Erzincan Universitesi

Fen Bilimleri Enstitiisii Dergisi
2017, 10(2), 296-302
Aragtirma Makalesi

Erzincan University

Journal of Science and Technology
2017, 10(2), 296-302

Research Article

Analysis of the Layer Behavior to the Parameterized Problem with
Integral Boundary Condition

Mustafa Kudu!

1 Erzincan University, Faculty of Arts and Sciences, Department of Mathematics
24000, Erzincan, Turkey.
(Gelis Tarihi/Received: 19.06.2017, Kabul Tarihi/Accepted: 12.09.2017)

ABSTRACT

A parameterized singularly perturbed first order quasilinear boundary value problem with integral
boundary conditions is considered. Asymptotic estimates for the solution and its first derivative have
been established. Given an example supports these theoretical results and indicate that the estimates
are sharp. The estimates are obtained with the use of a mathematical technique that can also be
applied in appropriate grid computations. 2010 Mathematical Subject Classification: 34K10, 34K26,
34Bo8
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Integral boundary conditions

Integral Smur Sarth Parametreye Bagh Problemin Simir Kat1
Davranmisinin Incelenmesi

0z

Bu calismada, integral sinir sartli parametreye bagh singiiler pertiirbe 6zellikli kuazi-lineer sinir-deger
problemi ele alinmigtir. Problemin ¢6zlimii ve birinci tiirevleri i¢in asimptotik degerlendirmeler elde
edilmistir. Bu teorik sonuclar1 destekleyen ve degerlendirmelerin kesin oldugunu gosteren bir 6rnek
verilmistir. Asimptotik degerlendirmelerin elde edilmesinde kullanilan yontem uygun niimerik

¢oziimlerin incelenmesinde kullanilabilir.

Anahtar kelimeler: Parametreli problem, Asimptotik degerlendirme, Singiiler pertiirbasyon, Sinir

kat1, Integral sinir sart:

1. Introduction A known as the control parameter, Aand B

In this paper we consider the following are given constants. f(t,u,1) and K(t,u))

parameterized singular perturbation

are assumed to be sufficiently continuously

problem with integral boundary condition:
eu'(t)+ f(t,u(t),4) =0,

teQ:(O,T], T >0,

differentiable for our purpose functions in
(1) OxR? QxR
(Q=QuU {t = 0} ) and moreover

and respectively

.
u(0)+ | K(s,u)ds= A, 2
© !-( ) (2) O<a£ﬂﬁa*<oo , mlsiSMl<oo,
ou oA
u(T) =B, (3)
OS%SK*<OO.
where 0< & <1 is small and known as the ou

singular perturbation parameter,
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By a solution of (1)-(3) we mean a
{u(t),A}e Cl(ﬁ) XR for which problem (1)-

(3) is satisfied. For ¢ <<1 the function u(t)
has a boundary layer of thickness O(g)near

t =0(see, Section 2). Parameter dependent
differential equations (such as (1)) occur
naturally in various fields of science and
engineering. Singular perturbation problems
belong to the class of such problems in which
a very small positive parameter is multiplied
to the highest order derivative term in the
differential equation. Such problem undergo
rapid changes within very thin layers near
the boundary or inside the problem domain,
so most of the conventional methods fail
when this small parameter approaches to
zero. This kind of problems arise very
the fields of

mathematics and physics which include fluid

frequently in applied
dynamics, quantum mechanics, elasticity,
chemical reactions, gas porous electrodes
theory, the Navier-Stokes equations of fluid
high

meteorology,

flow  at Reynolds  number,

oceanography, reaction-
diffusion processes etc. For more details on
singular perturbation, one can refer to the
books [Kevorkian and Cole, 1981; Miller et
al., 2012; Nayfeh, 1993; O’'Malley, 1991; Roos
et al.,, 2008] and the references therein.
Differential with

equations integral

boundary conditions constitute a very
interesting and important class of problems.
Note that the boundary condition (2)
includes periodic, two-point, there-point,
multipoint and initial conditions as special
cases. Such types of problems have been

considered for many years. For a discussion

of existence and uniqueness results and for
applications of problems with integral
boundary conditions see, [Ashyralyev and
Sharifov, 2013; Benchohra et al., 2010; 2011;
Jankowski 2002; Samoilenko,1991] and the
references therein. In [Ahmad, et al., 2005;
Cakir

