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A B S T R A C T 

 

Cardiotocography (CTG) containing of fetal heart rate (FHR) and uterine contraction (UC) signals is a 

monitoring technique. During the last decades, FHR signals have been classified as normal, suspicious, 

and pathological using machine learning techniques. As a classifier, artificial neural network (ANN) is 

notable due to its powerful capabilities. For this reason, behaviors and performances of neural network 

training algorithms were investigated and compared on classification task of the CTG traces in this 

study. Training algorithms of neural network were categorized in five group as Gradient Descent, 

Resilient Backpropagation, Conjugate Gradient, Quasi-Newton, and Levenberg-Marquardt. Two 

different experimental setups were performed during the training and test stages to achieve more 

generalized results. Furthermore, several evaluation parameters, such as accuracy (ACC), sensitivity 

(Se), specificity (Sp), and geometric mean (GM), were taken into account during performance 

comparison of the algorithms. An open access CTG dataset containing 2126 instances with 21 features 

and located under UCI Machine Learning Repository was used in this study. According to the results of 

this study, all training algorithms produced rather satisfactory results. In addition, the best classification 

performances were obtained with Levenberg-Marquardt backpropagation (LM) and Resilient 

Backpropagation (RP) algorithms. The GM values of RP and LM were obtained as 89.69% and 86.14%, 

respectively. Consequently, this study confirms that ANN is a useful machine learning tool to classify 

FHR recordings. 

© 2017. Turkish Journal Park Academic. All rights reserved.  

 

1. Introduction  

Vital activities of fetuses, such as respiratory and nutrition, 
directly depend on the placenta, so there is a strong 
relationship between the development of fetuses and 
placenta activities. This relation can be observed 
noninvasively during both of the antepartum and more 
importantly intrapartum periods using cardiotocography 
(CTG) (Grivell et al., 2010). CTG is a monitoring technique 
used routinely for recording of fetal heart rate (FHR) and 
uterine contraction (UC) signals during pregnancy and 
delivery. These biophysical signals are called as non-stress 

test (NST) and contraction stress test (CST) recorded 
simultaneously. The tests are used for investigating the 
functional state of the fetal autonomic nervous system 
depending on the respiratory function of the placenta 
(Cesarelli et al., 2007). In the last trimester of pregnancy 
(i.e., after the 28th week), CTG is applied more commonly, 
especially in high-risk pregnancies. In addition, CTG is a 
routine procedure for assessment of the fetal state and has 
been used since the end of the 1960s by obstetricians. 

The first guidelines for the interpretation of CTG have been 
announced by the different institutions, such as 
International Federation of Gynecology and Obstetrics 
(FIGO) (Ayres-de-Campos et al., 2015) and the National 
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Institute of Child Health and Human Development (NICHD) 
(Tongsong et al., 2005). As a result of the existing 
guidelines, the shapes and changes of FHR signals, such as 
baseline, acceleration, deceleration, and variability have 
been defined as morphological features that reflect the 
characteristic features of the signals (Pinas and 
Chandraharan, 2016). Although there is not a single 
standard agreed by all of the society on the interpretation 
of CTG, the computer-aided studies have been developed 
considering the mentioned guidelines (Nunes and Ayres-
de-Campos, 2016). 

FHR signals have been recently classified as normal, 
suspicious and pathological (Jezewski et al., 2010). For this 
particular purpose, many machine learning techniques such 
as Random Forest (RF) (Tomáš et al., 2013), Naïve Bayes 
(Menai et al., 2013), Extreme Learning Machine (ELM) 
(Cömert et al., 2016; Cömert and Kocamaz, 2017a; 
Ravindran et al., 2015), Logistic Regression (LR) (Huang 
and Yung-Yan, 2012), Support Vector Machine (SVM) (Ocak, 
2013), Decision Trees (DT) (Karabulut and Ibrikci, 2014), 
Adaptive Boosting (AdaBoost) (Yang and Zhidong, 2017) 
and radial basis function network (RBFN) (Sahin and 
Subasi, 2015)  were employed in the previous works. In this 
context, it was observed that neural networks have given 
robust and promising results (Cömert and Kocamaz, 2016). 
It is a well-known fact that the phase of training a neural 
network is highly consistent with unconstrained 
optimization theory and various algorithms have attempted 
to speed up training steps. Moreover, heuristics 
approaches, such as momentum or variable/adaptive 
learning rate have been employed to accelerate neural 
network training (Hagan et al., 2014).  

It is aimed to compare performances of the training 
algorithms employed by the networks having the same 
topology in order to determine the most efficient and 
fastest training algorithms on CTG signals classification task 
considering 12 neural network's training algorithms. ANNs 
produced remarkable results due to its powerful pattern 
recognition and classification capabilities. The behaviors 
and performances of ANN training algorithms were 
compared to each other in terms of the performance 
metrics, training times (TT), epochs, and mean square error 
(MSE).  

