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Özet. Bu makalede D-posetlerde parçalanış ve parçalanış entropisi kavramları ortaya
atılmış ve bunların özellikleri araştırılmıştır. Ayrıca, koşullu entropi kavramını ortaya
attık ve bunların bazı sonuçlarını inceledik. Son olarak, bir dinamik sistemin entropisini
tanımladık, ilgili bazı sonuçları gösterdik ve değişmezliğini kanıtladık.†

Anahtar Kelimeler. D-poset, etki cebiri, entropi, dinamik sistem, eşyapı dönüşümü.

Abstract. In this paper, partition and entropy of partitions in a D-poset are introduced
and their properties are investigated. Also we introduce the conditional entropy and then
we study some their results. At the end we define the entropy of a dynamical system, we
prove some results on that, and we show its invariance.
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1. Introduction and Preliminaries

With the development of the theory of quantum logics, new algebraic structures

have been proposed as their models. As a quantum structure generalizing ortho-

modular lattices, orthomodular posets, and orthoalgebras, effect algebras in which

the primary operation is partial sum, are regarded as a mathematical model of quan-

tum logic [5, 9]. From a completely different starting point, Kopka and Chovanec

[8] defined D-posets as an axiomatic model for quantum logics, where the primary

operation is partial difference. This is important for modelling unsharp measure-

ment in quantum mechanics [2]. Moreover, the two models are equivalent. By using

the notion of a state on a D-poset one can introduce the entropy of partitions in

D-poset, which is a useful tool in the study of the dynamical systems and their iso-

morphism. If two dynamical systems are isomorphic, they have the same entropy.
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Therefore, systems with different entropies cannot be isomorphic. The concept of

entropy plays a major role in thermodynamics and statistical mechanics. It serves

to describe the amount of uncertainty in physical systems. In 2000, Rybarik [18]

introduced entropy of partitions on MV -algebras. And recently in 2003, Riecan [16]

constructed the entropy of a dynamical system on an arbitrary MV -algebra, while

Yuan [21] introduced the notion of entropy of partitions on quantum logic and Zhao

and Ma [22] introduced conditional entropy of partitions on quantum logic. Then

in 2008 Khare and Roy [6, 7] introduced entropy of a quantum dynamical system.

In the present paper, we introduce the corresponding definitions of the partition and

the entropy of partitions on D-posets, where s is a Bayesian state on a D-poset. In

Section 2, some basic facts about a D-poset D and some results are collected. In

Section 3, notions of a partition A of a D-poset D, common refinement of partitions,

entropy H(A) of A, conditional entropy H(A|B), where A and B are partitions on

D, are introduced and studied; some results are proved which are necessary for

the study made in the subsequent section. In subsequent section we introduce and

study the notion of entropy h(φ) of a dynamical system (D, s, φ). With the help of

a bijective mapping between two dynamical systems we give the concept of their

isomorphism and then prove that the entropy of dynamical systems is isomorphism-

invariant.

2. D-Posets

The concept of an effect algebra was introduced by Foulis and Bennet [5]. We will

work with an equivalent algebraic structure, called D-poset introduced by Kopka

and Chovanec [8].

Definition 2.1. Effect algebra is a system (E,+, 0, 1), where 0,1 are distinguished

elements of E and + is a partial binary operation on E such that

1. x+ y = y + x if one side is defined;

2. (x+ y) + z = x+ (y + z) if one side is defined;

3. for every x ∈ E there exists a unique x′ with x′ + x = 1;

4. if x+ 1 is defined then x = 0.

Every effect algebra bears a natural partial ordering given by x 6 y if and only if

y = x + z for some z ∈ E. The poset (E,6) is bounded, 0 is the bottom element
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and 1 is the top element. In every effect algebra, a partial subtraction − can be

defined as follows:

x− y exists and is equal to z if and only if x = y + z.

The system (E,6,−, 0, 1) so obtained is a D-poset defined by Kopka and Chovanec

[8].

Definition 2.2. The structure (D, 6, −, 0,1) is called D-poset if the relation 6 is

a partial ordering on D, 0 is the smallest and 1 is the largest element on D and −
is a partial binary operation satisfying the following conditions:

1. b− a is defined if and only if a 6 b; (D1)

2. if a 6 b then b− a 6 b and b− (b− a) = a; (D2)

3. a 6 b 6 c =⇒ c− b 6 c− a, (c− a)− (c− b) = b− a. (D3)

For any element a in a D-poset D, the element 1− a is called the orthosupplement

of a and is denoted by a′.

