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Abstract 

Estimation of forest biomass is needed for monitoring the changes in carbon stocks as well as other 

purposes. This study reports on a test of the ability to estimate above ground biomass of Calabrian 

pine forests of Düzlerçamı, Antalya, Turkey using Landsat and ICESat/GLAS data. The field data has 

been collected in 2017 and plot-level estimates were calculated using the allometric equations. GLAS 

parameters and various Landsat vegetation indices were modeled using multiple regression analysis to 

estimate above ground biomass. In the first model (ModelA) height of median energy (HOME) and the 

ratio of HOME to maximum vegetation height (%HOME) parameter of GLAS showed relation with 

field based estimates of above ground biomass with a coefficient of determination (R2) of 0.87. Above 

ground biomass derived from ModelA and the variables obtained from Landsat indices has been used 

at the second model (ModelB) had a R2 of 0.52 meaning the GLAS data is poorly correlated with 

Landsat at the study area. A better statistical relationship has been found with Landsat data and AGB 

with a R2 of 0.91 in ModelC that uses Landsat pixel values of each bands and pixel values of the 

indices are used as independent variable to explain above ground biomass. The results demonstrate a 

current potential for above ground biomass estimation of forests using optical sensor data and satellite 

lidar where airborne lidar data is not widely available. 
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Öz 

Karbon stoklarındaki değişimlerin izlenmesi ile birlikte çeşitli diğer amaçlar için orman biyokütlesinin 

belirlenmesine ihtiyaç duyulmaktadır. Bu çalışma Düzlerçamı kızılçam ormanında (Antalya) toprak 

üstü orman biyokütlesinin Landsat ve ICESat/GLAS verileri kullanarak belirlenebilmesini test 

etmektedir. 2017 yılında arazi çalışmaları ile örneklem alanlarından toplanan veriler ile allometrik 

eşitlikler kullanılarak gerçek biyokütle verileri hesaplanmıştır. Toprak üstü orman biyokütlesinin 

modellenmesinde çok değişkenli regresyon analizi ile GLAS parametreleri ve çeşitli Landsat 

vejetasyon indekslerinden yararlanılmıştır. Birinci modelde (ModelA) GLAS verisinden medyan 

enerjinin yüksekliği (HOME) ve HOME’un maksimum yüksekliğe oranı parametrelerinin araziden 

toplanan biyokütle verileri ile olan ilişkisinde determinasyon katsayısı (R2) 0.87 olarak tespit 

edilmiştir. ModelA’dan elde edilen toprak üstü orman biyokütlesi ile çeşitli Landsat indekslerinin 

kullanıldığı ikinci modelde (ModelB) 0.52 bulunan R2 değeri GLAS verisinin çalışma alanında 

Landsat veriler ile zayıf bir korelasyonu bulunduğunu göstermiştir. Toprak üstü orman biyokütlesini 

açıklamak için Landsat indeks değerlerinin bağımsız değişken olarak kullanıldığı ModelC’de ise 0.91 

R2 ile istatistiksel olarak daha anlamlı bir istatistiksel ilişki belirlenmiştir. Sonuçlar toprak üstü orman 

biyokütlesinin belirlenmesinde hava lidar verilerinin bulunmadığı durumlarda optik sensörlerin ve 

uydu tabanlı lidar verilerin güncel potansiyelini göstermektedir. 

Anahtar Kelimeler: Toprak üstü biyokütle, orman, ICESat/GLAS, Landsat 

 

 

1. Introduction 

Above ground biomass (AGB) that refers to 

all living biomass which is located above the 

ground is an essential ecological variable since 

forests remove carbon dioxide from the 

atmosphere. On the other hand, the carbon that 

constitutes approximately half of its biomass can 

easily transferred to atmosphere by fires, logging, 

climatic effects and the changes in land use 

activities. The increasing interest of AGB studies 

arise from its significance for atmospheric CO2 

concentration and climate change in relation to 

that.  