2. Material and Methods 

2.1. Dataset Description 

Before training of a network, it is a challenge to see that 
how much data is required. This situation (amount of data 
required) directly depends on the complexity of the 
problem. In practice, many problems require a large 
amount of data, but it should be noticed that the size of a 
dataset is closely related to the selection of the number of 
neurons in the neural network. In summary, a sufficient 
amount of data must be used for training a network (Amato 
et al., 2013). All variations of possible known of the 

problem area should be enclosed to the dataset. Sufficient 
data representation to a system is necessary for obtaining a 
robust and reliable network. The data may occur 
continuous, discrete or a mixture of both (Basheer and 
Hajmeer, 2000).  

During the evaluation of networks, a dataset should be 
partitioning into three subsets. First one is training set 
which is used to update weights and biases according to 
output values of network and targets. The second one is 
validation which is used to measure of network 
generalization and is used to stop training before 
overfitting occurs. The last one is testing which provides an 
independent measure of network performance, using 
random indices and is used to predict future performance 
of the network. In general, the training set makes up 
approximately 70% of full dataset, with validation and 
testing making up approximately 15% each. 

CTG dataset located under the UCI Machine Learning 
Repository was used in this study (Lichman, 2013a). The 
digital CTG signals were transmitted from electronic fetal 
monitoring devices to computer by using the serial port. 
Afterward, the software called as SisPorto 2.0© acquired 
signals and calculated the diagnostic features automatically 
(Ayres-de-campos et al., 2000). 2126 samples in the dataset 
are described with 21 features that 8 of them are 
continuous, and 13 are discrete. Also, all signals were 
classified by three expert obstetricians. Of these recordings, 
1655 represent normal, 295 suspects, and 176 pathological. 
The summary of UCI CTG dataset is given in Table 1.  

Table 1. The summary of UCI CTG Dataset (Lichman, 2013) 

Symbol Feature information 
LB FHR baseline (beats per minute) 
AC # of accelerations per second 
FM # of fetal movements per second 
UC # of uterine contractions per second 
DL # of  light decelerations per second 
DS # of severe decelerations per second 
DP # of prolonged decelerations per second 
ASTV Percentage of time with abnormal short-term 

variability 
MSTV Mean value of short-term variability 
ALTV Percentage of time with abnormal long-term 

variability 
MLTV Mean value of long-term variability 
Width Width of FHR histogram 
Min Minimum of FHR histogram 
Max Maximum of FHR histogram 
Nmax # of histogram peaks 
Nzeros # of histogram zeros 
Mode Histogram mode 
Mean Histogram mean 
Median Histogram median 
Variance Histogram variance 
Tendency Histogram tendency 
NSP Fetal state class  

(Normal, Suspicious, Pathological)  
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The whole features described in Table 1were used as the 
input to the networks. 

2.2. Feature Transform 

The feature transform covers two independent steps that 
are feature extraction and feature selection. Feature 
selection is used to reduce the dimension of input space 
and isolates redundant or irrelevant information from to 
input space (Chudacek et al., 2008). The size of input vector 
must be kept as small as possible when designing a 
network. In this case, computation cost decreases, whereas 
the performance of network increases. At the same time, 
this process prevents the overfitting (Onnia et al., 2001). 

A series of events, such as determining the mean FHR level, 
transient events such as accelerations and decelerations 
and FHR variability (FHRV) are detected in feature 
extraction stage to recognize FHR patterns. The 
determination of the basic morphological features is crucial 
in terms of automatic analysis as well as the clinical 
management (Ayres-de-Campos et al., 2015). It should be 
emphasized that a correct classification is based on the 
selection of prominent features which are used to identify 
possible diagnoses. 

Table 2. A summary of CTG classification criteria according to 
FIGO (Ayres-de-Campos et al., 2015) 

 Normal 
pattern 

Suspicious 
pattern 

Pathological 
pattern 

B
a

se
li

n
e

 

110 – 160 bpm 
160 – 170 bpm   
or  100 – 110 
bpm 

<100 bpm or  
> 170 bpm 

V
a

ri
a

b
il

it
y

 

5-25 bpm 
5 – 10 bpm for 
more than 40 
minutes 

Persistence of 
heart rate 
variability less 
than 5 bpm for 
more than 40 
minutes. 

O
th

e
r 

For pathological patters 
• Severe variable decelerations or severe repetitive early 
decelerations 
• Prolonged decelerations 
• Late deceleration 
• A sinusoidal pattern 

In this section, a brief overview of prominent features of 
CTG is presented. Baseline FHR is described over a period 
of 5 or 10 minutes in the case that accelerations and 
decelerations are absent (Sundar et al., 2012). The baseline 
level range between 110 and 160 bpm is accepted as 
normal, on the other hand, extremely accelerations that 
above 170 bpm and decelerations that below 100 bpm are 
referred as pathological situations: tachycardia and 
bradycardia, respectively. Accelerations are specified as a 
good health status for fetus while decelerations are pointed 
as the symptom of fetal distress (Czabanski et al., 2012). 
Also, variability is substantial to make a decision. 

