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Özet. Bu çalışmada Fisher ve Benjamin-Bona-Mahony denklemlerinin karmaşık çözümleri
için direkt cebirsel metodu sunulur. Bu metot kullanılarak Fisher ve Benjamin-Bona-
Mahony denklemlerinin bazı karmaşık çözümleri elde edilir.

Anahtar Kelimeler. Fisher denklemi, Benjamin-Bona-Mahony denklemi, direkt cebirsel
metot, karmaşık çözümler, hareket eden dalga çözümler.

Abstract. In this article, we give direct algebraic method for the complex solutions of the
Fisher equation and Benjamin-Bona-Mahony equation. We get some complex solutions of
the Fisher equation and Benjamin-Bona-Mahony equation by this method.
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1. Introduction

The theory of nonlinear dispersive wave motion is an interesting area investigated

in numerous articles in which it appears in relation to various subjects. We do not

attempt to characterize the general form of nonlinear dispersive wave equations [1,

2]. These studies for nonlinear partial differential equations have attracted much

attention in mathematical physics and play a crucial role in applied mathematics.

Furthermore, when an original nonlinear equation is directly calculated, the solu-

tion will be in accord with the physical characteristics of the actual phenomena [3].

Explicit solutions to the nonlinear equations are of fundamental importance. Also

different methods for acquiring explicit solutions to nonlinear evolution equations

have been suggested. Many analytical and numerical methods have been established

in [4-27]. We may list such examples as the generalized Miura transformation, Dar-

boux transformation, Cole-Hopf transformation, Hirota’s dependent variable trans-

formation, the inverse scattering transform and the Bäcklund transformation, the
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tanh method, sine-cosine method, Painlevé method, homogeneous balance method,

similarity reduction method, improved tanh method, etc. In [12], Parkes and Duffy

have recently constructed an automated tanh-function method. The authors present

a Mathematica package that is concerned with complicated algebra and outputs di-

rectly the required solutions for particular nonlinear equations. In this paper, our

aim is to find exact solutions of nonlinear PDE’s, especially complex solutions.

In this article, the first section presents the scope of the study as an introduction.

The second section contains an analysis of the method given in [24]. In the third

section, we apply the method given in [24] to the nonlinear Fisher equation and the

Benjamin-Bona-Mahony equation. In the last section, we present the conclusion.

2. An Analysis of the Method and Applications

Firstly, we will give a simple description of the direct algebraic method [24]. For

this, one can consider the general form of the nonlinear PDE in two variables

Q(u, ut, ux, uxx, . . .) = 0, (1)

and transform (1) with u(x, t) = u(ξ), ξ = ik(x − ct), where k and c are real

constants. After transformation, we get a nonlinear ODE for u(ξ)

Q′(u,−ikcu′, iku′,−k2u′′, . . .) = 0, (2)

where u′ =
du

dξ
.

The solution of (2) we are looking for is expressed in the form

u(ξ) =
n∑

m=0

amF
m(ξ), (3)

where ξ = ik(x − ct) (where k and c are real constants), n is a positive integer

that can be determined by balancing the highest order derivative with the highest

nonlinear terms in the equation, and am and ξ can be determined. Substituting

(3) into (2) yields a set of algebraic equations for Fm, (m = 0, 1, 2, . . .), then all

coefficients of Fm will vanish. After this separated algebraic equation, we find

the coefficients a0, am and ξ. F (ξ) expresses the solution of the auxiliary ordinary

differential equation

F ′(ξ) = α + F 2(ξ),

where F ′ =
dF

dξ
and α is a constant. Some solutions were given in [24].
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In this work, we will consider complex solutions of the Fisher equation and the

Benjamin-Bona-Mahony equation by using the direct algebraic method which is

introduced by Zhang [24].

3. Applications

Example 1. Consider Fisher equation,

ut + uxx − u+ u3 = 0. (4)

For this example, we can use transformation with (1) and then (4) becomes

−ikcu′ − k2u′′ − u+ u3 = 0. (5)

Balancing u3 with u′′ gives m = 1. Therefore, we may choose

u = a0 + a1F. (6)

Substituting (6) into (5) yields a set of algebraic equations for a0, a1, a2, k, c and

α. These systems are found to be

−a0 + a30 − ia1ckα = 0,

−a1 + 3a20a1 − 2a1k
2α = 0,

3a0a
2
1 − ia1ck = 0,

a31 − 2a1k
2 = 0.

