Research Article

On Graphs of Dualities of Bipartite Posets

Selçuk Topal

Bitlis Eren University, Faculty of Science and Art, Department of Mathematics, Bitlis - Turkey s.topal@beu.edu.tr

Abstract

In this paper we introduce some new graphs obtained from bipartite posets. We show that lower-minimal graph of a bipartite poset is isomorphic to upper-maximal graph of dual of the poset by using set representations of the posets by using set representations of the posets.

Keywords: Poset, Lower-minimal graph, Upper-maximal graph

1. Preliminaries

In this section we give some definitions we shall use in this paper. We study with finite posets and finite simple graphs.

Definition 1.1. A partial order (Simovici, Dan A. and Djeraba, Chabane, 2008) is a binary relation \leq over a set P if it has:

$$
\begin{aligned}
& -\mathrm{a} \leq \mathrm{a} \text { for all } \mathrm{a} \in \mathrm{P} \text { (reflexivity), } \\
& \text { - if } \mathrm{a} \leq \mathrm{b} \text { and } \mathrm{b} \leq \mathrm{a} \text { then } \mathrm{a}=\mathrm{b}, \mathrm{a}, \mathrm{~b} \in \mathrm{P} \text { (antisymmetry), } \\
& \text { - if } \mathrm{a} \leq \mathrm{b} \text { and } \mathrm{b} \leq \mathrm{c} \text { then } \mathrm{a} \leq \mathrm{c}, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathrm{P} \text { (transitivity). }
\end{aligned}
$$

Definition 1.2. (Simovici, Dan A. and Djeraba, Chabane, 2008) Let $P=(X, \leq P)$ be a poset and $x, y \in X$. If $x \leq P y$ and x $\neq y$ then $x<P y$.

Definition 1.3. (Simovici, Dan A. and Djeraba, Chabane, 2008) Let $P=(X, \leq P)$ be a poset. An element $x \in X$ is called a maximal element (respectively, a minimal element) of P if there is no element $y \in X$ with $x<P$ y in P (resp., $y<P x$ in P). We denote the set of all maximal elements of a poset P by $\max (\mathrm{P})$, while $\min (\mathrm{P})$ denotes the set of all minimal elements of P .

Definition 1.4. (Steiner, G., and Stewart, L. K., 1987) A bipartite poset is a triple $\mathrm{P}=(\mathrm{X}, \mathrm{Y} ; \leq)$, where \leq is a partial order on $X \cup Y$ and if $x<y$ in P, then $x \in X$ and $y \in Y$. $X=$ $\max (\mathrm{P})$ and $\mathrm{Y}=\min (\mathrm{P})$.

Definition 1.5. A dual poset Pd^{d} of a poset P is defined to be $x \leq y$ holds in Pd if and only if $y \leq x$ holds in P.

Figure 1. An example for P^{d} of a poset P

Definition 1.6. (Civan, Y., 2013) Let $\mathrm{P}=(\mathrm{X}, \leq \mathrm{P})$ be a poset. For a given $\mathrm{x} \in \mathrm{X}$, we define $\min (\mathrm{x}):=\{\mathrm{c} \in \min (\mathrm{P}): \mathrm{c} \leq \mathrm{P} x\}$.

Definition 1.7. A graph G is an ordered pair of disjoint sets (V, E), where $E \subseteq V \times V$. Set V is called the vertex or node set, while set E is the edge set of graph G. A simple graph does not contain self-loops.

Definition 1.8. (Chartrand, G., 1985) Let G $=(\mathrm{V}, \mathrm{E})$ and $\mathrm{G}_{1}=$ ($\mathrm{V}_{1}, \mathrm{E}_{1}$) be graphs. G and G_{1} are said to be isomorphic (G $\sim G_{1}$) if there exist a pair of functions $f: V \rightarrow V_{1}$ and $f: E$ $\rightarrow E_{1}$ such that f associates each element in V with exactly one element in V_{1} and vice versa; g associates each element in E with exactly one element in E_{1} and vice versa, and for each $v \in V$, and each $e \in E$, if v is an endpoint of the edge e, then $f(v)$ is an endpoint of the edge $g(e)$.

