A Note on Piecewise Endomorsphims

Necat Görentaş ${ }^{1 *}$
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, 65080, Van, Turkey * ngortas@yahoo.com

Abstract

Let $C=\left\{G_{\alpha}\right\}$ be a cover of G by maximal cylelic R-submodules of G and $N=\left\{f \in M_{R}(G)|f|_{G_{\alpha}}\right.$ can be extended to an endomorphismof $\left.G\right\}$ a subnear-ring of $M_{R}(G)$. We call N the near-ring of piecewise endomorhisms determined by (R, G, C). From [1] ask when is $N=M_{R}(G)$? from [2], it follows that if D is a PID and G is free D-module of finite rank n, than $M_{D}\left(D^{n}\right)=N$. In general this is not the case In addition in [1] it is an open problem whather the orbitranily modules on PID are true or not. In this work, we investigate two cases such that is not N is in $M_{R}(G)$.

Keywords: Near-rings, Piecewise endomorhisms.

Kısmi Endomorfizmalar Üzerine Bir Not

Özet: $C=\left\{G_{\alpha}\right\}, G \quad$ nin maksimal devirli R-alt modellerinden oluşan bir örtüsü ve $N=\left\{f \in M_{R}(G)|f|_{G}, G\right.$ nin bir endomorfizmasına genişletilebilir $\}$ olsun. $N, M_{R}(G)$ nin bir yakın alt halkası olup, (R, G, C) üçlüsü tarafından belirlenen kısmi endomorfizmalar yakın halkalarıdır. [1] de N nin hangi durumlarda $M_{R}(G)$ ye eşit olduğu sorulmaktadır. [2] de D nin bir temel ideal bölgesi ve G nin sonlu n - ranklı bir serbest D mevcut olması durumunda $M_{D}\left(D^{n}\right)=N$ eşitliği gösterilmiş ve [1] de temel ideal bölgesi üzerinde keyfi modüller için sonucun doğru olup olmadığı bir açık problemdir. Bu çalışmada, N nin $M_{R}(G)$ ye eşit olup - olmadığını araştıracağız.
Anahtar Kelimeler: Yakın halkalar, Kısmi endomorfizmalar.

Introduction

If R is a ring with identity and G is a unitary ringht R-module, the set
$M_{R}(G)=\{f: G \rightarrow G \mid f(a r)=(f a) r, a \in G, r \in R\}$ is a near-ring under the operations of function addition and function composition, called the centralizer nearring determined by (R, G). with respect to various pairs (R, G), the structure of these near-rings has been investigated in (Maxon and Smith, 1980; Maxon, 1990; Maxon et al., 1991a, 1991b, 1992).

We recall that a cover for an Rmodule G is a collection $C=\left\{G_{\alpha}\right\}$ of submodules of such that

- $0 \subset G_{\alpha} \subset G$,
- $G_{\alpha} \not \subset G_{\beta}$ for $\alpha \neq \beta$,
- $U G_{\alpha}=G$.

Now let $R=Z$, the ring of integers, $G=Z^{n}$ the free Z-module of rank n and let $C=\left\{G_{\alpha}\right\}$ be a cover by maximal cylic submodules. Further let $f \in M_{Z}\left(Z^{n}\right)$ be determined on

$$
G_{\alpha}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right] Z \quad \text { by } f\left(\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]\right)=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right] .
$$

Since G_{α} is a maximal submodule, we have $\quad \operatorname{ged}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1 \quad$ and so $\exists a_{1}, a_{2}, \ldots, a_{n} \in Z$
with $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=1$. But f can be represented on G_{α} by the matrix

Therefore, the function $\hat{f}: Z^{n} \rightarrow Z^{n}$ is determined by linear maps $\hat{f}(A)=A X$ such that $\left.\hat{f}\right|_{G_{\alpha}}=f$. That is, $\left.\hat{f}\right|_{G_{\alpha}}$ can be extended to an endomorphism of G.By this reason, every $f \in M_{Z}\left(Z^{n}\right)$ homogeneous map of Z^{n} is piecewise an endomorphism of Z^{n} as the following meaning: For each $G_{\alpha} \in C$, the exists $\delta \in \operatorname{End}_{Z}\left(Z^{n}\right)$ such that $f \mid G_{\alpha}=\delta$. That is, $f \mid G_{\alpha}$ can be extended to an endormorphism of G.By this reason, every $f \in M_{Z}\left(Z^{n}\right)$ homogeneous function of Z_{n} is a piecewise endomorhism of Z^{n} as the fowllowing meaning: For each $G_{\alpha} \in C$, the exists $\delta \in \operatorname{End}_{Z}\left(Z^{n}\right)$ such that $f \mid G_{\alpha}=\delta$.