Estimation of AGB is traditionally practiced 

by harvesting all plant material within a plot, 

drying and weighing (Brown, 1997). The high cost, 

and destructive sampling have lead researchers to 

benefit from empirical allometric models that uses 

biometric measurements for calculation of biomass 

values (Chave et al., 2014). The integration of 

remote sensing with field assessments of AGB 

overcome the limited geographic coverage of these 

measurements (Popescu, 2007). Since the remotely 

sensed observations do not directly measure 

biomass, they use radiometry, which is sensitive to 

vegetation structure (crown size and tree density), 

texture and shadow and therefore can be correlated 

with AGB (Baccini et al., 2008). Optical and radar 

sensors have been used successfully in various 

studies (Saatchi and Moghaddam, 1995; 

Steininger, 2000; Baccini et al., 2004). Besides, 

lidar technology that emits laser pulses from the 

instrument towards a target and measures the 

reflected energy and/or time difference between 

the pulse emission and reception is used to relate 

the vertical distribution of canopy structure and 

consequently for estimation of AGB. It has been 

known that AGB models using airborne lidar 

metrics are significantly more accurate than those 

based on the satellite-bornes’ while the spatial 

extent of airborne lidar is typically restricted to 

relatively smaller areas and data acquisition is 

rather expensive (Zolkos et al., 2013).  

On the other hand, the satellite-based lidar, 

Geoscience Laser Altimeter System (GLAS) on 

Ice, Cloud, and Land Elevation Satellite (ICESat) 

provides information about the vertical structure of 

its “footprint” area of ~70 m diameter depending 

on intercepted surface area, orientation, surface 

reflectivity and the returned energy level changes 

in given height (Yavaşlı, 2016). The returned 

waveforms from the footprints of GLAS are used 

to estimate tree height, AGB, and basal area 

(Lefsky et al., 2005; Rosette et al., 2008), however 

accuracies depend on canopy density and terrain 

topography. AGB estimation models that uses 

GLAS data achieve promising results and can 

explain 55% to 74% of the field estimates (Zolkos 
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et al., 2013). However, the GLAS data usually 

requires data fusion with other imagery to extend 

geographic coverage.  

This study demonstrates the use of GLAS 

and Landsat data to model AGB estimation at 

Calabrian pine forests of Düzleçamı, Antalya 

province of Turkey where no airborne lidar data is 

available. The innovation of the study is the use of 

satellite-based lidar, GLAS with the combination 

of optical sensor, Landsat. The goals of this study 

are (1) to create the biomass distribution map of 

the study area, (2) develop a method to model 

AGB from GLAS and Landsat integration and (3) 

to assess the relationship of GLAS parameters and 

Landsat data with biomass. 

2. Study Area 

The study area is the forest area at the south 

of Düzlerçamı sub-district directorate at Antalya 

province of Turkey (fig. 1). The forest area of 

10500 ha is dominated with Calabrian pine (Pinus 

brutia). Topographical simplicity was the main 

criteria for the study area selection considering the 

bias of the GLAS data in complex topographies. 

Mediterranean climate is observed at the study area 

with hot, dry summers and warm, wet winters. The 

seasonal rainfall pattern is particularly distinctive, 

with virtually all of it falling during the winter 

months.  

3. Data 

We used GLAS data products GLA01, 

GLA06 and GLA14 of release 33 obtained from 

National Snow and Ice Data Center (NSIDC). IDL 

has been used to extract information contained in 

GLA01, GLA06 and GLA14. GLA01 and GLA06 

waveforms are linked to GLA14 with the record 

and shot numbers. The quality flags such as 

“i_FRir_qaFlag” utilized to select cloud free shots.  

Cloud and snow free Landsat image is 

needed to assess the pixel values of the study area. 

Landsat 8 Operational Land Imager (OLI) image 

of 12 August 2017 used to calculate various 

indices and correlate with the AGB. The 

acquisition date of the image also corresponds with 

the field data collection dates.  The Landsat OLI 

image is calibrated and atmospherically corrected 

to surface reflectance by Earth Resources 

Observation and Science (EROS) data center using 

the MODIS 6S radiative transfer approach. 

 

 
Figure 1- The location and simplified stand map of the study area with ICESat/GLAS footprints.
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The field data was collected in August 2017. 

Diameter at breast height was measured for every 

tree within a 10 m diameter for 22 plots within the 

study area. The plots were positioned using a 

Magellan eXplorist Pro 10 handheld GPS with a 

horizontal accuracy about 2-5 m. 