Variability is described as amplitude oscillations around 
baseline heart rate. A summary of CTG classification criteria 
according to FIGO is given in Table 2.  

2.3. Designing of Neural Networks 

ANN, which has a powerful connection between the input 
and output variables, is a mathematical model that reflects 
learning and generalization ability of human neural 
architecture (Amato et al., 2013). ANN can be employed to 
solve various real-world problems, such as any complex 
functional approximation, pattern classification or 
clustering, forecasting, and image completion. Therefore, 
ANNs are evaluated as a valuable computational model 
(Günther and Fritsch, 2010). ANNs consist of the input layer 
and the output layer, furthermore, the layer(s) between 
input and output layers are referred to hidden layer that 
may be one or more, helps to capture nonlinearity and is 
not directly observed. In theory, ANNs can be contained an 
arbitrary number of input and output variables. However, it 
must be noted that the number of variables and 
computational cost is entirely proportional (Hu and Hwang, 
2001). The number of neurons per layers, training 
algorithms, epochs, maximum training time, performance 
values, gradient, and validation checks can be set before 
training of an ANN, so it can be expressed that ANN is very 
flexible and versatile tool. 

Computing Environment: The computing environment is a 
workstation which has Intel Xeon CPU E5-2687W v3 3.10 
GHz and 32 GB of RAM memory using MATLAB® (2016a) 
software. 

Architecture of the Network: Choosing the appropriate 
network type and architecture is a challenge to solve the 
studied problem. Pattern recognition-classification 
network, which deals with classifying inputs into a set of 
target categories, was chosen for this study. Initially, the 
topology of the networks was established as{21, 10, 3}. It 
indicates that the dimension of the layers consists of 21 
input variables, 10 nodes in a hidden layer, and 3 output 
nodes respectively. The general structure of network is 
shown in Figure 1. Tangent sigmoid transfer function and 
softmax transfer function were used in the hidden layer and 
output layer, respectively. In the pattern recognition 
problems, log-sigmoid or tangent sigmoid transfer 
functions are used commonly. For function approximation 
or regression problems, the mean square error (mse) 
works well because of the target values are continuous. 
Otherwise, cross-entropy, which is a performance index, is 
proposed for classification problems, because of that the 
targets take on discrete values. In general, softmax transfer 
function and cross-entropy performance function are used 
together. As shown in Figure 1, the tangent sigmoid and 
softmax transfer functions were chosen in this study. 

Training Concepts: A network can be trained by two 
alternative concept either incremental or batch training. 
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Incremental training is also known as the example-by-
example model and is habitually chosen with dynamic 
networks such as an adaptive filter. However, it can be 
applied to static networks. The weights are updated in each 
iteration immediately. This concept includes small storage, 
but a first bad example may force the search in the wrong 
direction (Basheer and Hajmeer, 2000). As for batch 
training concept, the weights are completely updated after 
all the inputs are presented to the network. Moreover, this 
concept is more efficient in the MATLAB® environment 
(Demuth et al., 2010). For this reason, batch training style 
was used in this study. 

+ +

1p 1a

1n 2n21xS1

1

1xS1

11 xS

1W

1b

2W

2b

1xS1

1xS3

1S

1

1x3

1x3

2a

3

21x1

21

1x3

)b+aWmax(soft=a 2122)b+pW(sigtan=a 111

Inputs Tan-Sigmoid Layer Softmax Layer

Figure 1. The general structure of the networks. The input and 
output of network comprised of matrices dimension 21𝑥1 and 3𝑥1 
respectively. Herein, 𝑝𝑖 indicate ith input instance, 𝑛𝑖  indicates net 
the function of ith layer.  𝑆, indicates number of neurons in hidden 
layer (e.g.  𝑆1 = 10, it means that there are 10 neurons/nodes in 
hidden layer), 𝑎𝑖 indicates output value of ith layer.  

2.4. Training Algorithms  

A training algorithm finds a decision function that updates 
the weights of the network. There are many variations of 
the training algorithms. The several of those are given in 
Table 3 and were discussed in the scope of this study. It is a 
difficult task to estimate which training algorithm will 
produce the best results (Sundar et al., 2012). The 
algorithms update the network weights and biases to map 
correctly arbitrary inputs to outputs. In this study, the 
training algorithms were collected into five group as 
Gradient Descent, Conjugate Gradient, Quasi-Newton, 
Resilient Backpropagation, and Levenberg-Marquardt 
algorithms. The gradient is expressed as technical term 
backpropagation (BP), which backwardly propagates the 
error between the network output and the desired output. 
The aim of BP is to optimize the weights so that the neural 
network can learn how to estimate properly varying inputs 
to outputs. In the BP networks, the data is fed to forward, 
and there is no feedback (Hagan et al., 2014).  