Proposition

1.

Let $R=Z[x], G=(Z[x])^{3}$ and C be α
covering of G by maximal cylic submodules. Then $N \subset M_{Z}(G)$.
Proof. One can verify that

$$
A=\left[\begin{array}{c}
1 \\
x \\
x+2
\end{array}\right] Z[x] \in C
$$

Further, there exists $f \in M_{R}(G)$ with

$$
f\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left\{\begin{array}{l}
{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] k ; \text { if }\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
1 \\
x \\
x+2
\end{array}\right] k, k \in Z[x],} \\
{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] ; \text { if }\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \neq\left[\begin{array}{c}
1 \\
x \\
x+2
\end{array}\right] Z[x] .}
\end{array}\right.
$$

However, we cannot exted the function f to a $\delta \in \operatorname{End}_{R}(G)$ with

$$
\delta\left[\begin{array}{c}
1 \\
x \\
x+2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Beacuse, there are not non-constant polynamials that form a matrix $A=\left[A_{i j}(x)\right] \in M_{3}(Z[X])$ such that $x \in(Z[x])^{3}$ for

$$
\delta\left[\begin{array}{c}
1 \\
x \\
x+2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

In that case it follows that $N \subset M_{R}(G)$, where the domain $Z[x]$ is not a $P I D$.
Proposition 2. Let $R=Z$ and $G=(Z[x])^{3}$ in this case Z is modul over a PID of infinite rank.
Proof. When we consider the maximal cyclic submodules and f homogeneous function defined related to that submodul in Proposition 1, it can be shown that there exists $\delta \in E n d_{Z}(G)$ which has the some effect on the submodule and can be determined by the matrix,
$A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
$\delta \in E n d_{Z}(G)$ is \quad determined by $\delta(x)=A X, \delta \in E n d_{Z}(G) \quad$ and δ satisfies

$$
\delta\left[\begin{array}{c}
1 \\
x \\
x+2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x+2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

and

$$
\left.\delta\right|_{G_{\alpha}}=f .
$$

Proposition 3. Let $R=Z, G=Z^{m}$ (free Z-module of infinite rank). Let $C=\left\{G_{\alpha}\right\}$ be a cover of G by maximal cyclic submodules and $f \in M_{Z}\left(Z^{\infty}\right)$.The expansion of f to Z^{∞} is not only unique, It is possible in infinite number.

Proof.

$G_{\alpha}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) Z$ maksimal
$\Rightarrow \exists i_{1}, i_{2}, \ldots, i_{n} \in N^{+}$such that
$\operatorname{gcd}\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n}}\right)=1 ;$ so
$a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{n}} \in Z \quad$ such
that $a_{i_{1}} x_{i_{1}}+a_{i_{2}} x_{i_{2}}+\ldots . a_{i_{n}} x_{i_{n}}=1$ if
$f\left[x_{1}, x_{2}, \ldots, x_{n} \ldots\right]=f(x)=\left[c_{1}, c_{2}, \ldots, c_{n}, \ldots\right]$
for $j=1,2, \ldots, n$;
since
$c_{j}=a_{i_{1}} x_{i_{1}} c_{j}+a_{i_{2}} x_{i_{2}} c_{j}+\ldots a_{i_{n}} x_{i_{n}} c_{j}$
$F(x)=\left[\begin{array}{ccccccccccccccc}0 & \ldots & 0 & a_{i_{1}} c_{1} & 0 & \ldots & 0 & a_{i_{2}} c_{1} & 0 & \ldots & 0 & a_{i_{n}} c_{1} & 0 & \ldots \\ 0 & \ldots & 0 & a_{i_{1}} c_{2} & 0 & \ldots & 0 & a_{i_{2}} c_{2} & 0 & \ldots & 0 & a_{i_{n}} c_{2} & 0 & \ldots \\ . & & & & & & & & & & & & \\ . & & & & & & & & & & & \\ . & & & & & & & & & & & & \\ 0 & \ldots & 0 & a_{i_{1}} c_{n} & 0 & \ldots & 0 & a_{i_{2}} c_{n} & 0 & \ldots & 0 & a_{i_{n}} c_{n} & 0 & \ldots . \\ & . & & & & & & & & & & & \\ . & & & & & & & & & & & \\ . & & & & & & & & & & & \end{array}\right]\left[\begin{array}{c}. \\ x_{i_{1}} \\ x_{i_{2}} \\ . \\ . \\ \cdot \\ x_{i_{n}} \\ \cdot \\ . \\ .\end{array}\right]=A x$.