Example 2.3. Let (L,6,′ , 1, 0) be an orthomodular poset [15]. We put b−a = b∧a′

for every a, b ∈ L, a 6 b. Then L is a D-poset.

Example 2.4. Let H be a Hilbert space. A positive Hermitian operator A on H

such that O 6 A 6 I, where O and I are operators on H defined by the formulas

Ox = 0, Ix = x for any x ∈ H, is said to be an effect. A system E(H) of effects

closed with respect to the difference B − A of operators A,B ∈ E(H), A 6 B, is a

D-poset.

Lemma 2.5. Let D be a D-poset and a, b, c ∈ D. The following assertions are true:

1. If a 6 b 6 c, then b− a 6 c− a and (c− a)− (b− a) = c− b;
2. If b 6 c and a 6 c− b, then b 6 c− a and (c− b)− a = (c− a)− b;
3. If a 6 b 6 c, then a 6 c− (b− a) and (c− (b− a))− a = c− b;
4. a− 0 = a for all a ∈ D;

5. a− a = 0 for all a ∈ D.

Proof. See [8]. 2

Definition 2.6. Let (D,6,−, 0, 1) be a D-poset. Define a partial binary operation

⊕ and a binary operation � as follows, for any a, b ∈ D.

a⊕ b = (a′ − b)′ if a 6 b′,
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and

a� b =

{
a− b′ if a′ ≤ b,

0 otherwise.

It is easy to see that for each a, b, c ∈ D, the operations ⊕ and � have the following

properties:

1. If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a;

2. a� b = b� a;

3. If a ⊕ b, (a ⊕ b) ⊕ c are defined, then b ⊕ c, a ⊕ (b ⊕ c) are defined and

(a⊕ b)⊕ c = a⊕ (b⊕ c);
4. (a� b)� c = a� (b� c);
5. a⊕ a′ = 1 and a� a′ = 0;

6. a⊕ 0 = a and a� 1 = a.

Lemma 2.7. Let D be a D-poset then the following assertions are true:

1. If a 6 b′ =⇒ a⊕ b > a, a⊕ b > b;

2. a� b 6 a, a� b 6 b for every a, b ∈ D;

3. If a′ 6 b =⇒ (a� b)′ = a′ ⊕ b′;
4. If a 6 b′ =⇒ (a⊕ b)′ = a′ � b′;
5. a 6 b′ and a 6 c′ imply a⊕ b 6 a⊕ c⇐⇒ b 6 c;

6. a 6 c =⇒ b� a 6 b� c.

Proof. It is clear. 2

Definition 2.8. A state on a D-poset D is a map s : D −→ [0, 1] such that :

1. s(1) = 1;

2. if a 6 b then s(a) 6 s(b);

3. if a 6 b then s(b− a) = s(b)− s(a);

4. if (an)∞n=1 ⊆ D, a ∈ D, an ↗ a, then s(an)↗ s(a).

Definition 2.9. Two elements a, b ∈ D are orthogonal if a 6 b′, and we denote this

by the symbol a ⊥ b.

A finite system A = {a1, a2, ..., an} of elements of a D-poset D is said to be a

⊕-orthogonal system if

(⊕k
i=1ai) ⊥ ak+1 for k = 1, 2, ..., n− 1.
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If a 6 b′ then by (3) of Definition 2.8, we have s(a⊕ b) = s(a) + s(b). Also for any

⊕-orthogonal system A = {a1, a2, ..., an} of elements of a D-poset D and any state

s on D,

s(⊕n
i=1ai) =

n∑
i=1

s(ai).

3. The Entropy of a Partition

Now we can introduce a partition on a D-poset. let D be a D-poset and s be a state

on D.

Definition 3.1. A system A = {a1, a2, ..., an} in a D-poset D is said to be a finite

partition of D corresponding to the state s if:

1. A is a ⊕-orthogonal system;

2. s(⊕n
i=1ai) = 1.

Definition 3.2. [18, 21] Let A = {b1, b2, ..., bn} be any finite partition of D cor-

responding to a state s and a ∈ D. We say that the state s has Bayes’property

if

s(⊕n
i=1(a� bi)) = s(a).