4. Methodology  

Various parameters including signal begin 

range offset (SigBegOff), signal end range offset 

(SigEndOff), centroid range increment for gaussian 

fits (gpCntRngOff), the peaks of first two gaussian 

amplitudes (gamp), centroid range offset 

(cntRngOff), cloud flag (FRir_qaFlag), saturation 

index (satNdx) has been extracted from the GLAS 

data using GLAS Visualizer for IDL. One of the 

most important parameter needed to calculate is 

the height of the Gauss peak that represents the 

return signal from ground. Even though the peak of 

the first Gaussian “usually” represents the ground 

return for flat surfaces it has been found that in 

some cases where the terrain is complex, the 

second Gaussian peak might represent ground 

return (Rosette et al., 2008). We preferred to use 

the waveform of either Gaussian peak # 1 or 2 

whichever demonstrated the greater amplitude to 

determine the ground return. 

Wide range of studies have shown that the 

height of median energy (HOME) metric is 

sensitive to both the vertical arrangement and 

density of forest canopy making it to be useful 

predictor of biomass. In areas with dense forest 

less GLAS energy is likely to reach the ground 

causing HOME metric to increase; conversely in 

open areas more energy reaches the ground and 

reduces HOME (Drake et al. 2002). The HOME 

metric we used in this study is calculated using the 

difference of centroid range offset and ground 

return. We also calculated the ratio of HOME to 

maximum vegetation height (%HOME). 

Using the geolocation data of GLA14 data 

product the calculated parameters were exported to 

ArcGIS 10.4 software. We removed the footprints 

that fall on the areas having more than 15° of 

slope, the ones at the non-forest areas and the ones 

with extreme values due to cloud and other 

conditions. Ninety-four available GLAS footprints 

have been determined at the study area (fig. 1).  

Optical data and various vegetation indices 

derived from it has been widely used for AGB 

estimation (Saatchi et al., 2007; Lu et al., 2004; 

Dong et al., 2003). The correlations of these 

indices with AGB vary depending on many issues 

such as seasonality, background effects and species 

(Yavaşlı, 2016). In this study, we used 26 

vegetation indices that are widely mentioned to be 

interrelated with AGB to create biomass 

distribution map of the study area (see Appendix). 

ENVI 5.0 software is used to create the indices. 

The Landsat indices pixel values were 

combined with the GLAS footprint data using 

ArcGIS 10.4. The GLAS shots coincide with a 

single Landsat pixel. However, the shots are 

usually affected from the neighbor pixels. To 

overcome this issue, bilinear interpolation have 

been used in calculation of Landsat OLI pixel 

values on GLAS footprints.  

Because of the fact that the forests of the 

study area is comprised of Calabrian pine, the 

equation of Sun et al. (1980) has been used to 

calculate the AGB of each individual tree (eq. 1). 

AGB (kg/tree) = 0.128 × d2.267   (1) 

Where d is the diameter at breast height. All 

the individual tree biomass values at the field plots 

were then converted to AGB per hectare.  

Multiple linear regression analysis was used 

to model the relationship between AGB values 

collected from field, GLAS and Landsat OLI data. 

Multiple linear regression is a technique that 

estimates a single regression model with more than 

one outcome variable (Yavaşlı, 2016). 

In the first model (ModelA) HOME and 

%HOME parameters of 22 GLAS plots were used 

as independent variables while AGB estimates 

from the field data is used as dependent variable. 

AGB estimates of GLAS data that has been 

obtained from ModelA is used as dependent 

variable; Landsat OLI pixel values of each bands 

and pixel values of the indices are used as 

independent variable in the second model 

(ModelB). In the third model (ModelC) Landsat 

OLI pixel values of each bands and pixel values of 

the indices are used as independent variable where 

dependent variables are AGB estimates from the 

field data.  
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The dependent variable can be explained 

using either all of the independent variables or only 

the more related ones in multiple linear regression. 

The adjusted R2, which is a modified version of R2 

and gives the percentage of variation explained by 

only those independent variables that in reality 

affect the dependent variable, is used for the 

selection of the model.  