If we define $\beta: Z^{\infty} \rightarrow Z^{\infty}$ as $\beta(x)=A X$ then it is obvious that $\beta \in \operatorname{End}_{Z}\left(Z^{\infty}\right)$
and $\left.\beta\right|_{G_{\alpha}}=f$. Therefore the expansion of F to Z^{∞} can be done indefinitely rather than solely. Because since the components of the vector X which are prime among them can be selected infinitely.

Finally, let us give a proposition which shown that $N=M_{R}(G)$ may be countless infinite rank case.
Proposition4. Let $R=R$ be real field and $G=R^{R}$. Since R is a semi-simple ring, then G is a semi-simple R-module such that its rank countless in that case we have $N=M_{R}(G)$.
Proof.Each $0 \neq f \in G \quad$ element generates a maximal cycle R submodule, which forms a C cover of the maximal cycle submodule G. Since $G_{\alpha}=R \sin x \in C$ Then $F: G \rightarrow G$;
$F(f(x))=\left\{\begin{array}{l}r \cos ; \text { if } f(x)=r \sin x \in G_{\alpha} \\ 0 \quad \text {;if } f \notin G_{\alpha}\end{array}\right.$
where $F \in M_{R}(G)$ but
$F \notin \operatorname{End}_{R}(G) .\left.F\right|_{G_{\alpha}}: G_{\alpha} \rightarrow G_{\alpha}$
restricted function is an endomorphism of G_{α};

$$
\begin{aligned}
\mid G_{\alpha}\left(r_{1} \sin x+r_{2} \sin x\right) & =\left.\right|_{G_{\alpha}}\left[\left(r_{1}+r_{2}\right) \sin x\right] \\
& =\left(r_{1}+r_{2}\right) \cos x \\
& =r_{1} \cos x+r_{2} \cos x \\
& =\left.F\right|_{G_{\alpha}}\left(r_{1} \sin x\right)+\left.F\right|_{G_{\alpha}}\left(r_{2} \sin x\right)
\end{aligned}
$$

Since G is semi-simple then G has a G^{\prime} submodule such that $G=R \sin x+G^{\prime}$
Let us define $\hat{F}: G \rightarrow G$ as $F[r \sin x+g(x)]=F(r \sin x)=r \cos x,\left(a \in G^{\prime}\right)$.
Hence

$$
\begin{aligned}
& \hat{F}\left[r_{1} \sin x+g_{1}(x)+r_{2} \sin x+g_{2}(x)\right] \\
& \quad=\hat{F}\left[\left(r_{1}+r_{2}\right) \sin x+\left(g_{1}+g_{2}\right)(x)\right] \\
& =F\left[\left(r_{1}+r_{2}\right) \sin x\right] \\
& \left.=\left(r_{1}+r_{2}\right)(x)\right] \\
& =r_{1} \cos x+r_{2} \cos x \\
& =F\left(r_{1} \sin x\right)+F\left(r_{2} \sin x\right) \\
& =\hat{F}\left[r_{1} \sin x+g_{1}(x)\right]+\hat{F}\left[r_{2} \sin x+g_{2}(x)\right] .
\end{aligned}
$$

Then \hat{F} is an endomorphism and $\left.\hat{F}\right|_{G_{\alpha}}=F$. Let \bar{G} be the submodule of infinitely derivative functions of G where $G=R \sin x$. Let \bar{G} be a semisimple and write $\bar{G}=R \sin x+G_{1}$ as a direct complement of G_{1}. Let G be a

References

Maxson, C. J., Smith, K. C., 1980. Centralizer near-rings that are endomorphlsm rings.Proceedings of the American Mathematical Society. 80: 189-195.
Maxson, C. J., 1990. Piecewise endomorphisms of PID modules. Result in Mathematics. 18: 125132.

Maxson, C. J., Vander Walt, A. P. J., 1991a. Piecewise endomorphism of ring modules. Questions Mathematicae. 14: 419-431.
Maxson, C. J. Vander Walt, A. P. J., 1991b. Centralizer near-rings over free ring modules.Journal Austr. Math. Soc. 50: 279-296.
Maxson, C. J., Vander Walt, A. P. J., 1992. Homogenous maps as piecewise endomorphisms communications in algebra. 20;9: 2755-2776
semi-simple and write $\bar{G}=R \sin x+G_{1}$, where G_{1} is a direct complement of $R \sin x$. When we think of \hat{F} above G, Since
$\hat{F}[r \sin x+g(x)]=r \cos x,\left(g(x) \in G_{1}\right)$,
then \hat{F} extends F to an endomorphism of G.
$D: G \rightarrow G: D(f(x))=f^{\prime}(x)=\frac{d f(x)}{x}$.
The derivative mapping also extends F to G. Since
$D[r \sin x+g(x)]=r \cos x+g^{\prime}(x)$
then $D=F$.This indicates that the expansion may be more then one.