Lemma 3.3. Let A = {b1, b2, ..., bn} be a finite partition of D, a ∈ D, and the state

s has Bayes’ property. Then

n∑
i=1

s(a� bi) = s(a).

Proof. We first show that {a� b1, a� b2, ..., a� bn} is a ⊕-orthogonal system. From

the ⊕-orthogonality of the system A, we have b1 6 b2
′. Using the monotonicity of

operations ⊕ and �,

1) if a′ 6 b2, then a� b1 6 b1 6 b′2 6 a′ ⊕ b′2 = (a� b2)′,
2) if a′ 
 b2, then (a� b2)′ = 0′ = 1, therefore a� b1 6 (a� b2)′.
Similarly

1) if a′ 6 b3, then (a� b1)⊕ (a� b2) 6 b1 ⊕ b2 6 b′3 6 a′ ⊕ b′3 = (a� b3)′,
2) if a′ 
 b3, then (a� b3)′ = 0′ = 1, therefore (a� b1)⊕ (a� b2) 6 (a� b3)′.
Then from Bayes’ property of a state s. we get that

n∑
i=1

s(a� bi) = s(⊕n
i=1(a� bi)) = s(a).

2



142 Ebrahimi and Mosapour

Lemma 3.4. Let B = {b1, b2, ..., bn} be a finite partition of a D-poset D. Then for

every a ∈ D,
(a� b1)⊕ (a� b2)⊕ ...⊕ (a� bn) 6 a.

Proof. If for each i = 1, ..., n, a′ 
 bi, then a� bi = 0 for each i = 1, ..., n, then the

proof is finished, if not then there exists 1 6 j 6 n such that a′ 6 bj, then

(a� b1)⊕ (a� b2)⊕ ...⊕ (a� bn) = ⊕i6=j(a� bi)⊕ (a� bj)

6 ⊕i6=jbi ⊕ (a� bj) 6 b′j ⊕ (a� bj)

= b′j ⊕ (a− b′j) = (bj − (a− b′j))′

= (bj − (bj − a′))′ = (a′)′ = a.

2

Definition 3.5. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} be two finite par-

titions of a D-poset D corresponding to a state s. Then the common refinement of

these partitions is defined as the system

A ∨B = {ai � bj : ai ∈ A, bj ∈ B, i = 1, 2, ..., n, j = 1, 2, ...,m}.

Definition 3.6. If A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} be two finite parti-

tions of a D-poset, D, corresponding to a state s. Then B is called a refinement of

A, written as A 6 B, if there exists a partition I(1), ..., I(n) of the set {1, ...,m}
such that

s(ai) =
∑
j∈I(i)

s(bj),

for every i = 1, ..., n.

Lemma 3.7. If the state s has the Bayes’ property, and A, B are two finite partitions

of a D-poset D, then the system A∨B is also a partition of D, further A 6 A∨B.

Proof. Let A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} be two finite partitions

of D corresponding to a state s. By Lemma 3.4, we can prove that the system

A ∨ B = {ai � bj : ai ∈ A, bj ∈ B, i = 1, 2, ..., n, j = 1, 2, ...,m} is ⊕-orthogonal,

and from the Bayes’ property of the state s and the ⊕-orthogonal of the system

A ∨B, we have

s(⊕n,m
i,j=1(ai � bj)) = s(⊕n

i=1(⊕m
j=1(ai � bj)))

=
n∑

i=1

s(⊕m
j=1(ai � bj)) =

n∑
i=1

s(ai) = s(⊕n
i=1ai) = 1.
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Finally, let us mention that A ∨ B is indexed by {(i, j) : i = 1, ..., n; j = 1, ...,m}.
Therefore, if we put I(i) = {(i, 1), ..., (i,m)}, then

s(ai) = s(⊕m
j=1(ai � bj)) =

m∑
j=1

s(ai � bj) =
∑

(i,j)∈I(i)

s(ai � bj)

for every i = 1, ..., n. It follows that A 6 A ∨B. 2

Definition 3.8. If A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} are two finite par-

titions of a D-poset, D, corresponding to a state s, we define the entropy of A

by

H(A) =
n∑

i=1

f(s(ai)),

where f(x) = −x log x, if x > 0, f(0) = 0 and conditional entropy by

H(A|B) =
n∑

i=1

m∑
j=1

s(bj)f

(
s(ai � bj)
s(bj)

)
.

