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Abstract— As a complex geospatial structure, Turkish national 

highway transportation network is studied by the means of 

network science. We used the dataset retrieved from the KGM 

(Karayolları Genel Müdürlüğü) maps with a hand-driven process. 

The dataset labels the junctions in the map as nodes, and the roads 

between these junctions as edges. We outlined the statistical 

properties of the Turkish highway transportation network by the 

means of eigenvector, betweenness, closeness centrality, 

modularity and eccentricity measures, while comparative 

percentile plots between these measures are also performed. We 

investigated the correlation of these parameters with the traffic 

volume, and outlined that only eccentricity measure is correlated 

with the traffic volume. We also investigated the degree 

correlations of the network and found that the network displays 

disassortative mixing behavior, meaning that nodes with high 

degrees tend to connect with lower degree nodes, and vice versa. 

This property is consistent with the recent studies of 

transportation networks, as well as various types of real networks 

like Internet, World-Wide Web, protein interactions, neural 

network etc. 

 
Index Terms— Transportation networks, Complex networks, 

Centrality, Data analysis, Scale-free networks. 

 

 

I. INTRODUCTION 

ETWORK science provides a framework to analyze the 

infrastructures of the networked systems in nature. These 

systems are in a variety spanning cellular [1, 2], ecological [3, 

4], social [5-8], WWW [9], power-grid networks [10, 11] etc. 

which exist as interconnected systems in nature. The 

characterization of such complex systems using statistical and 

computational techniques have attracted considerable attention 

in the literature in recent years. Complex systems are composed 

of numerous components, those interact in a manner that 

collective behavior is not an ordinal function of their individual 

behaviors [12].  

As a complex system, transportation networks also deal with 

the nature of the movement patterns of people in a geographic 

region, where the movement is towards roads, railways or 

airways [13]. The studies in this field are performed in regional, 

national or global scale.  
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Guimera et al. analyzed the structure of the worldwide air 

transportation network, a large-scale structure with a 

considerable impact on local, national, and international 

economies. They outlined that the most connected cities of the 

network are not necessarily the most central, resulting in 

anomalous values of the centrality [14]. In another study 

concerning air transportation networks, Bagler evaluated 

domestic civil aviation infrastructure of India as a complex 

network. He labeled the structure as a small-world network with 

scale-free property, as fingerprints of self-organizing 

phenomenon also reported in other transportation network 

studies. The mentioned network also displays disassortative 

mixing property, meaning that high degree nodes tend to 

connect with low degree nodes in majority [15].  

Xu and Harriss stated out that the air transportation network 

of U.S. is also a small-world and scale-free network. They also 

outlined the emergence of a rich-club phenomenon which 

means cities with numerous connections tend to connect to 

cities with comparable degrees, which in turn sustains high 

volumes of traffic between these high degree nodes [16]. Also 

dissortative mixing patterns are observed by Xu and Harris, as 

reported in the study of Bagler.  

Road and railway networks are other forms of transportation 

networks in which connections between nodes are affected by 

their spatial structures. In such networks connections between 

distant nodes can only be sustained via other nodes locating 

spatially between these distant nodes. This in turn results 

connections only established between spatially close locations. 

The studies in this aspect span several public transportation 

networks of regions like Singapore [17], Shanghai [18], Greece 

[19], Boston (U.S.) [20] etc. In the study of Soh et al., while two 

networks studied yield nearly neutral assortativity behaviors, 

bus network of Singapore is slightly disassortative while the 

fast railway network is slightly assortative [17]. 

Several network studies in transportation networks are also 

performed to investigate the impact of network structure in 

tourism [21], robustness in highway networks [22], capacity 

reliability road networks [23], urban street structures [24, 25] 

etc. The commonality of the mentioned studies are the evidence 

of universal properties of complex networks like being small-

world and scale-free, together with clustering coupled with a 

disassortative mixing property.  

