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Abstract 

In this study, buckling analysis of a nano sized beam has been performed by using Timoshenko beam theory and 

Eringen’s nonlocal elasticity theory. Timoshenko beam theory takes into account not only bending moment but also shear 

force. Therefore, it gives more accurate outcomes than Euler Bernoulli beam theory. Moreover, Eringen’s nonlocal 

elasticity theory takes into account the small scale effect. Thus, these two theories are utilized in this study. The vertical 

displacement function is chosen as a Fourier sine series.  Similarly, the rotation function is chosen as a Fourier cosine 

series. These functions are enforced by Stokes’ transformation, and higher order derivatives of them are obtained. These 

derivatives are written in the governing equations for the buckling of nonlocal Timoshenko beams. Hence Fourier 

coefficients are acquired.  Subsequently boundary condition of established beam model is identified with Timoshenko 

beam and Eringen’s nonlocal elasticity theories, and the linear equations are obtained.  A coefficients matrix is created 

by utilizing these linear systems of equations. When determinant of this coefficient matrix is calculated, the critical 

buckling loads are acquired. Finally, achieved outcomes are compared with other studies in the literature.  Calculated 

results are also presented in a series of figures and tables 

Keywords: Timoshenko beam theory, Eringen’s nonlocal elasticity theory, elastic buckling analysis, Stokes’ 

transformation, Fourier series. 

1. Introduction 

Nano derives from a Greek word meaning dwarf. A nanometer is a unit of length equal to one 

billionth of a meter. Nanotechnology being with manipulation of substance on an atomic, molecular, 

and supramolecular scale is a new science. This new science aims to create a lot of new materials 

which occurs from many different atoms combined. Therefore the emphasis of nanotech. is 

increasing step by step. A lot of researches being associated with nanotech. are made in the literature. 

These researches are made by three methods. These are synthesis, simulation and theoretical. Cost of 

synthesis and simulation are utmost large. Hence theoretical method is utilized commonly. In this 

study, buckling analysis of nano sized beams has examined by theoretically. Thus Timoshenko beam 

and Eringen’s nonlocal elasticity theories are utilized together. Timoshenko beam theory is more 

advanced a version of Euler Bernoulli beam theory. In the Euler Bernoulli beam theory, influence of 

shear on bending deformation is considered negligible compared to bending moment. Therefore 

plane sections remain plane and normal to the longitudinal axis during bending deformation. 

However, in the reality, influence of shear on bending deformation cannot be neglected. Thus 

Timoshenko beam theory regarding not solely moment but also shear effect gives more realistic 
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outcomes than Euler Bernoulli beam theory. Moreover Eringen’s nonlocal elasticity theory takes into 

account the small scale effect. 

Once the literature is investigated closely, it is observed that. There are a lot of studies being 

associated with nonlocal elasticity theory. Studies regarding nonlocal elasticity theory found in the 

literature are compiled and presented in this part. In order to explain the small scale effect, the 

nonlocal continuum mechanics has been utilized in [1-3]. Moreover Atomistic simulations and 

experimental findings have proved a significant small scale effect in the mechanic performance of 

material at micro and nano scale [4-6]. The long term repercussions of these studies on engineering 

and science have been felt. Thus many investigators have implemented nonlocal elasticity theory for 

their studies being associated with bending, buckling and vibration [7-36]. 

In this study, on the basis of the higher order elasticity theory known as nonlocal elasticity theory, an 

analytical method is presented for the buckling analysis of nano sized Timoshenko beams with 

rotational restraints. The vertical displacement function is sought as a Fourier cosine series and the 

slope of the beam is represented as Fourier sine series. Then Stokes’ transformation is used to take 

care of the rotational restraints. A coefficient matrix including shear correction factor and rotational 

spring parameters is obtained. The eigen values of this matrix gives the buckling loads. Present 

results are compared with the similar problem solutions available in the literature. 

2. Formulation of the Problem 

According to the nonlocal Timoshenko beam theory, governing equations are given [7]; 

 

 

(1) 

 

(2) 

where, E is modulus of elasticity, I is moment of inertia of beam, G is modulus of elasticity in shear, 

A is cross sectional area, ʁs is Timoshenko shear coefficient, P is critical buckling load, γ is small-

scale effect coefficient φ is the vertical displacement function, θ is the rotation function.  

In Ref. [7] and [8], the solution of above equations has been presented for rigid boundary conditions. 

On the other hand, difference of this study from the other studies is that. This study allows to make 

solution for non-rigid boundary conditions. Therefore the long term repercussions of this study on 

engineering and science will be felt. 

2.1. Fourier Series 

The displacement and rotation functions can be indicated as following Fourier series. 

 

 

(3) 

 

(4) 
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Where 

 

 

(5) 

In which L is length of beam, An and Bn is Fourier coefficients.  

