

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

863

Determining the Tested Classes with Software Metrics

Fatih Yücalar1*, Emin Borandağ1

1Department of Software Engineering, Faculty of Technology, Celal Bayar University, Manisa, Turkey

*fatih.yucalar@cbu.edu.tr; emin.borandag@cbu.edu.tr

*Corresponding author

Recieved: 26 July 2017

Accepted: 31 October 2017

DOI: 10.18466/cbayarfbe.330995

Abstract

Early detection and correction of errors appearing in software projects reduces the risk of exceeding the estimated

time and cost. An efficient and effective test plan should be implemented to detect potential errors as early as

possible. In the earlier phases, codes can be analyzed by efficiently employing software metric and insight can be

gained about error susceptibility and measures can be taken if necessary. It is possible to classify software metric

according to the time of collecting data, information used in the measurement, type and interval of the data

generated. Considering software metric depending on the type and interval of the data generated, object-oriented

software metric is widely used in the literature. There are three main metric sets used for software projects that are

developed as object-oriented. These are Chidamber & Kemerer, MOOD and QMOOD metric sets. In this study,

an approach for identifying the classes that should primarily be tested has been developed by using the object-

oriented software metric. Then, this approach is applied for selected versions of the project developed. According

to the results obtained, the correct determination rate of sum of the metrics method, which was developed to

identify the classes that should primarily be tested, is ranged between 55% and 68%. In the random selection

method, which was used to make comparisons, the correct determination rate for identifying the classes that should

primarily be tested is ranged between 9.23% and 11.05%. In the results obtained using sum of the metrics method,

a significant rate of improvement is observed compared to the random selection method.

Keywords —Software Fault Prediction, Software Quality and Assuarance, Software Metrics, Software Testing.

1. Introduction

Today, in the software world, approaches to software qual-

ity assurance and testing and object-oriented software met-

rics have become the most studied subjects. This is mainly

because the errors that occur in softwares and the increase

in the cost of correcting these errors have increased with

the growth of software projects. The software projects con-

sists of requirements analysis, design, coding, testing and

product creation. These software development steps follow

each other in succession. Especially software testings

should be considered at all stages of the software life-cycle.

V process model is a software development model in which

the testing process takes place at every stage of the software

and corresponds to each stage in a test step [1]. This model

applies the software testing process at each stage and from

the beginning of the development of the project. With these

planned testings, the quality of the software is checked. Po-

tential errors that may occur in the source code or in design

are determined at the earliest stage possible. It is very im-

portant to early detect the potential errors that may occur in

software projects in order to be able to consider the risk of

exceeding the estimated cost and duration. Examining soft-

ware errors to minimize these risks is extremely crucial.

The time that it takes to detect the errors in software directly

affects the time and cost of maintenance. While the cost of

correcting the errors found after software becomes a prod-

uct is quite high, the tests made to detect errors in advance

or during the development of the software considerably re-

duce these costs. Software maintenance costs constitute

more than half of software development cost. In addition,

softwares always undergo changes for different reasons

during their development process such as adding new fea-

tures, improving quality, and correcting errors. After each

modification, software testing is required to protect the in-

tegrity and stability of the software. That's why the software

testing is the most time-consuming and resource-intensive

activity of the software life-cycle [2, 3].

Software developers, testers and managers need to identify

critical parts of the software that must be tested first in or-

der to be able to use the time and resources more effec-

tively. Testing all the units and all the functionality in a soft-

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

864

ware project is very costly; sometimes this is even impos-

sible in terms of time and cost.

The main contribution of the study is clearly to identify the

classes that should primarily be tested has been developed

by using the object-oriented software metric. This study

consists of six chapters in total. In the second chapter, the

studies taking part in literature are mentioned. In the third

chapter, software metrics and quality concepts are dis-

cussed and the measurements used for the improvement of

software quality have been introduced. The fourth chapter

tells about the steps taken in the approach, metrics and pro-

ject information. The fifth chapter addresses experimental

studies while the last chapter includes conclusions and

evaluations obtained.