This study mainly focuses on uncovering the centrality and 

assortativity properties of the Turkish highway transportation 

network. The specifications of the dataset together with the 

results are detailed in the coming section, followed by a 

conclusion section. 
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II. DATA AND METHODS 

We can briefly abstract the basic network properties from 

that study as follows. The Turkish highway transportation 

network displays invincibly high node separation (~28.3) 

together with high diameter (83) values compared to the most 

real network structures. These high values are correlated with 

the spatial structure of the constructed network, in which the 

nodes are assumed as the junction points of the roads and the 

edges are the roads connecting these nodes. The network is also 

reported as having very high modularity (0.918) together with 

low average clustering coefficient (0.034). Further conclusions 

about the basic network analysis can be accessed via the 

mentioned study. 

The network approach has a long tradition in economic 

geography and city planning, being used to investigate the 

territorial relationships among communication flows, 

population, wealth and land-uses [28]. Centrality is also a 

fundamental concept in network analysis, described as below: 

 

i) Closeness centrality, CC, measures how a node i is close 

to the all other nodes along the shortest paths. It is defined 

as: 

 

𝐶𝑖
𝐶 =

𝑁−1

∑ 𝑑𝑖𝑗𝑗∈𝐺;𝑗≠𝑖
  (1) 

 

where N is the number of nodes and dij is the shortest path 

length between nodes i and j in a network [28, 29]. 

ii) Betweenness Centrality, CB assumes a node is central if it 

is located between many other nodes, regarding the 

number of occurrences for that node as a hop between the 

shortest paths connecting the other nodes. The 

betweenness centrality of node i is defined as: 

 

𝐶𝑖
𝐵 =

1

(𝑁−1)(𝑁−2)
∑ 𝑛𝑗𝑘(𝑖)/𝑛𝑗𝑘𝑗,𝑘∈𝐺,𝑗≠𝑘≠𝑖  (2) 

 

where njk is the number of shortest paths between nodes j 

and k, and njk(i) is the number of shortest paths between 

nodes j and k which contain node i [28, 29]. 

iii) Eigenvector Centrality, CE defines the importance of a 

node as its connectivity to important nodes. It can also be 

assumed as a weighted sum of not only direct connections 

but indirect connections of every length. Thus, it takes into 

account the entire connectivity pattern in the network. Let 

A be the adjacency matrix for this graph; aij =1 if vertices 

i and j are connected by an edge and 0 if not.  

 

𝐴𝑥 = 𝜆𝑥,             𝜆𝑥𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗 ,       𝑖 = 1, … , 𝑛𝑛
𝑗=1  (3) 

Eq. (3) describes eigenvector centrality x in two 

equivalent ways, as a matrix equation and as a sum. The 

centrality of a vertex is proportional to the sum of the 

centralities of the vertices to which it is connected. λ is the 

largest eigenvalue of A and n is the number of vertices. 

[30]. 

Eccentricity (E), a measure involving the distances between 

nodes is the maximum distance of a node to all other nodes in a 

network. Thus the minimum eccentricity of a network defines 

its radius whereas the maximum eccentricity defines its 

diameter [31]. The exact definition and formulation can be 

accessed via this Ref. This measure deviates from the average 

path length for a node by always taking into consideration the 

maximal shortest distances to the other nodes. 

Another measure investigated in the network is Modularity 

(M), quantifying the idea that true community structure in a 

network corresponds to a statistically surprising arrangement of 

edges. Modularity is the number of edges falling within groups 

minus the expected number in an equivalent network with edges 

placed at random. The precise mathematic formulation can be 

accessed at Ref. [32].  

III. RESULTS 

3.1 Centrality, Modularity and Eccentricity 

To shed insight into the infrastructure of the network by the 

means of centrality, we calculated the centrality measures for 

the nodes by using the Gephi software introduced by Bastian 

[33]. The results are further analyzed in MATLAB to assign the 

number of nodes belonging to some pairs of Betweenness 

Centrality, Closeness Centrality, Eigenvector Centrality and 

Modularity Class measures, as percentiles of their maximal 

values. We present 3D percentile plots pairing these measures 

in Figures 1 to 3. 

 

 

Fig. 1. The number of nodes (logarithmically scaled) corresponding to the 

intersection of Betweenness Centrality vs. Eigenvector Centrality values. The 

centrality values are expressed as percentiles to their maximal values.  