Omitting the j-terms when s(bj) = 0.

Lemma 3.9. Let A = {a1, a2, ..., an} be a finite partition of a D-poset, D, corre-

sponding to a state s and c = ⊕i∈Iai, I ⊆ {1, 2, ..., n}. Then for each b ∈ D,

s(b� c) = s(⊕i∈I(b� ai)).

Proof. Put d = ⊕i∈I′ai, where I ′ = {1, ..., n} − I, of Bayes’ property of the state s,

we have

s(b) = s(⊕n
i=1(b� ai)) =

n∑
i=1

s(b� ai)

=
∑
i∈I

s(b� ai) +
∑
i∈I′

s(b� ai)

= s(⊕i∈I(b� ai)) + s(⊕i∈I′(b� ai)). (1)

Since {c, d} is a partition of D,

s(b) = s(b� c) + s(b� d) (2)

Equations (1) and (2) imply that

s(b� c) + s(b� d) = s(⊕i∈I(b� ai)) + s(⊕i∈I′(b� ai)),
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also (b� c� ai) = 0 for every i ∈ I ′ and (b� d� ai) = 0 for every i ∈ I, thus

s(b� c) = s(⊕n
i=1(b� c� ai))

= s(⊕i∈I(b� c� ai)) 6 s(⊕i∈I(b� ai)),

and

s(b� d) = s(⊕n
i=1(b� d� ai))

= s(⊕i∈I′(b� d� ai)) 6 s(⊕i∈I′(b� ai)),

therefore s(b� c) = s(⊕i∈I(b� ai)). 2

Proposition 3.10. Let A, B and C be finite partitions of a D-poset, D, correspond-

ing to a state s and B 6 C, then H(A|C) 6 H(A|B).

Proof. Let bj = ⊕t∈I(j)ct, where {I(1), ..., I(k)} is the corresponding partition and

put (for fixed j) αt = s(ct)/s(bj). Then∑
t∈I(j)

αt =
1

s(bj)
s(⊕t∈I(j)ct) = 1;

hence by the concaveness of f ,∑
t

αtf(xt) 6 f(
∑
t

αtxt).

Therefore,

H(A|C) =
∑
i

∑
t

s(ct)f(
s(ai � ct)
s(ct)

)

=
∑
i

∑
j

s(bj)
∑
t∈I(j)

s(ct)

s(bj)
f(
s(ai � ct)
s(ct)

)

6
∑
i

∑
j

s(bj)f(
∑
t∈I(j)

s(ai � ct)
s(bj)

)

=
∑
i

∑
j

s(bj)f(
s(⊕t∈I(j)(ai � ct))

s(bj)
),

by Lemma 3.9, we have

=
∑
i

∑
j

s(bj)f(
s(ai � bj)
s(bj)

) = H(A|B).

2
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Proposition 3.11. Let A, B and C be finite partitions of a D-poset D corresponding

to a state s. Then H(B ∨ C|A) = H(B|A) +H(C|B ∨ A).

Proof. By the definition

H(B ∨ C|A) =
∑
i,j,k

s(ai)f(
s(bj � ck � ai)s(bj � ai)

s(ai)s(bj � ai)
)

= −
∑

s(bj � ck � ai) log
s(bj � ck � ai)
s(bj � ai)

−
∑

s(bj � ck � ai) log
s(bj � ai)
s(ai)

,

from Bayes’ property of a state s, we have
∑

k s(bj � ck � ai) = s(bj � ai), therefore

H(B ∨ C|A) = H(C|B ∨ A) +H(B|A).

2

Proposition 3.12. Let A, B, C be finite partitions of a D-poset D corresponding

to a state s. Then

1. H(B ∨ C|A) 6 H(B|A) +H(C|A);

2. H(B ∨ C) = H(B) +H(C|B);

3. H(B ∨ C) 6 H(B) +H(C).

Proof. 1. It is clear.

2. Let A = {1}; then H(B|A) = H(B); and by Proposition 3.11

H(B ∨ C) = H(B ∨ C|A)

= H(B|A) +H(C|B ∨ A)

= H(B) +H(C|B).

