
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, 2015, Vol.3, No.1

Copyright © BAJECE ISSN: 2147-284X February 2015 Vol:3 No:1 http://www.bajece.com

27

Abstract— This paper presents fast parallel sorting

algorithm which uses division in subsets and quick sort

algorithm. The proposed algorithm is evaluated by analytic

way and results shows that it will be faster than algorithm in

[3] when time for division in subsets of all set is bigger than

time for sending/receiving of partial subsets.

Index Terms — parallel sorting algorithm, quick sort,

subsets

I. INTRODUCTION

 EARLY 25% of the time during which the computer

works he sorts data [1]. The sorting is operation which

is a part of many algorithms. There are many sorting

algorithms- for common or special cases. In the group of

common (universal) sorting algorithms are: bubble sort,

selection sort, insertion sort, merge sort, quick sort and etc.

In group of private sorting algorithms are lexicographical

sort, bucket sort and other. One of most popular methods

for acceleration when it is necessary to sort big data arrays

is using multiprocessors system. In this case is necessary

to think about parallel architecture and memory

distribution to choose appropriate parallel algorithm.

II. PARALLEL SORTING WITH QUICK SORT

On figure 1 is shown processes allocation for “classic”

parallel quick sort algorithm [2]. For this algorithm number

of parallel processes depends of given row. In other words

for rows with same number of elements but different

character (number of inversions) the number of parallel

processes will be different.

In [3] is presented parallel sorting algorithm which is

faster than “classic” parallel quick sort. In this algorithm

number of parallel processes doesn’t depend of rows

character. On figure 2 is shown principle scheme of this

algorithm.

Atanaska Dimitrova Bosakova-Ardenska works in University of Food
Technologies, Plovdiv in Bulgaria. She is associated professor in

department of “Computer Systems and Technologies”(a_bosakova@uft-

plovdiv.bg).

Naiden Borisov Vasilev was head of department of “Computer Systems

and Technologies” in Technical University Sofia, branch in Plovdiv,

Bulgaria. (e-mail: mnvasilev@yahoo.com).

Lena Filipova Kostadinova-Georgieva is head of department of

“Computer Systems and Technologies” in University of Food
Technologies, Plovdiv, Bulgaria (e-mail: lenakostadinova@yahoo.com).

Fig.1 Process allocation

Fig.2 Principle scheme of algorithm

III. FAST PARALLEL SORTING ALGORITHM

The main idea is to divide the given big set of numbers

in small subsets. And then parallel sort these subsets with

fastest known universal sorting algorithm- quick sort. In

other words is used the technique “divide and conquer”. In

this paper will be discussed one modification of parallel

algorithm presented in [3] which will “parallelize” division

in subsets (sub-rows).

Let we use MPMD (Multiple Program Multiple Data)

model in version “Master/Slave” [4]. The “Master”

process will execute the next steps as follow:

 1) Open selected by user file with numbers for sorting;

2) Read numbers in one array;

3) Calculate count of elements in initial subsets

Fast Parallel Sorting Algorithm Using Subsets

and Quick Sort

A. Bosakova-Ardenska, N. Vasilev, L. Kostadinova-Georgieva

N

mailto:a_bosakova@uft-plovdiv.bg
mailto:a_bosakova@uft-plovdiv.bg
mailto:mnvasilev@yahoo.com
mailto:lenakostadinova@yahoo.com

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, 2015, Vol.3, No.1

Copyright © BAJECE ISSN: 2147-284X February 2015 Vol:3 No:1 http://www.bajece.com

28

considering number of parallel processes (n). Every

process must receive nearly equal piece of data;

4) Send to other processes initial subsets (from 1 to n-1).

The first subset will stand in master process;

5) Divide initial subset in n partial subsets. The steps are:

 - calculate bounds for subsets. The number of

bounds is equal to n+1. The first bound is 0 and last is max

(the maximal value for given numbers). The other bounds

are calculated by formula:

 Bi = i*]max/np[, i=1,2 to n-1 (1)

where with Bi is noted i-th bound. The expression “]

max/np [“ indicates that the np divides max as integer;

 - allocate memory for partial subsets;

 - divide numbers in partial subsets and store in

other array count of elements for every partial subset;

 - send to other processes count of elements for

their partial subset;

 - send to other processes their partial subset;

 - receiving from other processes first count of

elements for own partial subset and second – partial subset;

6) Sort own subset (which is built from n partial subsets)

with quick sort algorithm;

7) Receive from slave processes their sorted subsets;

8) Save sorted row in file.