2. Related Works

In his study, Xiaowei [4] used a metric system in order to

prove the correctness of the metric used during mainte-

nance stage. He compared the metric frequently used dur-

ing maintenance stage. He used an equation to measure the

workload and defined many variables in this equation. He

has created a metric system for software maintenance.

These metrics were adapted to software organizations for

software maintenance and showed that they could be used

to solve quality management problems.

In the study of Kaur et al. [5] it is argued that higher quality

software are possible and and customer satisfaction can be

increased by revealing high-error points before project cod-

ing and giving these points to experienced employees. In

this study, they used the "Fuzzy C-Means Clustering Al-

ghorithms" to predict the modules that are error-prone or

not error-prone.

In their study, Raymond et al. [6] studied code readability

and examined the relationship between code readability

and software quality. In terms of readability, by collecting

data from 120 people, they revealed the relationship be-

tween a simple set of regional code features and human

ideas.

In their study, Ogasawara et al. [7] argue that many soft-

ware quality metrics have been proposed to understand

software products and processes over the last decade, and

that these quality measurements are used to manage soft-

ware quality in real projects.

In their study, Chaumun et al. [8] have introduced a change

effect model, thinking that system design can change. It is

important to find out which parts of the software are af-

fected by the changes made in the software, to ensure that

the software operates in a stable and correct way after the

change. Therefore, the main focus of their work is finding

out how the system will meet a change.

In the study carried out by Lee et al. [9], open-source

"JFreeChart" software was analyzed to understand the "fan-

in/out" dependency and compliance metric and software

development behavior. They have developed a software

called "JamTool" to extract software metric and quality fea-

tures. They examined the relationship between the increase

in the number of classes in the software analyzed in the ex-

perimental study and the dependency and compliance met-

ric. In addition, they investigated the change in the addic-

tion and compliance metric of the added and deleted clas-

ses. On the other hand, in their study, Kastro and Bener [10]

have proposed an artificial neural network based method-

ology that takes into account changes in older versions to

estimate the number of errors in the new version of the soft-

ware. They stated that changes to the writing process could

be an added, an algorithm modification or debugging. In

addition, considering the volume changes in code size, they

tried to correctly estimate the number of errors that could

occur in the new version.

In the study of Li and Leung [11], they have developed an

unchecked learning model in order to find error proneness.

The main idea in their work is that the components in the

same set of metrics have similar error proneness. The data

set they use contains error records and source codes for 12

different projects [12] from NASA. The obtained data were

pretreated and the data were normalized and the metric

equals were calculated. They aimed to find error proneness

patterns with the model they created by using the "Nearest

Neighbor" algorithm.

When these studies are evaluated, the software metrics are

used in the development process of the software projects.

Especially, software metrics are taken into consideration to

coding, integration and testing phases which will provide a

significant advantage in completing the software project. A

literature review shows a lack of studies focusing on soft-

ware metrics related to sum of the metrics method.

3. Software Quality

Total quality management is ensuring service quality re-

quirements for human, work, product/service which are

used to meet customer needs through a systematic approach

and with the contribution of all employees [13]. It has been

seen that the quality of industrial products has increased

with the use of total quality management on production

lines. Total quality management aims to improve processes.

A process is a sequence of interrelated events that starts

with an input and that generates a specific output with the

added value to the input. The basic principle of total quality

management is to produce quality products from well-de-

fined processes. It is aimed to obtain products with better

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

865

quality by providing continuous improvement of existing

processes. Quality standards such as ISO 12207 [14], ISO

15504 (SPICE) [15] and CMMI [16], which are based on

total quality principles, are used by software companies.

The basis of continuous improvement is the process plan-

ning, supervision, output and performance measurement

and process evaluation. Many byproducts can be created in

a process. When we look at the software development pro-

cess, the customer requirements analysis document, soft-

ware project management plan, design document, code, test

scenario and results can be considered as output. Measure-

ments obtained during the process are used to evaluate and

improve the process. The measurement, according to the

defined rules, is expressing the results of the observations

with numerical symbols by determining whether entities-

objects have a certain attribute or not, and if they have;

what are their degree of possession [17].