Gradient Descent Algorithms (GDAs): BP learning algorithms 
provide needed and desired weights. The standard BP 
algorithm is gradient descent backpropagation (GD) that is 
the batch steepest descent training algorithm and aims to 
decline network error as rapidly as possible. One iteration 
of GD algorithm defines as in (1). In GD, the weights are 
changed in proportion to negative of an error derivate on 
each weight. GD is the most straightforward 

implementation of BP. Eq. 1 is repeated until the network 
achieves a point of convergence. 

𝑥𝑘+1 = 𝑥𝑘 − 𝑎𝑘𝑔𝑘 (1) 

Between (1) and (11), current weights and biases are 
denoted by a vector of 𝑥𝑘, 𝑔𝑘  is current gradient of the error 
with respect to the weight vector, 𝑎𝑘 is the learning rate (or 
it can be expressed as length of step size), 𝑥𝑘+1 is a new 
weight vector, and 𝑘 represents the number of iterations 
proceeded by the methods. 

Table 3. ANN training algorithms with their group number (G) 
employed in this study 

G Acr. Description 

1 GD Gradient descent backpropagation 

1 GDA Gradient descent with adaptive learning rate 

backpropagation 

1 GDM Gradient descent with momentum 

backpropagation   

1 GDX Gradient descent with momentum and adaptive 

learning rate backpropagation 

2 RP Resilient Backpropagation 

3 CGF Conjugate gradient backpropagation with 

Fletcher-Reeves restarts 

3 CGP Conjugate gradient backpropagation with 

Polak/Ribiére restarts 

3 CGB Conjugate gradient with Powell/Beale restarts 

3 SCG Scaled conjugate gradient backpropagation 

4 BFGS BFGS Quasi-Newton backpropagation 

4 OSS One-step secant backpropagation 

5 LM Levenberg-Marquardt backpropagation 

 

Choosing an applicable learning rate is crucial to 
understand the stability of algorithms. Choosing of a proper 
learning rate may prevent instability or slow convergence. 
When the learning rate is selected as enough small, it 
exhibits an ideal behavior in this case. However, this 
situation leads to more expensive computational cost and 
requires a longer training phase. On the other hand, when 
the learning rate is chosen too large, it promotes oscillation 
in the error surface, or may cause a jump completely over 
the global minimum, or is trapped at the shallow local 
minimum (Wythoff, 1993). Furthermore, the size of 
learning rate affects whether the network is stable or not. 
The learning rate is unchanged during the training of the 
GD algorithms, and these algorithms often converge slowly, 
trapped in a local minimum and may not give the desired 
performance. The different algorithms were purposed, such 
as Gradient Descent with Adaptive Learning Rate 
Backpropagation (GDA), Gradient Descent with Momentum 
Backpropagation (GDM), and Gradient Descent with 
Momentum and Adaptive Learning Rate Backpropagation 
(GDX) to overcome these shortcomings. It is possible to 
achieve more successful results by using these heuristic 
techniques.  The learning rate is adaptive in GDA. In the 
first step, initial network output and error are calculated, 
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and later on, new weights are adjusted depending on 
current learning rate in each epoch. If new error surpasses 
the old error, the new weights are shifted. Otherwise, the 
new weights are updated. The possible largest learning rate 
is desired without triggering oscillation in GDA. This 
situation provides an extremely rapid learning for 
networks. Unlike the GDA, GDM uses a variable which is 
called momentum. Momentum coefficient utilizes past 
weights changes as well as the current error. If adaptive 
learning rate and momentum are combined, it is possible to 
derivate relatively more accurate results. So, GDX consists 
of a combination of GDA and GDM. 

Resilient Backpropagation (RP): RP is a heuristic learning 
algorithm that improved the convergence speed by using 
the only sign of the derivative, not magnitude of the 
derivative of the error function for the weight update as 
shown in (2). RP reduces the number of learning steps and 
other adaptive parameters, according to GDAs, and it 
computes local learning scheme easily (Riedmiller and 
Braun, 1993). 

∆𝑥𝑘 = −𝑠𝑖𝑔𝑛 (
∆𝐸𝑘

∆𝑥𝑘
) ∆𝑘 

(2) 

∆𝑥𝑘 is used to denote the changes of current  weights 
vector, ∆𝐸𝑘 is used to denote error function 𝐸 at 𝑘, and ∆𝑘 
is used to denote the increase in bias.  

Conjugate Gradient Algorithms (CGAs): Conjugate gradient 
algorithms (CGAs), which can be evaluated as one class of 
optimization methods, are much more efficient than GDAs 
having a low memory requirement and providing fast 
convergence. However, it tends to be unstable in large-scale 
problems occasionally (Møller, 1993). Also, CGAs are 
practical for minimizing functions of very many variables 
since the storing of any matrices is not necessary (Powell, 
1977). The whole CGAs work by searching in steepest 
descent direction (Hagan et al., 2014) which is negative of 
the gradient as given in (3). 

𝑝0 =  −𝑔0 (3) 

In the next step, a series calculations as given in (4) are 
made for a line search (El-Nabarawy et al., 2013). 