Every “Slave” process will execute the next steps as

follow:

1) Receive initial subset;

2) Divide initial subset in n partial subsets. The steps are:

 - calculate bounds for subsets. The number of

bounds is equal to n+1. The first bound is 0 and last is max

(the maximal value for given numbers). The other bounds

are calculated by formula (1).

 - allocate memory for partial subsets;

 - divide numbers in partial subsets and store in

other array count of elements for every partial subset;

 - send to other processes count of elements for

their partial subset;

 - send to other processes their partial subset;

 - receiving from other processes first count of

elements for own partial subset and second – partial subset;

3) Sort own subset (which is build from n partial subsets)

with quick sort algorithm;

4) Send to master process sorted subset.

On Figure 3 is shown consolidated flow chart of parallel

algorithm.

Let show one example for sorting with our fast parallel

sorting algorithm. The initial conditions are:

- given row has 20 integers;

- number of parallel processes is 4 (n=4);

- range of numbers is: 1 to 100.

In this case bounds will be 5 and they will have the

values: 1, 25, 50, 75 and 100. The given row is: 90, 12, 55,

80, 3, 76, 92, 45, 33, 20, 13, 48, 55, 60, 100, 1, 10, 29, 77,

and 81. In table 1 are shown initial subsets (parallel step

1).

Fig. 3 Consolidated flow chart of parallel algorithm

TABLE 1

PARALLEL STEP 1 (INITIAL SUBSETS) FOR 4 PROCESSORS

Process 1
Process 2

Process 3 Process 4

90, 12, 55, 80, 3 76, 92, 45, 33, 20 13, 48, 55, 60, 100 1, 10, 29, 77, 81

After division of initial subset in partial subsets every

process will have 4 partial subsets as shown in Table 2

(parallel step 2).

TABLE 2

PARALLEL STEP 2 (PARTIAL SUBSETS) FOR 4 PROCESSORS

Process

Subset
Process 1

Process 2
Process 3 Process 4

1 (1-25) 12, 3 20 13 1, 10

2 (25-50) 45, 33 29

3 (50-75) 55 48, 55, 60

4 (75-100) 90, 80 76, 92 100 77, 81

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, 2015, Vol.3, No.1

Copyright © BAJECE ISSN: 2147-284X February 2015 Vol:3 No:1 http://www.bajece.com

29

After sending/receiving of partial subsets every process

will have own subset as shown in Table 3 (parallel step 3).

TABLE 3

PARALLEL STEP 3 (SUBSETS FOR SORTING) FOR 4 PROCESSORS

Process 1
Process 2

Process 3 Process 4

12, 3, 20, 13, 1, 10 45, 33, 29 55, 48, 55, 60 90, 80, 76,
 92, 100, 77, 81

The next step is sorting and after this every process will

have sorted subset (parallel step 4) which is shown in Table

4.

TABLE 4

PARALLEL STEP 3 (SORTED SUBSETS) FOR 4 PROCESSORS

Process 1
Process 2

Process 3 Process 4

1, 3, 10, 12,
13, 20

 29, 33, 45 48, 55, 55, 60 76, 77, 80, 81
, 90, 92, 100

It is obviously that sequential writing of subsets of

process 1 to process 4 will give all sorted row (set).

IV. EVALUATION OF ALGORITHM

Time for sorting with algorithm presented in [3] depends

of n and is noted with t1.

t1 = tds1 + tc1 + ts1 + tc1 = tds1 + 2tc1 + ts1 (2)

In formula 2 tds1 is time for division in subsets, tc1 is

time for sending/receiving of subsets and ts1 is time for

sorting of one subset with quick sort algorithm. Time for

sorting with our fast parallel sorting algorithm is presented

with formula 3.

t2 = tcis2 + tdps2 + tcps2 + ts2 + tcs2 (3)

In formula 3 tcis2 is time for sending/receiving of initial

subsets, tdps2 is time for division in partial subsets, tcps2

is time for sending/receiving of partial subsets, ts2 is time

for sorting of subset with quick sort algorithm and tcs2 is

time for sending/receiving of subsets.