Software measurement is one of the most common ways of

monitoring software quality [18]. The measurement of the

software allows the determination of factors such as project

size, effort, cost, time spent and quality. Numeric data re-

lated to the software can be obtained by using the metric in

the software projects. This data provides project managers

with critical information about the development of the soft-

ware. Project managers can identify the risks that needs

precaution and conduct studies on them. They can also up-

date project plans using this data. In addition, they learn

about the result table that will appear in software mainte-

nance and testing. If necessary, they make improvement

plans/studies. In brief, the measurement results obtained in

software projects help project managers to manage projects

more effectively and with less risk.

3.1 The Concept of Software Quality

Software quality is described through a number of attrib-

utes and aims to identify their capability to achieve the soft-

ware requirements [19]. In addition, Crosby defines soft-

ware quality as meeting client requirements with zero error.

However, quality software needs to be completed within

anticipated budget and time. The software that meets cus-

tomer requirements but exceeds its budget or is too long to

be accepted is not considered to have good quality. Some

techniques have been developed to measure the quality of

the software. These techniques are based on the principle

of forming an opinion about the software quality by meas-

uring some features of the software by digitizing them and

interpreting/evaluating the result.

3.2 Software Metrics

Software metrics aim to display the quality of source code

and give understanding to it quantitatively [20]. It is possi-

ble to classify the software metric according to the collec-

tion time of the information, the information used in the

metric, the type and range of the data they produce. Accord-

ing to the time of collection of information, the software

measurements are divided into two: statically and dynami-

cally. Static measurements use the information obtained

without running the software. Dynamic measurements use

the information obtained during software operation.

When the software metrics are classified according to the

information used in the measurement, some metric only

look at the parameter access, while others consider all data

access of the methods. If we classify the software metric

according to the type and range of the data they produce,

the metric can be either real or integer values in the range

of [0, + ∞], real values in the range of bounds, real numbers

in the bounded range. There are three sets of metrics com-

monly used within object-based software metric. These are

Chidamber & Kemerer, MOOD and QMOOD sets of met-

rics [21].

3.2.1 Chidamber & Kemerer (CK) set of metric

There are 6 basic metric in the Chidamber & Kemer set of

metric and the definitions are given below [21].

 Weighted Methods per Class (WMC): The sum of the

complexities of all methods in a class. It helps to esti-

mate how much time will be spent developing and

maintaining the class.

 Depth of Inheritance Tree (DIT): The distance to the

root of the hereditary tree. For underived classes, this

metric measurement is 0. In the case of multiple in-

heritances, the metric measurement is the distance to

the farthest root.

 Number of Children (NOC): The number of sub-

classes derived directly from a class. The classes that

have multiple subclasses need more testing. This

metrix can be used to determine the budget to be spent

testing the relevant class.

 Coupling Between Object Classes (CBO): The num-

ber of classes that a class is dependent on. If methods

or qualities within a class are used in another class,

and there is no participation between classes, there is

dependency between these two classes. High depend-

ency means difficulty in care. It also reduces re-usa-

bility. Because high dependency would require more

testing, it also increases testing costs.

 Response For a Class (RFC): The number of all

methods that can be triggered when the methods of an

object in the class are called. Calling a large number

of methods in a message means increasing the cost of

the test, making debugging more difficult.

 Lack of Cohesion in Methods (LCOM): If P is the

cluster of method pairs which do not share any com-

mon quality variable and if Q is the cluster of method

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

866

pair which share common quality variable and if

{|P|>|Q| then it is |P||Q| or else 0}. If the compatibility

of the methods is low, it is necessary to separate the

subcomponents of the class. Since low compatibility

increases complexity, there is an increased risk of er-

rors in the development phase. Errors in the design of

classes can also be predicted by using these metric.

3.2.2 MOOD set of metric

MOOD (Metrics for Object Oriented Design) set of metric

deals with mechanisms such as message transfer, encapsu-

lation, inheritance, polymorphism of the method based on

the object [22].

 Method Hiding Factor (MHF): The ratio of callable

methods in all classes to all methods, regardless of the

inherent methods. This metric measures the visibility

of the class.

