http://www.newtheory.org

ISSN: 2149-1402

Received: 01.01.2015 *Accepted*: 23.03.2015 Year: 2015, Number: 3, Pages: 89-97 Original Article^{**}

Q-FUZZY IDEAL OF ORDERED Γ -SEMIRING

Debabrata Mandal^{*} <dmandaljumath@gmail.com>

Department of Mathematics, Raja Peary Mohan College, Uttarpara, Hooghly-712258, India

Abstract – The notion of Q-fuzzy ideal in ordered Γ -semiring is introduced and studied along with some operations. Among all other results, it is shown that the set of all Q-fuzzy ideals of a Γ -semiring forms a complete lattice. They also form a zerosumfree Γ -semiring under the operations of sum and composition of Q-fuzzy ideals.

 $Keywords - \Gamma$ -semiring, Q-fuzzy, intersection, lattice, normal.

1 Introduction

The fundamental concept of fuzzy set, introduced by Zadeh [10], provides a natural frame-work for generalizing several basic notions of algebra . Jun and Lee [5] applied the concept of fuzzy sets to the theory of Γ -rings. The notion of Γ -semiring was introduced by Rao [9] as a generalization of Γ -ring as well as of semiring [3].

Majumder [8] introduced and studied the concept of Q-fuzzification of ideals of Γ -semigroups. Akram et al [1], Lekkoksung [6, 7] extended this concept in case of Γ -semigroup and ordered semigroups [4] and investigated some important properties.

Main object of the present paper is to define ordered Γ -semiring and study its ideals using the concept of Q-fuzzification.

2 Preliminary

Definition 2.1. A semiring is a system consisting of a non-empty set S on which operations addition and multiplication (denoted in the usual manner) have been defined such that (S, +) is a semigroup, (S, \cdot) is a semigroup and multiplication distributes over addition from either side.

A zero element of a semiring S is an element 0 such that $0 \cdot x = x \cdot 0 = 0$ and 0 + x = x + 0 = x for all $x \in S$. A semiring S is zerosumfree if and only if s + s' = 0 implies that s = s' = 0.

Definition 2.2. Let S and Γ be two additive commutative semigroups with zero. Then S is called a Γ -semiring if there exists a mapping $S \times \Gamma \times S \to S$ ($(a, \alpha, b) \mapsto a\alpha b$) satisfying the following conditions:

(i) $(a+b)\alpha c = a\alpha c + b\alpha c$,

^{**} Edited by Samit Kumar Majumder and Naim Çağman (Editor-in-Chief). *Corresponding Author.

- (ii) $a\alpha(b+c) = a\alpha b + a\alpha c$,
- (iii) $a(\alpha + \beta)b = a\alpha b + a\beta b$,
- (iv) $a\alpha(b\beta c) = (a\alpha b)\beta c$,
- (v) $0_S \alpha a = 0_S = a \alpha 0_S$,
- (vi) $a0_{\Gamma}b = 0_S = b0_{\Gamma}a$

for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$. For simplification we write 0 instead of 0_S and 0_{Γ} .

Example 2.3. Let S be the set of all $m \times n$ matrices over $\mathbf{Z}_{\mathbf{0}}^{-}$ (the set of all non-positive integers) and Γ be the set of all $n \times m$ matrices over $\mathbf{Z}_{\mathbf{0}}^{-}$, then S forms a Γ -semiring with usual addition and multiplication of matrices.

Definition 2.4. A left ideal I of Γ -semiring S is a nonempty subset of S satisfying the following conditions:

- (i) If $a, b \in I$ then $a + b \in I$,
- (ii) If $a \in I$, $s \in S$ and $\gamma \in \Gamma$ then $s\gamma a \in I$.

A right ideal of S is defined in an analogous manner and an ideal of S is a nonempty subset which is both a left ideal and a right ideal of S.

Definition 2.5. An ordered Γ -semiring is a Γ -semiring S equipped with a partial order \leq such that the operation is monotonic and constant 0 is the least element of S.

Definition 2.6. A left (resp. right) ideal I of S is called a left (resp. right) ordered ideal, if for any $a \in S, b \in I, a \leq b$ implies $a \in I$ (i.e., $(I] \subseteq I$). I is called an ordered ideal of S if it is both a left and a right ordered ideal of S.

Now we recall the example of ordered ideal from [2].