𝑥𝑘+1 =  𝑥𝑘 + 𝑎𝑘𝑝𝑘 (4) 

Herein, the search direction is indicated with𝑝𝑘. The next 
search direction is selected according to (5) and depends 
on previous search direction.   

𝑝𝑘 =  −𝑔𝑘 + 𝛽𝑘𝑝𝑘−1 (5) 

The computation of constant 𝛽𝑘  is different in CGAs. 
Fletcher-Reeves (FR) update is used by Conjugate Gradient 
Backpropagation with Fletcher-Reeves Restarts (CGF), and 
Polak-Ribiére (PR) update is used by Conjugate Gradient 

Backpropagation with Polak/Ribiére Restarts (CGP) (Saini 
and Soni, 2002). The formulations of the methods are given 
in (6) and (7), respectively. According to computational 
experiments, PR performs better than FR. Especially PR 
method seems to be preferable compared to others 
methods (Luenberger et al., 1984). 

𝛽𝑘−1 =  
𝑔𝑘

𝑇 + 𝑔𝑘

𝑔𝑘−1
𝑇 + 𝑔𝑘−1

 
(6) 

𝛽𝑘−1 =  
(𝑔𝑘 − 𝑔𝑘−1)𝑇𝑔𝑘

𝑔𝑘−1
𝑇 + 𝑔𝑘−1

 
(7) 

The search direction resets at regular intervals in CGAs. 
When the condition occurs in (8), the search direction 
resets to the negative of the gradient in Conjugate Gradient 
with Powell/Beale Restarts (CGB), thereby the efficiency of 
the training is increased (Powell, 1977). 

|𝑔𝑘−1𝑔𝑘| ≥ 0.2 ‖𝑔𝑘‖ (8) 

Scaled Conjugate Gradient Backpropagation (SCG) is the 
last algorithm in this group and uses second order 
information from feedforward neural network such as 
Levenberg-Marquardt (LM) algorithm. It avoids the time-
consuming line search at each iteration (Møller, 1993). 

Quasi-Newton Algorithms (QNAs): QNAs are similar in fast 
optimization to CGAs and can be considered as the basic 
local method using second-order information (Battiti, 
1992). The computation cost of the algorithms is more 
expensive, dense, and complex when compared to CGAs. 
The weights are updated according to the Newton method 
given in (9). Quasi-Newton is based on Newton method, but 
it does not require calculation of second derivatives so that 
it is called Quasi-Newton (or secant) methods (Dennis Jr 
and Schnabel, 1996). 

𝑥𝑘+1 =  𝑥𝑘 − 𝐻𝑘
−1𝑔𝑘  (9) 

𝐻𝑘  is the Hessian matrix (second derivatives) of the 
performance index at current values of the weights and 
biases. The new weighs 𝑥𝑘+1 is computed as a function of 
the gradient and the current weight 𝑥𝑘  in the Newton 
algorithms.  

BFGS Quasi-Newton backpropagation (BFGS) algorithm 
necessitates high computation and storage. For this reason, 
it is recommended for many networks with a small number 
of weights (Azar, 2013). On the other hand, one-step secant 
backpropagation (OSS) method fills a gap between CGAs 
and QNA. OSS does not store the entire Hessian matrix, 
requires less storage, and computation per epoch than the 
BFGS (Hagan et al., 2014). 

Levenberg-Marquardt Algorithm (LM): LM is agreed as a 
standard technique for solving nonlinear least squares 
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problems. It occurs a combination of gradient descent and 
Gauss-Newton method. LM exhibits adaptive behavior 
according to the distance of solution so that it can be 
guaranteed the solution in many cases (Marquardt, 1963). 
When BP is gradient descent, the algorithm is far from the 
solution and it is quite slow (Hagan and Menhaj, 1994). 
Conversely, in the case that BP is Gauss-Newton, the 
algorithm is close to correct one. In LM, computation of the 
approximate Hessian given in (10) is done slightly, and the 
gradient is computed in the manner given in (11). 

𝐻 = 𝐽𝑇𝐽 (10) 

𝑔 = 𝐽𝑇𝑒 (11) 

where 𝐽 and 𝑒 indicate the Jacobian matrix and a vector of 
network errors, respectively. LM algorithm uses this 
approximation in the manner given in (12) such as Newton. 

𝑥𝑘+1 = 𝑥𝑘 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒 (12) 

In summary, GDAs update the weights and biases in the 
direction of the negative gradient of the performance 
function. Unlike GDAs, CGAs search steepest descent 
direction along conjugate directions. QNAs converge faster 
than CGAs and give better-generalized results. However, 
the calculations may take a long time. The conjugate 
gradient and Quasi-Newton only use the first derivative of 
the function. Therefore, these methods are regularly 
preferred in applications when only the first derivative is 
known or when higher derivatives are very expensive to 
calculate. 