 Attribute Hiding Factor (AHF): The ratio of accessi-

ble qualities in all classes to all qualification, regard-

less of qualifications that come with inheritance. This

metric measures the visibility of the class, too.

 Method Inheritance Factor (MIF): The ratio of the

number of methods that come with inheritance in all

classes to the number of all methods.

 Attribute Inheritance Factor (AI): The ratio of the

number of qualifications that come with inheritance in

all classes to all qualifications.

 Polymorphism Factor (PF): The ratio of different

multiform situations of class C to the most likely mul-

tiform situations.

 Coupling Factor (CF): The ratio of the number of de-

pendencies between classes to the number of depend-

encies that can occur, regardless of the use of depend-

encies that come with inheritance.

3.2.3 QMOOD set of metric

QMOOD (Quality Model for Object Oriented Design) set

of metric is defined to calculate the total quality index of

the software [23]. It is a four-level hierarchical model:

 Software Quality Attributes: QMOOD software qual-

ity attributes are functionality, efficiency, intelligibil-

ity, extensibility, re-usability and flexibility.

 Object-Oriented Software Properties: These metrics

deal with inheritance, encapsulation, polymorphism,

abstraction, dependency, messaging, hierarchy, soft-

ware size, and complexity.

 Object-Oriented Software Metrics: There are eleven

metrics in the QMOOD metric set.

 Object-Oriented Software Components: Object-ori-

ented software components include attributes, meth-

ods, classes, relationships, and class hierarchy.

4. Approaches

This section explains the stages of the study done and the

relation between the metrics used and the maladjustment of

the classes. In addition, it discusses the approach adopted

for classifying errors.

Figure 1. The stages of the study

As seen in Figure 1, the stages of the study generally in-

clude taking information from the version repositories, cal-

culation of the metrics, making the necessary analyzes us-

ing the calculated metrics, determining the number of er-

rors on the basis of class and verifying the analysis results

with the determined number of errors.

 Taking information from the version repositories: At

this stage, a mature version of the relevant project is

taken from SVN repository.

 Calculation of metrics: At this stage, metric set for

classes which belong to the project are calculated by

using Understand tool.

 Making the necessary analyzes using the calculated

metrics: At this stage, the sum of metric equals for

each class is calculated using the metric equals of the

classes and the formula developed. The calculated

sum of metric equals is sorted starting from the high-

est value. Classes with the highest ranking sum of

metric equals (as 10% of the total number of classes)

is marked as the classes that should be tested as a pri-

ority.

 Determining the number of errors on the basis of

class: At this stage, the errors that are defined on the

basis of configuration on the bug tracking system of

the project are analyzed to find total sum of errors for

each class. At this stage, the aim is to make the verifi-

cation results healthier regardless of errors that are not

Taking Information
from the Version

Repositories

Calculation of the
Metric

Using the Calculated
Metric

Determaining the
Number of Errors on

the Basis of Class

Verifying Analysis
Results with

Determined Number
of Errors

Conclusions

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

867

related to any software class such as third party and

equipment errors defined in bug tracking system.

Moreover, it is also aimed at making verification re-

sults healthier by evaluating errors on bug tracking

system due to testings of project team and customer.

 Verifying the analysis results with the determined

number of errors: At this stage, the overlapping ratio

of the classes that are determined to be tested primar-

ily to the classes that have the most errors is calcu-

lated.

4.1 The Metrics Used in the Study

A total of seven metric were chosen to determine the classes

to be tested primarily. Here are the reasons for selecting

these metrics and how they are calculated in terms of error

susceptibility of the classes:

 Lines of Code (LOC): The total number of lines that

do not have any blank or comment in a class. The

higher this value, the more complex and vulnerable

this class will be.

 Average Complexity (AC): The average complexity

value of all methods of a class. The higher this value,

the more complex and vulnerable this class will be.

 Percent Lack of Cohesion (LCOM): It is the percent-

age of compatibility of methods with each other in a

class. Low compatibility indicates that the class per-

forms independent tasks and is therefore more vulner-

able to failure.

 Max Inheritance Tree (DIT): It is the distance from

the hereditary tree to its root. The fact that this value

is high means complex hierarchy and error-proneness.