Definition 1.9. (Skienna. S, 2003) Chromatic number of a graph $\mathrm{G}, \chi(\mathrm{G})$ is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Definition 1.10. (Civan, $\mathrm{Y} ., 2013$) Let $\mathrm{P}=(\mathrm{X}, \leq \mathrm{P})$ be a poset. For a given $\mathrm{x} \in \mathrm{X}$, we define $\max (\mathrm{x}):=\{\mathrm{c} \in \max (\mathrm{P}): \mathrm{x} \leq \mathrm{P}$ c\}.

Definition 1.11. (Civan, Y., 2013) The upper-maximal $\operatorname{graph} \mathrm{UM}(\mathrm{P})=(\mathrm{X}, \mathrm{EUM}(\mathrm{P}))$ of $\mathrm{P}=(\mathrm{X}, \leq)$ is defined to be the simple graph on X with $x y \in U M(P)$ if and only if $x \neq y$ and either $\max (\mathrm{x}) \subseteq \max (\mathrm{y})$ or $\max (\mathrm{y}) \subseteq \min (\mathrm{x})$ holds. The graph is called UM-graph.

P

Figure 2. An example for UM-graph of a poset P
Definition 1.12. (Civan, Y., 2013) The lower-minimal $\operatorname{graph} \operatorname{LM}(P)=(X, \operatorname{ELM}(P))$ of $P=(X, \leq)$ is defined to be the simple graph on X with $x y \in L M(P)$ if and only if $x \neq y$ and
either $\min (x) \subseteq \min (y)$ or $\min (y) \subseteq \min (x)$ holds. The graph is called LM-graph.

Figure 3. An example for LM-graph of a poset P

2. Set Representations of Graphs of Bipartite Posets

We want to obtain lower-minimal graph and uppermaximal graph of dual poset of a bipartite poset by using representations in Definition 1.3 and Definition 1.4 in order to analyze graph theotretical relations between the graphs.

Definition 2.1 Let $\mathrm{P}=(\mathrm{X}, \mathrm{Y}$; \leq) be a bipartite poset. Set terms are elements of P under interpretation of [[]] such that $[[y]]=\{x 1, x 2, x 3, \ldots, x n\}$ where $y \in Y, x 1, x 2, x 3, \ldots, x n \in X$ and $\mathrm{y}<\mathrm{x} 1, \mathrm{y}<\mathrm{x} 2, \ldots, \mathrm{y}<\mathrm{xn}$.

Definition 2.2 Let $\mathrm{P}=(\mathrm{X}, \mathrm{Y} ; \leq)$ be a bipartite poset. Upper set terms are elements of P under interpretation of [[]] such that $[[y]]^{U}=\{x 1, x 2, x 3, \ldots, x n\}$ where $y \in Y, x 1, x 2, x 3, \ldots$, $x n \in X$ and $y>x 1, y>x 2, \ldots, y>x n$.

3. Proofs

Proposition 2.1. LM-graph of every bipartite poset is representable by set terms of the poset as Definition 2.1.

Proof. Let $\mathrm{P}=(\mathrm{X}, \mathrm{Y} ; \leq)$ be a bipartite poset. One can obtain $[[y]]=\{x 1, x 2, x 3, \ldots, x n\}$ for all $y \in Y$ and $, x 1, x 2, x 3, \ldots, x n \in X$ by taking $Y=\min (P), X=\max (P)$ and $y<x 1, y<x 2, \ldots, y<x n$. Under the circumtances, ELM(XUY) is obtained by taking xiy $\in E L M(X U Y)$ and $\min (x i) \subseteq \min (y)$ for all $y \in Y$ and 1 $\leq \mathrm{i}<\mathrm{n}$. On the other hand, it is true that xixj $\in \operatorname{ELM}(X U Y)$ $\operatorname{since} \min (x i) \subseteq \min (x j)$ or $\min (x j) \subseteq \min (x i)$ for $y<x i, y<x j$ for $1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{n}$. Therefore, the lower-minimal graph is LM $(P)=(X U Y, E L M(X U Y))$.