Amiraliyev, 2007;. Jankowski 2003; Khan,

Amiraliyev, et al, 2007; and
2003; Kudu and Amiraliyev, 2015], have

been considered some approximating
aspects of this kind of problems. This paper
deals with an integral boundary value
problem for a singularly perturbed first order
quasilinear ordinary differential equation
depending on a parameter. A priori
asymptotic estimates for the solution and its
first derivative are proved. Similar
investigations for this type of problems, have
been made by [Amiraliyev and Duru, 2005;
Kudu, 2014; Kudu and Amirali 2016; Kudu
et al., 2016; Lui and Mcare, 2001; Na, 1979;
1976], the

is linear. The estimates are

Pomentale, when integral
condition
obtained with the use of a mathematical
technique that can also be used to justify the
uniform convergence of various appropriate
finite-difference schemes. Henceforth, C and
¢ denote the generic positive constants
independent of & and of the mesh
parameter. Such a subscripted constant is
also independent of ¢ and mesh parameter,

but whose value is fixed.
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2. Asymptotic estimates for the
solution of (1)-(3)

Theorem 1. The solution {u(t),A}of the

problem (1)-(3) satisfies the inequalities

14 <c,. (4)
”u”w <C, (5)
where

[ alAl |Bla*(1—K*T)
o= [l RO e

F(t) = f (t,0,0),
¢, =A+a 'L+ K*T)(|F|, +c,M,)

and

at

|u'(x)|sc{1+1ea}, te[0,T] (6)
&

provided |8f /6t| <Cfor te€[0,T] and
lul<c,.
Proof: We rewrite Eq.(1) in the form

su'(t) +a(t)u(t) = F(t) + Ab(t), (7)

Where a(t) =Zf—u(t,li,/i), b(t) =—2f—l(t,ﬁ,/”~t);

0 =yu, A =y4(0< y <1)-intermediate values.

Integrating (7), (3) we have

fja(n)dn

AT e
dr+=[b(r)e’t dr,
&t

ut)=Be"  -=[F(r)e"
&t

from which, after using the relation

K (t, u(t)) = K (t,0) +c(t)u(t), (c(t) = %(t, )

and integral boundary condition (2), it

follows that,

.
1
“[a@yar r i[a(n)dry

Be ® ——jF(T)e 0 dr

7[3(7])(1]]

4 jb(r)ef’ dr+[K(s,0)ds

- a(f)df = a('l)dﬂ

+Bjc(s)e *ds ——jc(s)[jF(r)e : dz]ds

fja(ﬂ)dﬂ

+2 jc(s)[jb(r)es dr]ds = A

and thereby
;
A—[K(s,0)ds

A= 0 :

awman > Jandn
: jb(r)e o dr4 jb(r)[jc(s)e S ds]dr
7Ia(r)dr T %]'a(r)dr
Be™ +Bfc(s)es ds
— 0

T Hawmay awman

ijb(r)eg" dr+t jb(r)[jC(S)es ds]dz

—ja(n)dn —ja(n)dn
—jF(r)e 0 dr+= jF(r)[jc(s)e : ds]dz
o awin awman '
—jb(r)e 0 dr+= jb(r)[jc(s)e : ds]dz
(8)