 Response For a Class (RFC): The sum of the number

of methods in a class and the number of methods that

is accessible by an object through inheritance. The

fact that this value is high means that the class is big-

ger, which means that it is more vulnerable to failure.

 Number of Instance Variables (NIV): The number of

instance variables in a class. The fact that the instance

is high in number means that the class is more com-

plex and more vulnerable to failure.

 Weighted Methods per Class (WMC): It is the sum of

all the complexities of the methods in a class. The

complexity of the methods and the number of meth-

ods of a class can give an idea of how much time will

be spent developing and maintaining the class [24].

4.2 Information on Projects Used in the Study

This section provides information on a real-time simulation

project and a real-time signaling project used to verify the

proposed method.

Real-time simulation project (D project): This project is a

real-time submarine tactical simulator project. It is carried

out in a government institution with about 60 people in the

organization. The project started in 2005 and still contin-

ues. It reached approximately 1,500,000 line codes. In this

study, version 1.0.0 was used to verify with the error num-

bers belonging to the version delivered to the customer in

2011, and version 2.0.0 to verify with the error numbers of

the version delivered in 2014. Basic information of the pro-

ject is given in Table 1.

Table 1. D project version information

Number of Version 1.0.0 2.0.0

Date of Version 01.04.2007 04.05.2012

Number of Configuration

Items
70 95

Number of Classes 1720 1908

Real time signalling project (U project): U Project is a real

time signalling project. It is carried out in a government in-

stitution with about 10 people in the organization. The pro-

ject started in 2008 and completed in 2011. In this study,

version 1.0.0 was used to verify with the error numbers be-

longing to the version delivered to the customer in 2009 and

version 2.0.0 to verify with the error numbers belonging to

the version delivered in 2011. Basic information of the pro-

ject is given in Table 2.

Table 2. U project version information

Number of Version 1.0.0 2.0.0

Date of Version 05.10.2008
05.11.201

0

Number of Configuration

Items
32 45

Number of Classes 652 840

4.3 Methods to Identify the Classes to be Tested Primar-

ily

Two different methods were used in this section.

4.3.1 Random marking method

In this method, 10% of the classes in the selected versions

of the projects are marked as random priority classes to be

tested. Then, a comparison was made between the classes

that entered 10% in the class sequence and the success rate

was found. Marking was done 100 times for each version

of each project, with the minimum, maximum and average

success values, which can be seen in Table 3. This method

is used to compare with the method developed within the

scope of the study and to give an idea of whether there is

improvement within the scope of determining the classes to

be tested primarily.

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

868

Table 3. Results of random marking method

Pro-

ject
Version

Mini-

mum

Maxi-

mum
Average

D
1.0.0 2 32 16

2.0.0 2 45 21

U
1.0.0 0 15 6

2.0.0 1 18 8

According to the findings, the rate of correctly determining

the classes to be tested primarily with the random selection

method was 9.3% for the D project version 1.0.0, 11.05%

for the D project version 2.0.0, 9.23% for the U project ver-

sion 1.0.0, and 9.52% for the version 2.0.0.

4.3.1 Metric sum method

In the metric sum method developed within the scope of the

study, the Metric Equals List (MEL) belonging to the clas-

ses was created first. Sum of metric equals list (SMEL) be-

longing to the classes were also created by using these met-

ric values lists. MEL, which belongs to the classes is cre-

ated by calculating the metric equals for the concerning ver-

sion of the project and sorting the resulting values in de-

scending order. All metrics were subjected to normalization

process to be on the same weight, meaning between 0-100.

For the normalization process, the equation numbered 4.1

will be used.

𝑉𝑛 = (
𝑉−𝑀𝑖𝑛

𝑀𝑎𝑥−𝑀𝑖𝑛
) ∗ (𝑁𝑒𝑤𝑀𝑎𝑥 − 𝑁𝑒𝑤𝑀𝑖𝑛) + 𝑁𝑒𝑤𝑀𝑖𝑛

(4.1)

The Min and Max values in Equation 4.1 refer to the small-

est and the highest value of the corresponding metric equals

calculated of the classes. The V value specifies the initial

value of the relevant metric and the Vn value specifies the

normalized value of the relevant metric. After the Metric

Equals List is created, SMEL is created, the seven metric

equals of each class are summed up, and the resulting val-

ues are sorted in descending order. The top 10% of the ob-

tained MEL is marked as "the class to be tested primarily".