 

Fig.1 demonstrates the logarithmically scaled number of 

nodes corresponding to the CB and CE pairs. The nodes seem to 

have CE values below 50% while the CB scale is widely used. 

This scene outlines that there exists a very small number of 

nodes having high CE values, while the CB values display a 

more homogenous decaying characteristic. The trend also 

shows that highest pairing probability emerges as very small CB 
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values (<5%) with a range of CE values between 0 to 30%. The 

highest CB values seem to pair with CE values around 20%. Also 

the highest CE values pair with CB values below 5%. 

 

Fig. 2. The number of nodes (logarithmically scaled) corresponding to the 
intersection of Betweenness Centrality vs. Closeness Centrality values. The 

centrality values are expressed as percentiles to their maximal values.  

Fig.2 shows the logarithmically scaled number of nodes 

corresponding to the CB and CC pairs. Since the upper 95% scale 

of the CC values include very sparse node circumstances, we 

focused on the first 5% of the CC values in the graph. Therefore, 

we can conclude that most of the nodes in the network have 

small CC values, affected from the spatial dependencies of the 

network. On the other hand, the nodes display higher CB values 

compared to CC, indicating that the nodes in some way locate 

in the shortest paths between cities, whether they are not close 

to the rest of the network. The single distribution of CC 

cumulates between 2-5% of the axis, having peak values at 

~4%. This is an indicator of the spatial complexity of the 

network, which leads numerous hops to connect locations in the 

map, resulting high separation values mentioned in the 

beginning of the section. As mentioned in Fig.1, CB scale is 

widely used. The pairing probability between CB and CC values 

make peak around 4% of CC and <5% of CB values, decaying 

towards lower closeness and higher betweenness centrality 

values. 

 

Fig. 3. The number of nodes (logarithmically scaled) corresponding to the 

intersection of Betweenness Centrality vs. Modularity Class values. The 

centrality and modularity values are expressed as percentiles to their maximal 

values.  

Fig.3 demonstrates the pairing characteristics between CB 

and M. We can infer from the figure that both measures display 

more homogenous distributions compared to the first two plots. 

The higher CB values emerge for either M values less than 43%, 

or M values close to 80%. This behavior seems to be mostly 

driven by the bimodal distribution of Modularity. The most 

probable pairing occasion is for the lower band CB and M 

values, while there exist nodes also having low CB together with 

high modularity values. 

 
Fig. 4. The number of nodes (logarithmically scaled) corresponding to the 

intersection of Betweenness Centrality vs. Eccentricity values. The centrality 

and eccentricity values are expressed as percentiles to their maximal values.  

 

Fig.4 yields the pairing characteristics between CB and E. We 

can infer from the figure that the nodes seem to have E values 

distributed smoothly through the percentile range while the CB 

distribution decays with increasing values. The highest pairing 

probability emerges for small CB values (<17%) with the mid-

range of E values. This property indicates that nodes with high 

eccentricity values tend to have small betweenness centrality 

values in the transportation network. 

 

3.2 Traffic Volume 

 

 
Fig. 5. Histogram for traffic volume in vehicle-km, retrieved from KGM 

statistics. The volumes are products of vehicle counts with distances covered in 

kilometers. 
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We retrieved the traffic volume data for the cities from the 

statistics section of KGM [34]. This data set includes traffic 

volume data with a vehicle-km basis, including the product of 

the vehicles with the distance covered. We first present the 

histogram of traffic volume in Fig. 5. This figure indicates a 

small portion of cities have very high traffic volumes, whereas 

the probability increases towards small volumes. 

To investigate the correlation of traffic volume with network 

parameters, we present the scattered distribution of five 

network parameters through the traffic volume in Fig. 6. The 

data used in these graphs include the traffic volume measures 

for all 81 cities in Turkey, coupled with the nodes that 

correspond to the city centers in the network representations. 