5. Results and Discussion 

5.1 ModelA – Biomass and ICESat 

Variance analysis results (table 1) show that 

HOME and %HOME parameters are related with 

AGB having a R2 of 0.87 (fig. 2) and this 

relationship is statistically significant given the fact 

that the probability corresponding to the F value is 

lower than 0.01 (table 2). ModelA explaining the 

AGB estimation using GLAS data is as follows: 

 

AGB ModelA =21.18 + 44.92 * HOME – 6.27 * %HOME  (2) 

 

5.2 ModelB – ICESat and Landsat 

ModelB uses the AGB estimations using 

ModelA for 94 GLAS shots and 26 variables 

obtained from Landsat OLI indices and pixel 

values of each bands. The selected model that has 

the highest adjusted R2 uses 13 variables (table 3) 

and is as follows: 

 

AGB – ModelB = -24115 – 8631 * ARVI - 3.54 * EVI - 48.76 

* L5 -9212 * ND53 + 2041 * RSR – 42394 * SAVI + 2.08 * 

TC2 - 0.53 * TC3 + 12067 * TM43 + 13270 * TM53 – 20514 

* TM54 – 1304 * TM57 + 0.92 * VIS123   (3) 

Variance analysis results (table 3) and 

variables selection table (table 4) show that the 

selected parameters of Landsat are related with 

AGB having a R2 of 0.52 (Fig. 7) and this 

relationship is statistically significant given the fact 

that the probability corresponding to the F value is 

lower than 0.01. However, it is considered that the 

R2 is insufficient to explain the AGB.  

5.3 ModelC – Biomass and Landsat 

ModelC uses the AGB estimates from the 

field data and 26 variables obtained from Landsat 

OLI indices and pixel values of each bands. 

Variance analysis results (table 5) show that 11 

parameters of Landsat OLI (table 6) are related 

with AGB having a R2 of 0.91. This relationship is 

statistically significant given the fact that the 

probability corresponding to the F value is lower 

than 0.01 (table 7). The equation is as follows: 

 

AGB - ModelC = -736767-97,59 * L2 - 98,50 * L3 – 45221 * 

ND53 -81734 * ND54 – 1409539 * ND57 - 10,62 * TC2 + 

2,35 * TC3 + 101078 * TM53 – 56462 * TM54 + 526452 

*TM57 + 5,71 * VIS123    (4) 

Using the equation 4 and “band math” in 

ENVI, we have created the AGB distribution map 

of study area (fig. 5). The non-forest areas are 

masked using NDVI threshold of 0.2. It may be 

observed that the higher biomass values generally 

take part on the northern of the study area. Most of 

the biomass values range between 50-200 t/ha.  

 

Table 1- Summary of the variables selection for ModelA. Selected model variables are shown bold. 

# of variables Variables MSE R² Adjusted R² 

1 HOME 2917,53 0.78 0.77 

2 HOME / RH50 1857,23 0.87 0.85 

 

Table 2- Analysis of variance for ModelA. 

 

Degree of 

freedom 

Sum of 

squares 

Mean 

squares 
F 

Pr > F 

(Sig.) 

Model 2 236485.02 118242.51 63.66 < 0.0001 

Error 19 35287.46 1857.23 
  

Corrected Total 21 271772.49 
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Figure 2- Observed vs predicted AGB using ModelA. 

 

 

Table 3: Summary of the variables selection for ModelB. Selected model variables are shown bold. 

# of 

variables 
Variables MSE R² 

Adjusted 

R² 

10 
ARVI / EVI / GEMI / L5 / RSR / TC1 / TM53 / TM54 / 

TM57 / VIS123 
3884.21 0.50 0.44 

11 
ARVI / EVI / GEMI / L5 / ND32 / RSR / TC3 / TM53 / 

TM54 / TM57 / VIS123 
3861.64 0.51 0.44 

12 
EVI / L5 / L7 / ND57 / RSR / SAVI / TC2 / TM43 / 

TM53 / TM54 / TM57 / VIS123 
3811.41 0.52 0.45 

13 
ARVI / EVI / L5 / ND53 / RSR / SAVI / TC2 / TC3 / 

TM43 / TM53 / TM54 / TM57 / VIS123 
3810.85 0.52 0.45 

 

 

 

 

Table 4: Analysis of variance for ModelB. 

 

Degree of 

freedom 

Sum of 

squares 

Mean 

squares 
F 

Pr > F 

(Sig.) 

Model 13 341739.21 26287.63 6.89 < 0.0001 

Error 80 304868.44 3810.85   

Corrected Total 93 646607.65    
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Figure 3: AGB calculated with ModelA vs predicted AGB using ModelB 

 

 

Table 5: Table 4: Analysis of variance for ModelC. 