To be our algorithm faster than algorithm in [3] it is

necessary to satisfied inequality:

 t2 < t1 (4)

Because initial partial subset is n times smaller than all

set we can think that tdps2 is n times smaller than tds1. The

time for sorting subsets ts1 and ts2 are equal because the

subsets are the same. Let us assume that tcis2 is equal to

tc1 - this means that subsets are almost equal by number.

In this case inequality 4 will be:

21

1
cpsds t

n

n
t

 (5)

where n is number of subsets (parallel processes).

V. CONCLUSION

In this paper was presented fast parallel sorting algorithm

which modify algorithm in [3]. The proposed algorithm

“parallelizes” division in subsets (sub-rows) and use

MPMD (Master/Slave) model. The algorithm is

appropriate for performance on supercomputers and

probably will be faster than “classic” parallel quick sort

and algorithm with division in subsets [3] in many cases.

In future will be interesting to evaluate experimentally

proposed algorithm and compare them with other known

parallel sorting algorithms.

REFERENCES

[1] Knuth D., The art of computer programming, V3. Sorting and

Searching, Addison Wesley Publishing Company, 1973.

[2] Wilkinson B. and Allen M., Sorting Algorithms, Parallel

Programming: Techniques and Applications Using Networked

Workstations and Parallel Computers, Prentice-Hall, 1999.
[3] Bosakova-Ardenska A., N. Vasilev, I. Fillipov, Fast parallel sorting

based on quick sort, TechSys 2013, Journal of the Technical
University Sofia, branch Plovdiv, “Fundamental Sciences and

Applications”, Vol. 19, 2013, ISSN 1310-8271, pp 35-40.

[4] Joseph JaJa, An Introduction to Parallel Algorithms, Addison-
Wesley publishing company, 1992.

BIOGRAPHIES

ATANASKA D. BOSAKOVA-ARDENSKA was

born in 1980. She received the M.Sc. degree of

Computer Systems and Technologies at Technical
University of Sofia, Plovdiv branch 2004. She

receives Ph.D. in 2009 with thesis “Parallel

information processing in image processing
systems”. From 2010 she is assistant in department

of Computer Systems and Technologies in

University of Food Technologies. From 2014 she is
associated professor by “Synthesis and Analysis of Algorithms” in

department of Computer Systems and Technologies in University of Food

Technologies in Plovdiv, Bulgaria. She is member of USB (Union of
Scientist in Bulgaria). Her research interests include: parallel algorithms,

sorting algorithms, image processing, MPI (Message Passing Interface),

C++ programming.
Contacts: aardenska@abv.bg, a_bosakova@uft-plovdiv.bg

NAIDEN B. VASILEV is associate professor in

department of “Computer Systems and
Technologies” at Technical University of Plovdiv.

He is receives Ph.D. in 1976. His research interests

include: parallel algorithms, discrete mathematics

and music.

Contacts: mnvasilev@yahoo.com

LENA Ph. KOSTADINOVA-GEORGIEVA

receives M.Sc. degree of Automation in technical

University Sofia 1975. She receives Ph.D. in 2003
with thesis “Automation of grading and sorting of

certain fruit and vegetables”. From 2005 she is

associated professor by “Automation, computing
and control systems”. She is head of department of

“Computer Systems and Technologies” in

University of Food technologies, Plovdiv, Bulgaria. Her research interests
include: application of cybernetic methods (management, pattern

recognition, diagnosis, machine vision) for objective analysis and

classification of foods.
Contacts: lenakostadinova@yahoo.com

mailto:aardenska@abv.bg
mailto:a_bosakova@uft-plovdiv.bg
mailto:mnvasilev@yahoo.com
mailto:lenakostadinova@yahoo.com