Example 2.7. Let $S = ([0, 1], \lor, \lor, 0)$ where [0,1] is the unit interval, $a \lor b = \max\{a, b\}$ and $a \cdot b = (a + b - 1) \lor 0$ for $a, b \in [0, 1]$. Then it is easy to verify that S equipped with the usual ordering \leq is an ordered semiring and $I = [0, \frac{1}{2}]$ is an ordered ideal of S.

Definition 2.8. A fuzzy subset f of a non-empty set S is defined as a mapping from S to [0,1].

Definition 2.9. A function μ from $S \times Q$ to the real closed interval [0, 1] is called *Q*-fuzzy subset of S, where Q is a non-empty set.

Definition 2.10. Let μ be a Q-fuzzy subset of a set S and $t \in [0,1]$. The set

$$\mu_t = \{ (x,q) \in S \times Q | \mu(x,q) \ge t \}$$

is called the level subset of μ . Clearly, $\mu_t \subseteq \mu_s$, whenever $t \ge s$.

Definition 2.11. The characteristic function $\chi_{A \times Q}$ of $A \times Q$, is the mapping of $S \times Q$ to [0, 1] defined by

$$\chi_{A \times Q}(x, q) = 1 \text{ if } (x, q) \in A \times Q$$

= 0, if $(x, q) \notin A \times Q$

Definition 2.12. The union and intersection of two *Q*-fuzzy subsets μ and σ of a set *S*, denoted by $\mu \cup \sigma$ and $\mu \cap \sigma$ respectively, are defined as

$$(\mu \cup \sigma)(x,q) = \max\{\mu(x,q), \sigma(x,q)\} \text{ for all } x \in S, \ q \in Q$$
$$(\mu \cap \sigma)(x,q) = \min\{\mu(x,q), \sigma(x,q)\} \text{ for all } x \in S, \ q \in Q.$$

3 Main Results

Throughout this paper unless otherwise mentioned S denotes the ordered Γ -semiring.

Definition 3.1. Let μ and ν be two *Q*-fuzzy subsets of an ordered Γ -semiring *S* and *x*, *y*, *z* \in *S*, $\gamma \in \Gamma$, $q \in Q$. We define composition and sum of μ and ν as follows:

$$\mu \circ_1 \nu(x,q) = \sup_{\substack{x \le y\gamma z \\ = 0, \text{ if } x \text{ cannot be expressed as } x \le y\gamma z}$$

and

$$\mu +_1 \nu(x,q) = \sup_{\substack{x \le y+z \\ = 0, \text{ if } x \text{ cannot be expressed as } x \le y+z. }$$

Proposition 3.2. For any *Q*-fuzzy subset μ of an ordered Γ -semiring S, $(\chi_{S \times Q} o_1 \mu)(x, q) \ge (\chi_{S \times Q} o_1 \mu)(y, q)$ (resp. $(\chi_{S \times Q} + \mu)(x, q) \ge (\chi_{S \times Q} + \mu)(y, q)) \forall x, y \in S, q \in Q$ with $x \le y$.

Proof. Let μ be a Q-fuzzy subset of an ordered Γ -semiring S and $x, y \in S$ with $x \leq y$. If y cannot be expressed as $y \leq y_1 \gamma y_2$ for $y_1, y_2 \in S$ and $\gamma \in \Gamma$ then the proof is trivial so we omit it. Let y have such an expression. Then

$$(\chi_{S \times Q} o_1 \mu)(y, q) = \sup_{y \le y_1 \gamma y_2} \{ \min\{\chi_{S \times Q}(y_1, q), \mu(y_2, q)\} \} = \sup_{y \le y_1 \gamma y_2} \{ \mu(y_2, q) \}.$$

Since $x \leq y \leq y_1 \gamma y_2$, we have

$$\begin{aligned} (\chi_{S \times Q} o_1 \mu)(x, q) &= \sup_{x \le x_1 \gamma x_2} \{ \min\{\chi_{S \times Q}(x_1, q), \mu(x_2, q)\} \} \\ &\geq \sup_{x \le y_1 \gamma y_2} \{ \min\{\chi_{S \times Q}(y_1, q), \mu(y_2, q)\} \} \\ &= \sup_{y \le y_1 \gamma y_2} \{ \mu(y_2, q)\} = (\chi_{S \times Q} o_1 \mu)(y, q). \end{aligned}$$

Similarly for $x \leq y$, we can prove that $(\chi_{S \times Q} +_1 \mu)(x,q) \geq (\chi_{S \times Q} +_1 \mu)(y,q)$.