The process of the metric sum method is summarized step-

by-step in Table 4, in which the example data is generated.

Table 4. Creating MEL

X Metric

Class Value

S4 8

S2 11

S1 1

S3 4

First, the metric values of the project classes are calculated

and made a table. Seven metrics were selected to be uses in

the study. Table 5 shows the table version of the metric

equals calculated. Then, the calculated metric equals are

sorted in descending order.

Table 5. MEL ranking

X Metric

Class Value

S2 11

S4 8

S3 4

S1 1

Table 6 shows the ranking of the calculated values of any

metric.

Table 6. MEL normalization

X Metric

Class Value

S2 100

S4 70

S3 30

S1 0

Once the calculated metric equals are ranked, normaliza-

tion is performed using Equation 4.1. The results of nor-

malization performed on the ranked metric equals are given

in Tables 7, 8 and 9.

Table 7. X metric normalization process results

X Metric

Class Value

S2 100

S4 70

S3 30

S1 0

Table 8. Y metric normalization process results

Y Metric

Class Value

S3 100

S4 90

S1 50

S3 0

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

869

Table 9. Z metric normalization process results

Z Metric

Class Value

S3 100

S2 75

S4 20

S1 0

Finally, for each class in the project, normalized values of

seven metric are added. Thus, the sum of the metric values

of the classes is obtained. These values are again sorted in

descending order to obtain SMEL as seen in Table 10.

Table 10. Creating SMEL

Sums of the Metric

Class Value

S3 230

S4 180

S2 175

S1 50

5 Experimental Studies

For the selected versions of the projects that were worked

on, MEL and SMEL were created, the classes to be tested

primarily were determined, and the error numbers reported

on a class basis were found.

As shown in Table 1 and Table 2;

 The number of classes for the Project D Version 1.0.0

is 1720,

 The number of classes for the Project D Version 2.0.0

is 1908,

 The number of classes for the Project U Version 1.0.0

is 652,

 The number of classes for the Project U Version 2.0.0

is 840.

The number of classes to be marked accordingly as 10%;

 The number of classes for the Project D Version 1.0.0

must be 172,

 The number of classes for the Project D Version 2.0.0

must be 190,

 The number of classes for the Project U Version 1.0.0

must be 65,

 The number of classes for the Project U Version 2.0.0

must be 84.

Table 11. Number of classes to be tested primarily ac-

cording to MEL and SMEL methods

 D Project U Project

 Metrics 1.0.0 2.0.0 1.0.0 2.0.0

MEL

LC 122 95 32 60

AC 103 108 27 29

LCOM 60 47 28 39

DIT 43 72 21 24

RFC 107 104 38 66

NIV 89 122 25 31

WMC 124 120 30 38

SMEL TOTAL 117 110 36 52

Table 11 shows how many of the marked classes using the

MEL and SMEL methods actually occupy the 10% of the

most frequently detected error. For each version of each

project in the table, the correctly identified class numbers

calculated by separately using the seven-metric used in the

study and the correctly identified class numbers calculated

by using all seven metrics are included.

Table 12 shows what percentage of the marked classes us-

ing the MEL and SMEL methods actually occupy the 10%

of the most frequently detected error.

Table 12. Number of classes to be tested primarily ac-

cording to MEL and SMEL methods

 D Project U Project

 Metrics 1.0.0 2.0.0 1.0.0 2.0.0

MEL

LC %70.93 %50.00 %49.23 %71.42

AC %59.88 %56.84 %41.53 %34.52

LCOM %34.88 %24.73 %43.07 %46.42

DIT %25.00 %37.89 %32.30 %28.57

RFC %62.20 %54.73 %58.46 %78.57

NIV %51.74 %64.21 %38.46 %36.90

WMC %72.09 %63.15 %46.15 %45.23

SMEL
TO-

TAL
%68.02 %57.89 %55.38 %61.90

For each version of each project in the Table 12, the cor-

rectly identified class percentages calculated by separately

using the seven-metric used in the study and the correctly

identified class percentages calculated by using all seven

metrics are included.