From the solutions of the system, we have the following two cases:

Case 1.

a0 = −1

2
, a1 = − i

2
√
α
, c = − 3i√

2
, k =

i

2
√

2
√
α
, α 6= 0. (7)

Case 2.

a0 =
1

2
, a1 =

i

2
√
α
, c =

3i√
2
, k =

i

2
√

2
√
α
, α 6= 0. (8)

By means of Mathematica, substituting (7) and (8) into (6), we have obtained the

following exact complex traveling wave solutions of (4). These solutions are as

follows:

Family 1.

u1 = −1

2
− i

2
√
α

(
−
√
−α tanh

(√
−α
(
− 1

2
√

2
√
α

)(
x+

3i√
2
t

)))
,



90 Kılıç and Baş

where α < 0,

u2 = −1

2
− i

2
√
α

(
−
√
−α coth

(√
−α
(
− 1

2
√

2
√
α

)(
x+

3i√
2
t

)))
,

where α < 0,

u3 = −1

2
− i

2
√
α

(√
α tan

(
− 1

2
√

2

(
x+

3i√
2
t

)))
,

where α > 0,

u4 = −1

2
− i

2
√
α

(
−
√
α cot

(
− 1

2
√

2

(
x+

3i√
2
t

)))
,

where α > 0.

Family 2.

u5 =
1

2
+

i

2
√
α

(
−
√
−α tanh

(√
−α
(
− 1

2
√

2
√
α

)(
x− 3i√

2
t

)))
,

where α < 0,

u6 =
1

2
+

i

2
√
α

(√
−α coth

(√
−α
(
− 1

2
√

2
√
α

)(
x− 3i√

2
t

)))
,

where α < 0,

u7 =
1

2
+

i

2
√
α

(√
α tan

(
− 1

2
√

2

(
x− 3i√

2
t

)))
,

where α > 0,

u8 =
1

2
+

i

2
√
α

(
−
√
α cot

(
− 1

2
√

2

(
x− 3i√

2
t

)))
,

where α > 0.

Example 2. Consider the Benjamin-Bona-Mahony equation,

ut + ux + uux − uxxt = 0. (9)

For this example, if we use transformation with (1), then (9) becomes

−ikcu′ + iku′ + ikuu′ + i3k3cu′′′ = 0,

or equivalently,

u′(1− c) + uu′ − k2cu′′′ = 0. (10)
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Balancing uu′ with u′′′ gives m = 2. Therefore, we may choose

u = a0 + a1F + a2F
2. (11)

Substituting (11) into (10) yields a set of algebraic equations for a0, a1, a2, k, c and

α. These systems are found to be

a1 + a0a1 − a1c− 2a1ck
2α = 0,

a21 + 2a2 + 2a0a2 − 2a2c− 16a2ck
2α = 0,

a1 + a0a1 − a1c+ 3a1a2α− 8a1ck
2α = 0,

a21 + 2a2 + 2a0a2 − 2a2c+ 2a22α− 40a2ck
2α = 0,

3a1a2 − 6a1ck
2 = 0,

2a22 − 24a2ck
2 = 0.

From the solutions of the system, we have the following two cases:

Case 1.

a0 = −1 + c+ 8ck2α, a1 = 0, a2 = 12ck2, ck 6= 0, α 6= 0. (12)

Case 2.

a0 = −1 + c, a1 = 0, a2 = 12ck2, α = 0. (13)

By means of Mathematica, substituting (12), (13) into (11), we have obtained the

following exact complex traveling wave solutions of (9). These solutions are as

follows:

Family 1.

u1 = −1 + c+ 8ck2α + 12ck2
(
−
√
−α tanh

(√
−αik(x− ct)

))2
,

where α < 0,

u2 = −1 + c+ 8ck2α + 12ck2
(
−
√
−α coth

(√
−αik(x− ct)

))2
,

where α < 0,

u3 = −1 + c+ 8ck2α + 12ck2
(√

α tan
(√

αik(x− ct)
))2

,

where α > 0,



92 Kılıç and Baş

u4 = −1 + c+ 8ck2α + 12ck2
(
−
√
α cot

(√
αik(x− ct)

))2
,

where α > 0.

Family 2.

u5 = − 1

ik(x− ct)
,

where α = 0.

4. Conclusion

In this paper, we implement a direct algebraic method [24] with symbolic compu-

tation to construct new exact complex solutions of the Fisher equation and the

Benjamin-Bona-Mahony equation. The method can be used for many other non-

linear equations. In addition, this method is computerizable, which allows us to

perform complicated and tedious algebraic calculations on a computer.
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