2.2. Stokes’ Transformation 

In order to include non-rigid boundary conditions in the solution of problem a mathematical 

transform is necessary. Therefore, in this study, Fourier series and Stokes‘ transformations are 

utilized together and included to the solution of the problem with the deformable boundary 

conditions.  

 

 

(6) 

The first derivative of the displacement function yields; 

 

 

(7) 

The above function can be exhibited as a Fourier cosine series;  

 

 

(8) 

In the equation (8), f0 and fn coefficients are indicated as follows. 

 

 

(9) 

 

(10) 

Finally, if partial integration is applied;  

 

 

(11) 

 

(12) 

The steps followed above are recognized as Stokes‘ transformations. Higher order derivatives can be 

found out similarly. Up until the fourth order, resulting derivatives of the displacement function are 

obtained to be as following. 
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(13) 

  

 

(14) 

  

 

(15) 

  

 

(16) 

  

The first derivative of the rotation function yields; 

 

 

(17) 

In order to display the above function as a Fourier cosine series, the second derivative of the rotation 

function is necessary to be calculated; 

 

(18) 

If the steps followed for the displacement function are similarly applied for the rotation function up 

until the third order, resulting derivatives of the rotation function are obtained to be as following. 

 

 

(19) 

 

(20) 

 

(21) 

2.3. Fourier Coefficients 

Taking the first derivative of the equation (1);  

 

 

(22) 
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If the equations (14), (16), (19) and (21) are written in the equations (2) and (22); 

 

 
 

(23) 

  

 

(24) 

  

An and Bn are derived from these equations when φ0 and φL are equal to zero. 

 

 
 

(25) 

  

 

(26) 

2.4. Boundary Conditions 

Flexural moment function M(x) of nonlocal Timoshenko beams is shown as following [7]. 

 

 

(27) 

If the equation (27) is written in the equations (25) and (26); 

 

 

 

(28) 

 

 

 

(29) 

 

 
Fig. 1. The figure, displaying boundary conditions. 
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Flexural moment function M(x) can be shown in the form; 

 
 

, (30) 

where R is stiffness of the rotational springs. 

2.5. Construction of Coefficients Matrix 

If z=0 and αn=nπ/L are written in the equation (30); 

 

 
 

(31) 

If z=L and αn=nπ/L are written in the equation (30); 

 

 

(32) 

Two equations are obtained dependent on M0 and ML. Thus coefficients matrix is composed.  

 

 
(33) 

Where Φ11, Φ12, Φ21 and Φ22  parameters are given the below. 

 

 

(34) 

  

 

(35) 

  

 

(36) 

  

 

(37) 
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3. Numerical results  

The equation (33) is an eigenvalue problem. The critical buckling loads can be calculated by setting 

the determinant of the coefficient matrix to zero. The characteristic equation can be achieved by 

assigning the proper values of (R1) and (R2) corresponding to the restrained boundary condition. If 

R1=0 and R2=0, the beam is pinned ended beam. If R1=0 and R2=∞, the beam is clamped pinned 

beam. If R1=∞ and R2=∞, the beam is clamped ended beam. κs =0.9 for Timoshenko beam, κs =∞ for 

Euler Bernoulli beam. 

With the theoretical formulation proposed in this study, different numerical examples are solved in 

this part. Firstly, accuracy and validity of the present mathematical approach is validated. Validation 

study is given in Tables 1-2. 

Several numerical examples are solved numerically. Tabulated values given in the Table 1 are 

plotted in the Figs 2-4. The Fourier sine and cosine series are truncated for 50 terms of infinite series. 

It can be seen from these figures, the nonlocal effects are more pronounced for higher buckling 

modes. 
 

Table 1. Critical buckling loads Pcr(nN) for pinned, clamped–pinned and clamped beams with diverse 

small scale coefficients γ(nm) and length-to-diameter ratios L/d in this study.  

d=1nm, A= 2/4 nm2,  I=  /64 nm4, E=1000kPa, G=420.168kPa 

γ(nm) 0 0.5 1 1.5 2 

L/d T EB T EB T EB T EB T EB 

Pinned ended beam 

10 4.7670 4.8447 4.6540 4.7281 4.3450 4.4095 3.9121 3.9644 3.4333 3.4735 

12 3.3267 3.3644 3.2713 3.3077 3.1156 3.1486 2.8865 2.9149 2.6172 2.6405 

14 2.4514 2.4718 2.4212 2.4411 2.3348 2.3533 2.2038 2.2202 2.0432 2.0574 

16 1.8805 1.8925 1.8626 1.8744 1.8111 1.8222 1.7313 1.7414 1.6306 1.6396 

18 1.4878 1.4953 1.4766 1.4840 1.4440 1.4511 1.3928 1.3993 1.3269 1.3329 

 