In view of c(t)>0, then after applying the
mean value theorem for integrals, we deduce

that,

7J.a(r7)d77 ffa(rz)dn

—jF(r)e 0 dr+= jF(r)[jc(s)e : ds]dr

7JAa(77)d77 fja(n)drz

—jb(r)eO dr+- jb(r)[jc(s)es ds]dz

<m|F,. ©)
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and
%].a(r)dr T %ja(r)dr
Be®  +Bfc(s)es ds
0
Hatnon lj a(n)dn
“[b(z)e’® dr+- jb [jc(s ds]dr
E0 s
o
|ma+KTm°
T gja(n)dn
me'fe s dé
0
|B|@1+KT)
= a'T

m(a)*(1-e*)

a*T) . (10)

m(a’)"(L-e

Also, for the first term in the right side of (8)

for & <1values, we get

A=[K(s,0)ds

1T %ja(ﬂ)dﬂ 1T T %J‘a(ﬂ)d’l
“[b(r)e®  dr+=[b(z)[[c(s)e s  dsldr
Eo0 £0 s
T
‘A—j K(s,0)ds
< 0
ffa(n)dn
jb(r)e 0 dr
T
a‘A—j K(s,0)ds
< 0 (11)

m, (e" -1)

The relation (8), by taking into consideration
here (9)-(11), immediately leads to (4).
Further, by integrating (7), we have

t t

1 1
—;Ja(s)ds 1t ;Ia(n)dr;
ut)=u(@e © +=[d(r)e*  ds, O(t)=F(t)-Ab(t),
€0
from which, by setting the boundary
condition (2), we get
—fj a(n)dy
A-= j c(s)[ j d(r)e dz]ds
u(0) =
Wja(r)dr
1+Ic(s)e 0 ds
Since c(t) is nonnegative, then
—fj a(n)dy
A-= j c(s)[ j d(r)e dz]ds

u(@)|=

-= a(r)dr

1+jc(s)e 0 ds

S

17 s ~fatnan
<|A += ! c(s)[ ! () dz]ds

(ZS

)a gj(l e )ds

<|Al+= K(

<|A+a K*T(|F| +Mg,). (12)

Next, by virtue of maximum principle we

have

Jul.

<@+ (|F, bim,)
<u©)+a*(|F|, +4Mm,),
which, after taking into account (4) and (12)
leads to (5).

To prove (6), first we estimate |u '(O)| :

|F (0) —a(0)u(0) —b(0) 4| < C

& &

|u'(0)] <
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Differentiating, now the equation (7), we

have
ev'(t) + p(t)v(t) = g(t),
with

v=u', p(t)= %(t, u(t), A) and

of
t) =—((t,u(t), 4).
g(t) at( u(t), 4)
Since p(t)>a>0and |g(t)|<C, for v(t)we
obtain

t
a(man

—Eta(s)ds t
&
+=[g(s)e* ds.
o

v(t) =v(0)e
Hence it follows that

C _at t 70{('[75)
vt)<=e ¢ +=[e ¢ ds
& 0

at at

<Ze ¢ +C(l-e ¢),
&

which implies validity of (6).
3. Example

Consider the particular problem with

F(tu,A)=u—-e"+(t+ )% +6% " 16t 4 1-1=0,
K(t,u)=2u,
A=1+2e-(1+2¢)e™, B=0.

The solution {u(t), 1} has the form

ut)=e" —te¥* (13)

with control parameter A satisfying
gD =(s—e " +e* +1-1=0.

It is not difficult to see that, the functions

f(t,u,4)and K(t,u)satisfy requirements

from Section 1. Therefore from (13) for the

first derivative we have

1 .. , 1 ..
|u'(t)|:;e’“‘“ +e e £1+;e’“‘“. (14)

Since g(0) =ge ¢ >0,

gD =(s+De ¥ +e'-2<0 and

g'W)=-e" +e*+1>0 we confirm that
A€(-1,0). Thereby the control parameter

A uniformly bounded in &. From (14) it is

also clear that the first derivative of u(t)is
unbounded while & values are tending to

zero and u(t) has an initial layer near t=0
of thickness O(g). Therefore we observe

here the accordance with our theoretical

results described above.
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