 Degree of 

freedom 

Sum of 

squares 

Mean 

squares 

F Pr > F 

(Sig.) 

Model 11 247979.78 22543.61 9.47 0.0007 

Error 10 23792.70 2379.27   

Corrected Total 21 271772.49    

 

Table 6: Summary of the variables selection for ModelC. Selected model variables are shown bold. 
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L2 / L3 / ND54 / ND57 / TC2 / TM53 / TM54 / TM57 / 

VIS123 
3300.60 0.85 0.74 
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/ VIS123 
2381.75 0.90 0.81 

11 
L2 / L3 / ND53 / ND54 / ND57 / TC2 / TC3 / TM53 / 

TM54 / TM57 / VIS123 
2379.27 0.91 0.81 
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Figure 4: Observed vs predicted AGB using ModelC. 

 

 

Figure 5: AGB distribution of the study area. 
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6. Conclusion 

This study depictures the use of remotely 

sensed data of Landsat and GLAS for AGB 

estimation. ModelA shows that there is a statistical 

relationship between AGB and HOME and 

%HOME metrics derived from GLAS data with a 

R2 of 0.87 however ModelB indicated that the these 

metrics cannot be statistically related to Landsat 

data and various vegetation indices since the R2 

value is 0.52. The most of the AGB models based 

on GLAS data in literature explained the 

variability between 0.55–0.74 (Zolkos et al., 2013). 

The same method has been implemented in a 

different part of Turkey and had better results with 

a R2 of 0.73 (Yavaşlı, 2016). On the other hand, a 

better statistical relationship has been found with 

Landsat data and AGB with a R2 of 0.91 in 

ModelC. Using this model the AGB distribution 

map of study area, the Calabrian pine forests of 

Düzlerçamı, is created.  

The study succeeded to achieve encouraging 

results in estimation of AGB however, we 

acknowledge that there are some issues that needs 

to be improved. It is very clear that there is a 

considerable change in forest condition between 

the acquisition of GLAS data and fieldwork and 

Landsat data acquisition dates. This might be the 

major reason for ineffectualness of ModelB. 

Another issue is the effect of topography at the 

southeastern part of the study area. It may be 

noticed that there is a distinct AGB highness at the 

sides of the valley.  This is somehow unexpected 

since the Landsat data is terrain corrected. The 

aspect effect might be the reason for higher 

biomass values and it needs to be verified with 

additional fieldwork.  
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Appendix A: The list of the vegetation indices used 

ABBREVIATION DEFINITION REFERENCE 

ALB Albedo Lu et al. 2002 

ARVI 
Atmospherically Resistant Vegetation 

Index 
Kaufman and Tanre 1996 

ASVI 
Atmosphere 

Soil Vegetation Index 
Qi et al., 1994a 

EVI Enhanced Vegetation Index Huete et al., 1997 

GEMI Global Environmental Monitoring Index Pinty and Verstraete 1992 

MSAVI Modified Soil Adjusted Vegetation Index Qi et al., 1994b 

ND32 Normalized Difference Index 
Foody et al. 2003; 

Lu et al. 2004 

ND53 Normalized Difference Index 
Foody et al. 2003; 

Lu et al. 2004 

ND54 Normalized Difference Index 
Foody et al. 2003; 

Lu et al. 2004 

ND57 Normalized Difference Index 
Foody et al. 2003; 

Lu et al. 2004 

NDVI Normalized Difference Vegetation Index Tucker 1979; 

R271 Complex Ratio Foody et al. 2003; 

R327 Complex Ratio Foody et al. 2003; 

RSR Reduced Simple Ratio Brown et al. 2000 

SAVI Soil Adjusted Vegetation Index Huete 1988 

TM57 Simple Ratio Lu et al. 2004 

TM54 Simple Ratio Lu et al. 2004 

TM53 Simple Ratio Lu et al. 2004 

TM43 Simple Ratio Birth and McVey 1968 

VIS123 Visible Bands  

TC1 Tasseled Cap Brightness Crist and Cicone 1984 

TC2 Tasseled Cap Greenness Crist and Cicone 1984 

TC3 Tasseled Cap Wetness Crist and Cicone 1984 

TC4 Tasseled Cap Forth Crist and Cicone 1984 

TC5 Tasseled Cap Fifth Crist and Cicone 1984 

TC6 Tasseled Cap Sixth Crist and Cicone 1984 

 