Therefore, it represents only 81 nodes of the network for which 

a traffic volume data can be retrieved from KGM statistics. The 

relation between the centrality measures and modularity versus 

traffic volume do not indicate direct correlations as the graphics 

display. Only the eccentricity measure implies a correlated 

trend through the traffic volume range. To quantify the 

correlations between these five measures and traffic volume, we 

present the correlation coefficients calculated from the same 

data as in Table 1.  

 
TABLE I 

CORRELATION COEFFICIENTS CALCULATED FOR THE FIVE 

PARAMETERS VERSUS TRAFFIC VOLUME FOR THE 81 CITY 

CENTERS 
 

CORR. COEFF. 

CLOSENESS C. -0,076 

BETWEENNESS C. -0,036 

EIGENVECTOR C. 0,102 

MODULARITY 0,153 

ECCENTRICITY 0,322 
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Fig. 6. Scattered distribution of 3 centrality parameters, modularity, and 

eccentricity through traffic volume in vehicle-km. The parameters in the 

vertical axis are normalized according to their min-max values. The first panel 
includes all parameters in one plot, while the other panels display the standalone 

plots of these parameters vs. traffic volume. 

 

The correlation coefficients presented in Table 1 indicate that 

the only noteworthy parameter by the means of correlation with 

the traffic volume is the eccentricity. The main cause for this 

output may be that higher eccentricity, meaning higher greatest 

path length with the rest of the cities, results more number of 

cities which may use the path through that city. In fact, 

betweenness centrality measure should be expected to imply 

more correlation with traffic volume, but in this case (a spatially 

distributed transportation network) shortest paths do not emerge 

to determine transportation routes. Instead, drivers seem to 

prefer routes with shortest metric distances or shortest trip 

durations.  

 

3.3. Degree Correlations and Assortativity 

Generally, a network is denoted to have degree correlations 

if the number of links between the nodes with high and low-

degrees is invincibly different from a randomly generated 

network. In an assortative network, hubs favor connecting to 

each other and avoid connecting nodes with small degrees. 

Additionally, small-degree nodes favor connecting to other 

small-degree nodes. Networks displaying such trends are 

assortative. Contrary with this definition, in a disassortative 

network, hubs don’t connect to hubs, preferring wiring with 

small-degree nodes. And the nodes with small degrees tend to 

connect to hubs, avoiding links to nodes with comparable 

degrees. If both trends are not observed in a network, i.e. the 

degree of a node does not affect its neighborhood preferences, 

such a network is called neutral [35].  

To measure this behavior in a network, degree correlation 

function is derived from the edge matrix of the network. We 

first measure the average degree of the neighbors of each node 

as in Eq. 4.  

 

𝑘𝑛𝑛(𝑘𝑖) =
1

𝑘𝑖
∑ 𝐴𝑖𝑗𝑘𝑗

𝑁
𝑗=1  (4) 

 

Then, the degree correlation function is used to calculate the 

average degree of neighbors for all nodes with degree k as in 

Eq. 5. 

 

𝑘𝑛𝑛(𝑘) = ∑ 𝑘′𝑃(𝑘′|𝑘)𝑘′  (5) 

 

Where 𝑃(𝑘′|𝑘) stands for the conditional probability that a 

node of degree-k will have a neighbor of degree-k’. As a result, 

knn(k) denotes the average degree of the neighbors of all nodes 

with degree k [35]. The knn vs k plot displays an increasing trend 

in assortative networks, a decreasing trend in disassortative 

networks, and a constant trend in neutral networks.  

 

 

Fig. 7. Degree correlations for the Turkish highway transportation network. The 

dotted line corresponds to average degree. The decreasing trend of the knn(k) 

function indicates that the network is disassortative. 

 

Deriving the knn(k) plot for our network, we present the 

degree correlation function in Fig. 7. The decreasing trend is 

obvious, indicating that the network is disassortative. This 

behavior is evident in most transportation networks as 

mentioned in the introduction section.  