3. Results and Discussion  

3.1. Performance Evaluation Criteria 

In this study, primarily, the performances of the networks 

were analyzed by using confusion matrix that consists of 

four prognostic indices which are True Positive (TP), False 

Positive (FP), True Negative (TN) and False Negative (FN). 

In this scope, TP and TN represent the numbers of samples 

predicted correctly, whereas FP and FN represent the 

numbers of samples predicted incorrectly. In addition, 

confusion matrix can help to calculate several performance 

measures, some of which are described as follow:  

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(13) 

Accuracy (ACC) expresses the overall performance of the 

model and is calculated as in (13).  

𝑆𝑒𝑀 =  
∑

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

𝑀
𝑖=1

𝑀
 

(14) 

Sensitivity (Se), it is also known as recall, only focuses on 

positive examples and predictions. In general, Se is used to 

measure the model success on positive class. Here, 𝑀 

shows the number of classes.  

𝑆𝑝𝑀 =  
∑

𝑇𝑁𝑖
𝑇𝑁𝑖 + 𝐹𝑃𝑖

𝑀
𝑖=1

𝑀
 

(15) 

Similarly, specificity (Sp) is used to measure the model 

performance on negative class and the calculation of Sp is 

shown in (15). 

𝐺𝑀𝑀 =  √𝑆𝑒𝑀𝑆𝑝𝑀 
(16) 

The distribution of data between classes may be 

unbalanced in most of cases, in which case the geometric 

mean (GM) metric becomes extremely useful to achieve 

more objective results. 

Another useful metric for describing the performance of a 

classification model is Receiver Operating Characteristic 

(ROC) curve. It is a threshold-independent measure and is a 

fundamental tool for diagnostic test evaluation. A particular 

decision threshold is corresponding to a point on ROC 

curve, and it determines a true positive/false positive pair. 

The area under this curve (AUC) is a useful index to 

compare classifiers. It represents the distinction between 

the diagnostic groups. At this point, it is important to 

mention 𝑘 -fold cross-validation method in order to 

evaluate a model. When there is a small amount of data for 

training a model, this approach becomes beneficial. In this 

method, the whole dataset is divided into 𝑘 part in order to 

be used as the training and test sets. The specified 𝑘 − 1 

part is used for training and the rest is used for testing in 𝑘 

rounds. Thus, the performance metrics are reported by 

taking average values of the metrics. In this study, 𝑘 was 

adjusted to 10. 

3.2. Experimental Results 

The data set comprises of 1655 normal, 295 suspicious and 

176 pathological samples. The distribution of 2126 samples 

with 21 features on first three principal components is 

shown in Figure 2. As seen in Figure 2, it is unlikely that the 

dataset can be linearly separated. 

In the first experimental setup, the topology of the 

networks was configured as 21 input, one hidden layer 
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which comprises of 10 hidden nodes, and three output 

nodes. The training times of the networks were assessed in 

a large range in 1 to 60 s and it was limited to 10 s. 10-fold 

cross-validation was applied, and the validation set was not 

used in the experiments. Based on these parameters, the 

results of 10 fold cross-validation with 1 repetition are 

given in Table 4. In addition to the performance metrics, 

AUC values of pathological samples, training time (TT), and 

the number of epoch of training and mean square error 

(MSE) were taken into account in the evaluation stage. As 

seen in Table 4, all training algorithms yielded rather 

satisfactory results. However, it is clear that RP algorithm 

was superior to others.  ACC of 93.60%, Se of 88.42% and 

Sp of 90.98% were obtained using RP algorithm. Also, LM 

algorithm was determined as the fastest algorithm with the 

average training time of 9.47 s and the average epoch of 

346.4. CGAs performed more effective results than GDAs 

whereas QNAs were superior to CGAs.  Although the 

performance results of GDAs are seemed as weak, indeed 

this is not true due to the restriction of the training 

parameters, especially training time. If the training times of 

the networks are expanded, the performances of these 

group algorithms can be improved.  

 

 

 

 

 

 

 

 

Figure 2. The distribution of 2126 recordings with 21 features on 

the first three principal components analysis axes 

In the second experimental setup, the dataset was divided 

into three sets that are training (70%), validation (15%), 

and test (15%). The network topology was not changed. 

Furthermore, the training time was adjusted to 10 s and 

random data division were employed. The experiment was 

repeated 100 times, and obtained results are summarized 

in Table 5. 