The percentage values in Table 12 are calculated by divid-

ing the error numbers in Table 11 by 1/10 of the project

class numbers given in Tables 1 and 2.

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

870

When Table 12 is examined,

 For project D version 1.0.0, the metric that make

better estimations than sum of metric equals list

(SMEL) are respectively WMC and LC.

 For project D version 2.0.0, the metric that make

better estimations than sum of metric equals list

(SMEL) are respectively NIV and WMC.

 For project U version 1.0.0, the metric that make

better estimations than sum of metric equals list

(SMEL) are respectively RFC.

 For project U version 2.0.0, the metric that make

better estimations than sum of metric equals list

(SMEL) are respectively RFC and LC.

It can be deduced from this analysis that there is not a com-

mon metric that makes better estimates than the metric sum

method alone. When Table 12 is examined, the metric sum

method for all versions appears to give better results than

the average estimations of the seven metrics separately.

Also, for all versions it seems that there is no common met-

ric that gives the best or the worst result.

6. Conclusions and Reviews

The current software measurement trends are focusing on

software metrics, we will propose a sum of the metrics

method to identify the classes that should primarily be

tested has been developed by using the object-oriented soft-

ware metric.

According to the results obtained, it is seen that the percent-

age of metric sum method developed within the scope of

the study to determine the classes to be tested primarily is

between 55% and 68%. The percentage of random marking

method, which was used for comparing, developed within

the scope of this study to determine the classes to be tested

primarily is between 9.23% and 11.05%. It is observed that

the results obtained in the metric sum method show a sig-

nificant improvement compared to the random marking

method. In addition, for each selected version of each pro-

ject, the average of the rates of accurately determining the

classes to be tested primarily and separately for each metric

was found to be lower than the rate found by using the met-

ric sum method. The average success rates of the metric

were 53.82% for the project D version 1.0.0, 50.22% for

project D version 2.0.0; 44.17% for the project U version

1.0.0 and 48.80% for the project U version 2.0.0. In the

metric sum method, these values are respectively 68.02%,

57.89%, 55.38% and 61.90%.

When the result Tables are examined, it is observed that

some of the metric are more accurate than the metric sum

method alone. However, this is not the case for all the ver-

sions examined. In addition, when the four versions used

are considered, it is also seen that there is not a common

metric that makes more accurate estimations alone. It is,

therefore, understood that the metric sum method is more

reliable. Further studies are planned to create a more com-

prehensive study by calculating the success rates of all the

potential metric combinations to determine the classes to be

tested along with all the metric selected.

References
1. Tiftik, N, Öztarak, H, Ercek, G, Özgün, S, Sistem/Yazılım Geliştirme

Sürecinde Doğrulama Faaliyetleri, 3. Ulusal Yazilim Mühendisliği

Sempozyumu (UYMS’07), Ankara, 2007.

2. Song, O, Sheppard, M, Cartwright, M, and Mair, C, Software Defect

Association Mining and Defect Correction Effort Prediction, IEEE

Transactions on Software Engineering, 2006, 32(2), 69-82.

3. Fenton, N, Ohlsson, N, Quantitative Analysis of Faults and Failures

in a Complex Software System, IEEE Transactions on Software En-

gineering, 2000, 26(8), 797-814.

4. Xiaowei, W, The Metric System about Software Maintenance, 2011

International Conference of Information Technology, Computer En-

gineering and Management Sciences, Wuhan, 2011.

5. Kaur, A, Sandhu, P.S, Brar, A.S, An Empirical Approach for

Software Fault Prediction, 5th International Conference on Industrial

and Information Systems, Mangalore, India, 2010, pp 261–265.

6. Raymond, P.L, Weimer, B, Weimer, W.R, Learning a Metric for

Code Readability, IEEE Transactions of Software Engineering, 2010,

36(4), 546-558.