Another indicator of degree correlations is the degree 

correlation coefficient, proposed by Newman and calculated 

with the equation below : 

 𝑟 =
1

𝜎𝑞
2 ∑ 𝑗𝑘(𝑒𝑗𝑘 − 𝑞𝑗𝑞𝑘)𝑗𝑘  (6) 

where 

 𝜎𝑞
2 = ∑ 𝑘2𝑞𝑘 − [∑ 𝑘𝑞𝑘𝑘 ]2

𝑘  (7) 

For the detailed extraction of Eq. 6, the reader is referred to the 

study of Newman in Ref. [36]. 

Correlation function is zero in the absence of assortative 

mixing, while it is positive for assortative or negative for 

disassortative mixing properties. The real and modeled network 

examples reported by Newman are also presented in Table 2 

[36].  

Calculating the assortativity coefficient r for our network, we 

found 𝑟 = −0.1708, confirming the above inference of 

disassortativity. We can therefore conclude that the spatially 

generated urban transportation network studies in this paper 

yields disassortative mixing property. 
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TABLE II 

SIZE n AND ASSORTATIVITY COEFFICIENT r FOR A NUMBER OF 

DIFFERENT NETWORKS, REPORTED BY NEWMAN [36]. 

 

 

Depending on Table 2, in which the assortativity coefficients 

for various networks are reported by Newman, we can figure 

out that together with the transportation networks mentioned in 

the introduction section, the disassortative mixing behavior is 

coherent with some real networks like Internet, World-Wide 

Web, protein interaction networks, neural networks, food web 

etc. These types of networks are rather physically connected 

networks, while the social networks listed as the first group of 

Table 2 display assortative mixing property. 

IV. CONCLUSIONS AND FUTURE WORK 

Studying the centrality, modularity and assortativity properties 

of the Turkish highway transportation network, composed of 

physical connections (roads) between the junctions of roads as 

edges, we presented 3D comparative plots of the centrality and 

modularity measures first. We outlined that the betweenness 

centrality scale used in all the three 3D percentile plots has a 

homogenous distribution, meaning that the network includes 

nodes of various CB values with a decreasing trend. Nodes have 

eigenvector centrality measures stuck in the lower 50% band of 

the CE scale, while the highest CB values seem to pair with CE 

values around 20%. The nodes with highest CE values tend to 

have CB values below 5%. 

Focusing on the closeness centrality measure, we see that 

almost all the nodes are of 5% closeness to the rest of the 

network. This is an expected result originating from the spatial 

dependencies of the network. Having relatively small closeness 

values, the nodes display higher betweenness centrality values, 

indicating that the nodes in some way locate in the shortest 

paths between cities whether they are not close to the rest of the 

network. The single distribution of CC ranging between 2-5% 

of the axis indicates that the network has a spatially complex 

structure, resulting high separation between nodes. CB and CC 

values mostly pair around 4% of CC and <5% of CB scales, 

decaying towards lower closeness and higher betweenness 

centrality values.  

The modularity measure, conveying information about the 

tendency of nodes to form modules, is recently reported to have 

very high values for this network [26], therefore labels the 

network as highly modular. The single distribution of 

Modularity displays bimodal character while it pairs with 

higher betweenness centrality values around 43% and 80% of 

the scale. The pairing probability peaks for lower betweenness 

and modularity. 

The eccentricity measure, quantifying the maximal shortest 

distance of a node to the rest of the nodes is nearly uniformly 

distributed over betweenness centrality, whereas it is the most 

correlated measure with the traffic volume of the cities. We 

conclude that the uncorrelated behavior of traffic volume with 

the centrality measures is mostly driven by the selection of trip 

routes by drivers regarding with the main roads/highways that 

make the travel shorter in metric distance or time. These routes 

generally may not be the shortest paths of the graph.  

The concept of assortativity in a network probes the 

emergence of degree correlations of the paired nodes. The 

quantitative way of testing this phenomenon is the assortativity 

coefficient r proposed by Newman, which we found r=-0.1708 

for our network. Together with the knn(k) function which yields 

negative slope for our network, both indicators label our 

network as disassortative, coherent with the real networks with 

“more physical” wiring mechanisms.  

As a future work, this study can be extended to include sub-

urban roads which are not covered in this study. Also, more 

detailed transportation networks can be constructed via image 

processing techniques applied over satellite images. 
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