According to the results of the second experimental setup, 

LM algorithm was superior to others with ACC of 91.27%, 

Se of 82.36%, and Sp of 87.02%. Although the performance 

results of the training algorithms showed a decline, as seen 

in Table 5, the training times and epochs were decreased 

significantly. For example, the numbers of the epochs in the 

training of LM and RP algorithms were reduced from 364.4 

to 18.9 and 5707.3 to 54.1 respectively. Despite that, the 

AUC value for pathological samples of LM algorithm 

increased from 0.9713 to 0.9877. It is clear that using the 

validation set in the training process has made it possible to 

carry out a faster training. Consequently, both of the first 

and second experimental results confirmed that LM and RP 

algorithms exhibited an efficient performance on detection 

of pathological samples. Also, the comparison of the 

performance metrics for these experiments are given in 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The comparison of the results of the first and second 

experiments 
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Table 4. Classification results of the first experiment  

Alg. ACC [%] Se [%] Sp [%] GM [%] AUC TT [s] Epoch MSE 

GD 
86.97 

(±2.59) 
66.16 

(±5.57) 
77.87 

(±3.52) 
71.76 

(±4.53) 
0.9607 

(±0.0089) 
10.04 

(±0.088) 
5924.7 

(±583.4) 
0.1100 
(±0.01) 

GDA 
92.01 

(±2.11) 
84.93 

(±4.87) 
88.43 

(±3.51) 
86.66 

(±4.17) 
0.9914 

(±0.0057) 
10.08 

(±0.104) 
5716.1 

(±103.2) 
0.0747 
(±0.01) 

GDM 
86.60 

(±2.58) 
65.41 

(±6.33) 
77.16 

(±4.15) 
71.02 

(±5.30) 
0.96089 

(±0.0215) 
10.08 

(±0.103) 
5817.3 

(±122.2) 
0.1140 
(±0.01) 

GDX 
92.62 

(±2.40) 
86.16 

(±4.14) 
89.36 

(±3.51) 
87.74 

(±4.47) 
0.9944 

(±0.0043) 
10.08 

(±0.103) 
5763.9 

(±124.1) 
0.0745 
(±0.02) 

RP 
93.60 

(±1.43) 
88.42 

(±3.60) 
90.98 

(±2.26) 
89.69 

(±2.89) 
0.9912 

(±0.0055) 
10.17 

(±0.211) 
5707.3 

(±114.3) 
0.1630 
(±0.06) 

CGF 
90.92 

(±1.76) 
83.43 

(±4.67) 
87.16 

(±2.91) 
85.27 

(±2.91) 
0.9889 

(±0.0079) 
10.09 

(±0.103) 
1979.1 
(±51.0) 

0.3280 
(±0.13) 

CGP 
91.39 

(±2.66) 
83.91 

(±4.87) 
87.58 

(±3.24) 
85.72 

(±4.00) 
0.9811 

(±0.0160) 
10.04 

(±0.014) 
1984.1 
(±33.5) 

0.2699 
(±0.09) 

CGB 
91.06 

(±1.55) 
83.14 

(±3.21) 
87.24 

(±2.14) 
85.16 

(±2.63) 
0.9816 

(±0.0108) 
10.09 

(±0.110) 
1952.1 
(±74.4) 

0.3013 
(±0.08) 

SCG 
90.02 

(±2.10) 
81.07 

(±6.47) 
85.63 

(±3.49) 
83.30 

(±4.98) 
0.9738 

(±0.0145) 
10.08 

(±0.104) 
3788.5 

(±100.5) 
0.5088 
(±0.17) 

BFGS 
91.01 

(±1.91) 
84.26 

(±4.38) 
87.86 

(±2.64) 
86.04 

(±3.49) 
0.9829 

(±0.0146) 
10.33 

(±0.577) 
613.5 

(±18.0) 
0.3345 
(±0.16) 

OSS 
92.38 

(±1.58) 
85.33 

(±2.30) 
88.99 

(±1.65) 
87.14 

(±1.87) 
0.9864 

(±0.0104) 
10.09 

(±0.104) 
2108.2 
(±61.0) 

0.1367 
(±0.05) 

LM 
91.54 

(±2.30) 
84.16 

(±4.85) 
88.19 

(±3.22) 
86.14 

(±3.99) 
0.9713 

(±0.0327) 
9.47 

(±1.738) 
346.4 

(±65.6) 
0.0544 
(±0.01) 

Mean (± standard deviation) 

 

Table 5. Classification results of the second experiment  

Alg. ACC [%] Se [%] Sp [%] GM [%] AUC TT [s] Epoch MSE 

GD 
87.15 

(±2.06) 
67.04 

(±5.06) 
78.43 

(±3.13) 
72.50 

(±4.14) 
0.9659 

(±0.0180) 
10.03 

(±0.03) 
6089.1 
(±43.4) 

0.1080 
(±0.0116) 

GDA 
88.29 

(±1.90) 
72.82 

(±4.77) 
81.33 

(±2.86) 
76.95 

(±3.83) 
0.9731 

(±0.0128) 
0.2599 

(±0.0574) 
139.8 
(±8.1) 

0.0975 
(±0.0124) 

GDM 
87.03 

(±2.14) 
66.55 

(±5.38) 
78.11 

(±3.27) 
72.08 

(±4.39) 
0.9650 

(±0.0150) 
10.03 

(±0.03) 
6091.6 
(±45.2) 

0.1091 
(±0.0115) 