Lemma 2.2. Let $\mathrm{P}=(\mathrm{X}, \mathrm{Y} ; \leq)$ be a bipartite poset with $\min (P)=X, \max (P)=Y$ and $[[x i]]$ are set terms of P where $1 \leq$ $\mathrm{i} \leq \mathrm{n}$ and $y j \in \mathrm{Y}$ such that $1 \leq \mathrm{j} \leq \mathrm{m}$. Then all [[yj]] which hold the condition " if yj $\in[[x i]]$ then xi $\in[[y j]]$ " are set terms of Pd^{d} for all $\mathrm{xi} \in \mathrm{X}, 1 \leq \mathrm{i} \leq \mathrm{n}$ and for all yj $\in \mathrm{Y}, 1 \leq \mathrm{j} \leq$ m.

Proof. Let $\mathrm{P}=(\mathrm{X}, \mathrm{Y} ; \leq)$ be a bipartite poset with $\min (\mathrm{P})=\mathrm{X}$, $\max (\mathrm{P})=\mathrm{Y}$ and $[[\mathrm{xi}]]$ are set terms of P where $1 \leq \mathrm{i} \leq \mathrm{n}$ and $y j \in Y$ such that $1 \leq j \leq m$. It is obvious that $P d=(X, Y, \leq)$ is a bipartite poset with $\max (\mathrm{P})=\mathrm{X}$ and $\min (\mathrm{P})=\mathrm{Y}$. İf $\mathrm{xi}<\mathrm{yj}$ in P than $x i>y j$ in $P d$ from Definition 2.1. Therefore, every [[yj]] is a set term in Pd for all yj $\in P$.

Theorem 2.3. If $P=(X, Y ; \leq)$ is a bipartite poset with $\min (P)=X, \max (P)=Y$ and $[[x i]]$ are set terms of P where $1 \leq$ $\mathrm{i} \leq \mathrm{n}$ then $[[\mathrm{xi}]]^{\mathrm{U}}$ are upper set terms of P^{d} where $1 \leq \mathrm{i} \leq \mathrm{n}$.

Proof. Let $\mathrm{P}=(\mathrm{X}, \mathrm{Y} ; \leq)$ be a bipartite poset with $\min (\mathrm{P})=\mathrm{X}$, $\max (\mathrm{P})=\mathrm{Y}$ and $[[\mathrm{xi}]]$ are set terms of P where $1 \leq \mathrm{i} \leq \mathrm{n}$. Then there exist $x i<y 1, x<y 2, \ldots, x i<y j, 1 \leq j \leq m$ in P. $x i>y 1$, $x i>y 2, \ldots, x i>y j$ in P^{d} from Definition 1.5. We conclude [[xi]]U are upper set terms for P^{d} where $1 \leq \mathrm{i} \leq \mathrm{n}$ from Definition 2.2.

Corollary 2.4. If P is bipartite poset then $\mathrm{LM}(\mathrm{P}) \sim \mathrm{UM}\left(\mathrm{P}^{\mathrm{d}}\right)$ and $\mathrm{UM}(\mathrm{P}) \sim \mathrm{LM}\left(\mathrm{P}^{\mathrm{d}}\right)$.

Proof. It is easy to see from Definition 1.8 and Theorem 2.3.

Corollary 2.5. If P is bipartite poset then $\chi(\mathrm{LM}(\mathrm{P}))=\chi$ $\left(\mathrm{UM}\left(\mathrm{P}^{\mathrm{d}}\right)\right)$ and $\chi\left(\mathrm{LM}\left(\mathrm{P}^{d}\right)\right)=\chi(\mathrm{UM}(\mathrm{P}))$.

Proof. It is easy to see from Corollary 2.4.

References

Civan, Y., 2013, Upper Maximal Graphs of Posets, Order, 30(2), pp. 677-688.
Chartrand, G., 1985, Isomorphic Graphs, Introductory Graph Theory, New York, Dover, pp.32-40
Gratzer, G., 1998, Lattice Theory: Faoundation, Springer Scinece and Bussiness Media; pp. 5-6.
Simovici, Dan A. and Djeraba, Chabane, 2008, Partially Ordered Sets, Mathematical Tools for Data Mining: Set Theory, Partial Orders, Combinatorics, Springer, 616 p.
Skiena, S., 2003, Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, Cambrodge University Press, pp. 306-316.
Steiner, G., and Stewart, L. K., 1987, A linear time algorithm to find the jump number of 2-dimensional bipartite partial orders, Order, 3(4), pp. 359-367.

