebras was
introduced and their properties were investigated. Effggebra is an important logic model for
studying unsharp quantum events. However, due to the tionigof observational tools, physicist
are not able to consider every variable in their calculaioMathematical models can provide a
better understanding of the realities of the world of miphysics. Therefore, the entropy with
countable partitions defined on the algebraic structurpeaally effect algebra, may be very
important. The next step in this regard could be trying torgeéntropy with countable partitions
on other subclasses of effect algebra, such as CB-effeebi@g generalized effect algebra and
some algebraic structures such as BCK-algebreCiralgebra.
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