3. By the Part 2 and Proposition 3.10,

H(B ∨ C) = H(B) +H(C|B) 6 H(B) +H(C).

2

Proposition 3.13. Let A,B and C be finite partitions of a D-poset D corresponding

to a state s. Then H(A|B) +H(B|C) > H(A|C).
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Proof. By Propositions 3.10 and 3.12, we obtain

H(A|B) +H(B|C) = H(A ∨B) +H(B ∨ C)−H(B)−H(C)

= H(A ∨B) +H(C|B)−H(C)

> H(A ∨B) +H(C|A ∨B)−H(C)

= H(A ∨B ∨ C)−H(C)

> H(A ∨ C)−H(C) = H(A|C).

2

4. Entropy of Dynamical Systems

Definition 4.1. If D is a D-poset then by a dynamical system on D we mean a

triple (D, s, φ), where s : D −→ [0, 1] is a state on D with the Bayes’ property and

φ : D −→ D is a mapping satisfying the following conditions:

1. If a 6 b′ then φ(a) 6 φ(b)′ and φ(a⊕ b) = φ(a)⊕ φ(b);

2. φ(a� b) = φ(a)� φ(b);

3. φ(1) = 1;

4. s(φ(a)) = s(a) for any a ∈ D.

Proposition 4.2. If (D, s, φ) is a dynamical system on D and A = {a1, a2, ..., an}
is a finite partition, then φ(A) is a partition, too. If B = {b1, b2, ..., bm} is another

finite partition, then H(φ(A)|φ(B)) = H(A|B).

Proof. It is clear. 2

Lemma 4.3. Let {an}∞n=1 be a sequence of non-negative numbers such that

ar+t 6 ar + at, for any r, t ∈ N. Then lim
n→∞

(an/n) exists.

Proof. See [12, 19]. 2

Proposition 4.4. For any finite partition A = {a1, a2, ..., am} there exists

lim
n→∞

1

n
H(

n−1∨
i=0

φi(A)).

Proof. The proof is immediate from Part 3 of Proposition 3.12 and Lemma 4.3. 2
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Definition 4.5. For every finite partition A we define

h(φ,A) = lim
n→∞

1

n
H(

n−1∨
i=0

φi(A)).

Further we define the entropy of dynamical system by

h(φ) = sup{h(φ,A); A is a partition}.

Proposition 4.6. Let A be a finite partition of D. Then for every k ∈ N,

h(φ,A) = h(φ,
k∨

j=0

φj(A)).

Proof. We obtain immediately

h(φ,
k∨

j=0

φj(A)) = lim
n→∞

1

n
H(

n−1∨
i=0

φi(
k∨

j=0

φj(A)))

= lim
n→∞

1

n
H(

n+k−1∨
t=0

φt(A))

= lim
p→∞

p

p− k
1

p
H(

p−1∨
t=0

φt(A))

= h(φ,A).

2

Proposition 4.7. Let A be a finite partition of D. Then

h(φ,A) = lim
n→∞

H(A|
n∨

i=1

φi(A)).

Proof. By Proposition 3.12

H(
k∨

i=0

φi(A)) = H(A ∨ φ(
k−1∨
i=0

φi(A)))

= H(φ(
k−1∨
i=0

φi(A))) +H(A|φ(
k−1∨
i=0

φi(A)))

= H(
k−1∨
i=0

φi(A)) +H(A|
k∨

i=1

φi(A)).
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Now, by induction we obtain

H(
n−1∨
i=0

φi(A)) = H(A) +
n−1∑
k=1

H(A|
k∨

i=1

φi(A)). (3)

By Proposition 3.10 we obtain that {H(A|
∨n

i=1 φ
i(A))} is decreasing, so that

lim
n→∞

H(A|
n∨

i=1

φi(A))

exists. But then there exists also the limit of the Cesaro means

lim
n→∞

1

n

n∑
k=1

H(A|
k∨

i=1

φi(A)).

By (3) we obtain

lim
n→∞

H(A|
n∨

i=1

φi(A)) = lim
n→∞

1

n

n∑
k=1

H(A|
k∨

i=1

φi(A))

= lim
n→∞

1

n
[H(

n∨
i=1

φi(A))−H(A)]

= lim
n→∞

1

n
H(

n−1∨
j=0

φj(A)) = h(φ,A).