Clamped-pinned beam 

10 9.6851 10.01 9.2298 9.5258 8.0890 8.3155 6.7074 6.8624 5.4130 5.5135 

12 6.7934 6.9525 6.5662 6.7147 5.9675 6.0899 5.1803 5.2723 4.3727 4.4381 

14 5.0215 5.1079 4.8963 4.9784 4.5555 4.6685 4.0820 4.1388 3.5643 3.6067 

16 3.8599 3.9107 3.7855 3.8343 3.5785 3.6221 3.2796 3.3163 2.9363 2.9656 

18 3.0581 3.0899 3.0112 3.0421 2.8788 2.9069 2.6821 2.7066 2.4481 2.4684 

 

Clamped ended beam 

10 18.542 19.777 16.942 17.967 13.458 14.097 10.023 10.373 7.3846 7.5729 

12 13.127 13.734 12.304 12.836 10.357 10.731 8.1958 8.4284 6.3426 6.4810 

14 9.7591 10.090 9.2970 9.5974 8.1406 8.3700 6.7428 6.8995 5.4361 5.5374 

16 7.5298 7.7256 7.2517 7.4332 6.5283 6.6751 5.5977 5.7053 4.6665 4.7410 

18 5.9813 6.1042 5.8045 5.9202 5.3316 5.4291 4.6943 4.7696 4.0213 4.0765 
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Table 2. In Ref. [7], critical buckling loads Pcr(nN) for pinned, clamped–pinned and clamped beams 

with diverse small scale coefficients γ(nm) and length-to-diameter ratios L/d.  

d=1nm, A= 2/4 nm2,  I=  /64 nm4, E=1000kPa, G=420.168kPa 

γ 0 0.5 1 1.5 2 

L/d T EB T EB T EB T EB T EB 

Pinned ended beam 

10 4.7670 4.8447 4.6540 4.7281 4.3450 4.4095 3.9121 3.9644 3.4333 3.4735 

12 3.3267 3.3644 3.2713 3.3077 3.1156 3.1486 2.8865 2.9149 2.6172 2.6405 

14 2.4514 2.4718 2.4212 2.4411 2.3348 2.3533 2.2038 2.2202 2.0432 2.0574 

16 1.8805 1.8925 1.8626 1.8744 1.8111 1.8222 1.7313 1.7414 1.6306 1.6396 

18 1.4878 1.4953 1.4766 1.4840 1.4440 1.4511 1.3928 1.3993 1.3269 1.3329 

 

Clamped-pinned beam 

10 9.5605 9.9155 9.1179 9.4349 8.0055 8.2461 6.6520 6.8151 5.3782 5.4830 

12 6.7118 6.8858 6.4904 6.6496 5.9059 6.0363 5.1348 5.2321 4.3410 4.4096 

14 4.9638 5.0589 4.8416 4.9297 4.5086 4.5844 4.0448 4.1052 3.5355 3.5811 

16 3.8168 3.8715 3.7441 3.7967 3.5418 3.5885 3.2490 3.2880 2.9120 2.9431 

18 3.0248 3.0603 2.9789 3.0121 2.8493 2.8795 2.6567 2.6828 2.4270 2.4489 

 

Clamped ended beam 

10 18.192 19.379 16.649 17.638 13.273 13.894 9.9200 10.263 7.3283 7.5137 

12 12.874 13.458 12.082 12.594 10.199 10.562 8.0964 8.3233 6.2829 6.4187 

14 9.5687 9.8872 9.1240 9.4132 8.0077 8.2296 6.6514 6.8038 5.3765 5.4756 

16 7.3818 7.5699 7.1143 7.2889 6.4168 6.5585 5.5155 5.6199 4.6092 4.6819 

18 5.8631 5.9811 5.6931 5.8043 5.2375 5.3315 4.6212 4.6942 3.9675 4.0212 

 
                                                                                                        

 
Fig. 2. Variations of critical buckling load for clamped ended beam. 
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Fig. 3. Variations of critical buckling load for clamped pinned beam. 

  
Fig. 4. Variations of critical buckling load for pinned ended beam. 
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4. Conclusions 

The critical buckling loads are found by using nonlocal elasticity theory for the Timoshenko and 

Euler Bernoulli beams. If the critical buckling loads of the Timoshenko and Euler Bernoulli beams 

are compared between each other, it is observed that. Once length-to-diameter ratios decline, results 

diverge from each other. Once length-to-diameter ratios increase, results converge to each other. 

Even if the results converge to each other. The critical buckling loads of the Timoshenko beams are 

always lower than the Euler Bernoulli beams. Because, in the Timoshenko beams, influence of shear 

on bending deformation is taken into account. Moreover, if the value of the small effect scale rises, 

the critical buckling loads decrease. 

The results are compared to other studies found in the literature which led to the conclusion that a 

great deal of similarity exists between them, which additionally proves the accuracy of this method. 

Moreover, this method allows calculation with non-rigid boundary conditions. It is this reason that 

makes this study a significant contribution with a potential to pave the way for further and more 

advanced studies on this topic.  
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