7. Ogasawara, H, Yamada, A, Kojo, M, Experiences of Software Qua-

lity Management Using Metrics through the Life-Cycle, 18th Interna-

tional Conference on Software Engineering, Berlin, 1996, pp 179–

188.

8. Chaumun, M, Kabaili, H, Keller, R, Lustman, F, Change Impact Mo-

del for Changeability Assessment in Object-Oriented Software Sys-

tems, Science of Computer Programming, Elsevier, 2002, 45(2-3),

155-174.

9. Lee, Y, Yang, J, Chang, K.H, Metrics and Evolution in Open Source

Software, Seventh International Conference on Quality Software

(QSIC 2007), IEEE: Portland, OR, 2007, pp 191-197.

10. Kastro, Y, Bener, A.B, A defect prediction method for software ver-

sioning, Software Quality Journal, Springer, 2008, 16(4), 543-562.

11. Li, L, Leung, H, Mining Static Code Metrics for a Robust Prediction

of Software Defect Proneness, International Symposium on Empirical

Software Engineering and Measurement, IEEE: Banff, AB, 2011, pp

207-214

12. NASA Datasets. (accessed 22.08.2014) http://promise.site.uot-

tawa.ca/SERepository/datasets-page.html

13. Efil, İ, Toplam Kalite Yönetimi ve Toplam Kaliteye Ulaşmada

Önemli Bir Araç: ISO 9000 Kalite Güvence Sistemi, Bursa: Uludağ

Üniversitesi Basımevi, s.29, 1995.

14. Galin, D, Software Quality Assurance: From Theory to Implementa-

tion, Addison Wesley, 2004; pp 510-514.

15. Loon, H.V, Process Assessment and ISO/IEC 15504: A Reference

Book, Springer, 2nd Edition, 2007.

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

Celal Bayar University Journal of Science

Volume 13, Issue 4, p 863-871 F. Yücalar

871

16. Hofmann, H, Yedlin, D.K, Mishler, J, Kushner, S, CMMI for Outso-

urcing: Guidelines for Software, Systems, and IT Acquisition, Addi-

son-Wesley Professional, 1st Edition, 2007, pp. 2-4.

17. Yücalar, F, Yazılım Ölçümüne Giriş, Maltepe Üniversitesi, Yazılım

Mühendisliği Bölümü, Yazılım Ölçütleri Ders Notları, 2013.

18. Arvanitoua, E.M, Ampatzoglou, A, Chatzigeorgiou, A, Avgeriou, P,

Software metrics fluctuation: a property for assisting the metric selec-

tion process, Information and Software Technology, 2016, 72, 110-

124.

19. Amara, D, Ben Arfa Rabai, L, Towards a New Framework of

Software Reliability Measurement Based on Software Metrics, 8th In-

ternational Conference on Ambient Systems, Networks and Techno-

logies (ANT 2017), Procedia Computer Science, 2017, 109, pp 725-

730.

20. Arar, Ö.F, Ayan, K, Deriving thresholds of software metrics to predict

faults on open source software: Replicated case studies, Expert Sys-

tems with Applications, 2016, 61, 106-121.

21. Chidamber, S, Kemerer, C, A Metrics Suite for Object-Oriented De-

sign, IEEE Transactions on Software Engineering, 1994, 20(6), pp

476-493.

22. Brito e Abreu, F, Pereira, G, Soursa, P, Coupling-Guided Cluster

Analysis Approach to Reengineer the Modularity of Object-Oriented

Systems, Conference on Software Maintenance and Reengineering,

IEEE: Washington, DC, USA, 2000, pp 13-22.

23. Bansiya, J, Davis, C, A Hierarchical Model for Object-Oriented De-

sign Quality Assessment, IEEE Transactions on Software Enginee-

ring, 2002, 28(1), pp 4-17.

24. Erdemir, U, Tekin, U, Buzluca, F, Nesneye Dayalı Yazılım Metrikleri

ve Yazılım Kalitesi, Yazılım Kalitesi ve Yazılım Geliştirme Araçları

Sempozyumu (YKGS’2008), İstanbul, 2008.