2

Proposition 4.8. Let A be a finite partition of D. Then for every k ∈ N,

h(φk) = kh(φ).

Proof. By Proposition 4.6, we have

h(φk, A) = h(φk,
k−1∨
i=0

φi(A)) = lim
n→∞

1

n
H(

n−1∨
j=0

φjk(
k−1∨
i=0

φi(A)))

= lim
n→∞

1

n
H(

nk−1∨
i=0

φi(A)) = k lim
n→∞

1

nk
H(

nk−1∨
i=0

φi(A)) = kh(φ,A).

2

Proposition 4.9. Let A, C be finite partitions of D. Then

h(φ,A) 6 h(φ,C) +H(A|C).
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Proof. Since H(B ∨D) = H(B) +H(D|B),

H(
n−1∨
i=0

φi(A)) 6 H[(
n−1∨
i=0

φi(A)) ∨ (
n−1∨
j=0

φj(C))]

= H(
n−1∨
j=o

φj(C)) +H(
n−1∨
i=0

φi(A)|
n−1∨
j=0

φj(C)).

Further H(D ∨ E|B) 6 H(D|B) +H(E|B), H(D|B ∨ E) 6 H(D|B), hence

H(
n−1∨
i=0

φi(A)|
n−1∨
j=0

φj(C)) 6
n−1∑
i=0

H(φi(A)|
n−1∨
j=0

φj(C))

6
n−1∑
i=0

H(φi(A)|φi(C)) = nH(A|C).

Therefore

lim
n→∞

1

n
H(

n−1∨
i=0

φi(A)) 6 lim
n→∞

1

n
H(

n−1∨
j=0

φj(C)) +H(A|C)

and finally

h(φ,A) 6 h(φ,C) +H(A|C).

2

Corollary 4.10. If Cn =
∨n

i=0 φ
i(C). Then for any finite partition A,

h(φ,A) 6 h(φ,C) +H(A|Cn).

Proof. See Proposition 4.6 and 4.9. 2

Definition 4.11. The dynamical systems (D1, s1, φ1) and (D2, s2, φ2) are said to

be isomorphic if there exists a bijective map ψ : D1 −→ D2 satisfying the following

condition for each a, b ∈ D1:

1. If a 6 b′, then ψ(a) 6 ψ(b)′ and ψ(a⊕ b) = ψ(a)⊕ ψ(b);

2. ψ(a� b) = ψ(a)� ψ(b);

3. s1(a) = s2(ψ(a));

4. ψ(φ1(a)) = φ2(ψ(a)).

Proposition 4.12. If (D1, s1, φ1) and (D2, s2, φ2) are isomorphic dynamical sys-

tems, then h(φ1) = h(φ2), i.e., the entropy of their dynamical systems is an isomor-

phism invariant.
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Proof. Let (D1, s1, φ1) and (D2, s2, φ2) are isomorphic and ψ : D1 −→ D2 be

the mapping representing the isomorphism of the dynamical systems. Let A =

{a1, a2, ..., an} be a finite partition of D1, then ψ(A) is the finite partition of D2.

Now

H(ψ(A)) =
n∑

i=1

f
(
s2(ψ(ai))

)
=

n∑
i=1

f
(
s1(ai)

)
= H(A).

Thus,

h(φ2, ψ(A)) = lim
n→∞

1

n
H
( n−1∨

i=0

φi
2(ψ(A))

)
= lim

n→∞

1

n
H
( n−1∨

i=0

ψ(φi
1(A))

)
= lim

n→∞

1

n
H
(
ψ(

n−1∨
i=0

φi
1(A))

)
= lim

n→∞

1

n
H
( n−1∨

i=0

φi
1(A)

)
= h(φ1, A).

2

5. Conclusion

For the classification of the dynamical systems based on isomorphism, isomorphism

invariants play an important role. In the classical setting “entropy” fits in this

role. The first step in the evolution of entropy theory is to define the entropy of a

partition; the definition of the entropy of a state-preserving transformation is based

on that of the entropy of a partition; and finally, the entropy of a dynamical system

is introduced. In this paper, we have introduced entropy of dynamical systems on a

D-poset. Then we have proved some properties for entropy and entropy of dynamical

systems.
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