GDX 
89.12 

(±2.52) 
76.95 

(±8.46) 
83.41 

(±5.016) 
80.08 

(±6.97) 
0.9752 

(±0.0466) 
0.9752 
(±0.06) 

171.1 
(±22.4) 

0.0852 
(±0.0242) 

RP 
89.85 

(±1.87) 
78.84 

(±4.02) 
84.51 

(±2.716) 
81.62 

(±3.35) 
0.9872 

(±0.0073) 
0.1228 
(±0.06) 

54.1 
(±24.2) 

0.0806 
(±0.0142) 

CGF 
89.74 

(±1.99) 
79.26 

(±4.46) 
84.75 

(±3.05) 
81.96 

(±3.74) 
0.9854 

(±0.0081) 
0.9854 
(±0.08) 

35.9 
(±11.1) 

0.0800 
(±0.0140) 

CGP 
89.67 

(±1.50) 
79.10 

(±3.90) 
84.63 

(±2.46) 
81.81 

(±3.17) 
0.9861 

(±0.0071) 
0.2101 
(±0.08) 

34.7 
(±11.5) 

0.0797 
(±0.0109) 

CGB 
89.82 

(±1.65) 
79.23 

(±3.87) 
84.85 

(±2.54) 
81.99 

(±3.20) 
0.9816 

(±0.0101) 
0.2075 
(±0.08) 

34.1 
(±10.7) 

0.8047 
(±0.0111) 

SCG 
89.39 

(±1.64) 
78.17 

(±4.58) 
84.05 

(±2.76) 
81.05 

(±3.66) 
0.9856 

(±0.0076) 
0.1386 
(±0.06) 

40.8 
(±11.7) 

0.0816 
(±0.0111) 

BFGS 
89.11 

(±1.53) 
78.33 

(±3.69) 
83.87 

(±2.42) 
81.05 

(±3.03) 
0.9835 

(±0.0106) 
0.4802 
(±0.15) 

39.4 
(±11.7) 

0.0835 
(±0.0107) 

OSS 
90.06 

(±1.69) 
79.52 

(±4.06) 
85.08 

(±2.63) 
82.25 

(±3.33) 
0.9856 

(±0.0076) 
0.2874 
(±0.09) 

56.0 
(±19.5) 

0.0778 
(±0.0106) 

LM 
91.27 

(±1.55) 
82.36 

(±3.69) 
87.02 

(±2.36) 
84.65 

(±3.012) 
0.9877 

(±0.0069) 
0.5515 
(±1.12) 

18.9 
(±4.3) 

0.0432 
(±0.0067) 

Mean (± standard deviation) 
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3.3. Discussion 

A comparison which considers the performance metrics, 

the number of features used to feed classifiers, the number 

of classes, simulation platform and methods was carried 

out between the training algorithms of ANN and previously 

reported works and the comparison is presented in Table 6. 

As can be seen from Table 6, comparing the performance of 

the training algorithms and the related works is a very 

difficult task due to the variable parameters, such as the 

employed methods, the number of features, the number of 

classes and simulation platform. (Sahin and Subasi, 2015) 

and (Cömert and Kocamaz, 2017b) addressed this 

classification task on two classes indicated as normal and 

pathological by using different methods and simulation 

programs. A rather satisfactory results over 99% of Se and 

Sp were reported by the researchers. (Tomáš et al., 2013) 

and (Ocak, 2013) employed feature selection algorithms to 

reduce the dimension of the feature set before classification 

stage. On the other hand, the problem was dealt with by 

Ocak and Tomas et al. as binary and multi classification 

task. In addition, (Yılmaz, 2016) focused three different 

type of ANN in the study and achieved the best results using 

generalized regression neural network.  

4. Conclusion 

CTG is a significant biomedical signal since it carries vital 

information on fetal state. The early detection of stressful 

conditions for the fetus from this traces may prevent adverse 

events such as cerebral palsy. However, as can be seen from 

the literature, there is a high variability in the interpretation of 

these trace among observers. Computerized analysis of CTG is 

admitted as the most promising way to tackle these drawbacks. 

For this reason, we focused on a robust and efficient classifier, 

ANN. More specifically, we investigated the behaviors and 

performances of 12 training algorithms of ANN in 5 groups 

with two different experimental setups. The experiments were 

performed on an open access dataset consisting 1655 normal, 

295 suspicious and 176 pathological samples. The comparison 

of each algorithm to others was realized considering 

performance metrics, AUC, TT, Epoch and MSE. We achieved 

the most efficient results with RP and LM algorithms. Se, Sp, 

QI, AUC values of LM algorithm were obtained as 84.16%, 

88.19%, 86.14% and 0.9713, respectively whereas these values 

of RP algorithm were obtained as 88.42%, 90.98%, 89.69% 

and 0.9912, respectively. A comparison between the results of 

LM-RP algorithms and previously reported works was realized 

in the last part of this study.  

In future works, combinations of the feature selection and 

different machine algorithms will investigate to provide a more 

effective model. 
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