Definition 3.3. Let μ be a non empty Q-fuzzy subset of an ordered Γ -semiring S (i.e., $\mu(x) \neq 0$ for some $x \in S$). Then μ is called a Q-fuzzy left ideal [resp. Q-fuzzy right ideal] of S if

- (i) $\mu(x+y,q) \ge \min\{\mu(x,q), \mu(y,q)\},\$
- (ii) $\mu(x\gamma y, q) \ge \mu(y, q)$ [resp. $\mu(x\gamma y, q) \ge \mu(x, q)$] and
- (iii) $x \le y$ implies $\mu(x,q) \ge \mu(y,q)$.

for all $x, y \in S, \gamma \in \Gamma$ and $q \in Q$.

By a Q-fuzzy ideal we mean, it is both a Q-fuzzy left ideal as well as a Q-fuzzy right ideal.

Theorem 3.4. A *Q*-fuzzy subset μ of *S* is a *Q*-fuzzy ordered ideal if and only if its level subset μ_t , $t \in [0, 1]$ is an ordered ideal of $S \times Q$.

Proof. We only prove the theorem only for left ordered ideal. For right ordered ideal it follows similarly. Let μ be a Q-fuzzy left ordered ideal of S. Suppose $a \in S$ and $b \in \mu_t$ with $a \leq b$. As μ is a Q-fuzzy left ordered ideal of S, $\mu(a,q) \geq \mu(b,q) \geq t$ so that $a \in \mu_t$ i.e., μ_t is a left ordered ideal of $S \times Q$.

Conversely, if μ_t is a left ordered ideal of $S \times Q$, then μ is a Q-fuzzy ideal of S. Now suppose $x, y \in S$ with $x \leq y$. We have to show that $\mu(x,q) \geq \mu(y,q)$. Let $\mu(x,q) < \mu(y,q)$. Then there exists $t_1 \in [0,1]$ such that $\mu(x,q) < t_1 < \mu(y,q)$. Then $(y,q) \in \mu_{t_1}$ but $(x,q) \notin \mu_{t_1}$ which is a contradiction to the fact that μ_t is a left ordered ideal of $S \times Q$.

 \square

Definition 3.5. Let μ be a Q-fuzzy subset of an ordered Γ -semiring S and $a \in S$. We denote I_a the subset of $S \times Q$ defined as follows:

$$I_a = \{(b,q) \in S \times Q | \mu(b,q) \ge \mu(a,q)\}.$$

Proposition 3.6. Let S be an ordered Γ -semiring and μ be a Q-fuzzy right (resp. left) ideal of S. Then I_a is a right (resp. left) ideal of $S \times Q$ for every $a \in S$.

Proof. Let μ be a Q-fuzzy right ideal of S and $a \in S$, $q \in Q$. Then $I_a \neq \phi$ because $(a,q) \in I_a$ for every $(a,q) \in S \times Q$. Let (b,q), $(c,q) \in I_a$ and $x \in S$. Since (b,q), $(c,q) \in I_a$, $\mu(b,q) \ge \mu(a,q)$ and $\mu(c,q) \ge \mu(a,q)$. Now

$$\mu(b+c,q) \geq \min\{\mu(b,q), \mu(c,q)\} [:: \mu \text{ is a } Q\text{-fuzzy right ideal}] \\ \geq \mu(a,q).$$

which implies $(b + c, q) \in I_a$.

Also $\mu(b\gamma x, q) \ge \mu(b, q) \ge \mu(a, q)$ i.e. $(b\gamma x, q) \in I_a$. Let $(b, q) \in I_a$ and $S \ni x \le b$. Then $\mu(x, q) \ge \mu(b, q) \ge \mu(a, q) \Rightarrow (x, q) \in I_a$. Thus I_a is a right ideal of $S \times Q$. Similarly, we can prove the result for left ideal also.

Proposition 3.7. Intersection of a non-empty collection of Q-fuzzy right (resp. left) ideals is also a Q-fuzzy right (resp. left) ideal of S.

Proof. Let $\{\mu_i : i \in I\}$ be a non-empty family of Q-fuzzy right ideals of S and $x, y \in S, \gamma \in \Gamma, q \in Q$. Then

$$\begin{split} \bigcap_{i \in I} & \mu_i(x+y,q) &= \inf_{i \in I} \{ \mu_i(x+y,q) \} \geq \inf_{i \in I} \{ \min\{\mu_i(x,q), \mu_i(y,q) \} \} \\ &= \min\{ \inf_{i \in I} \mu_i(x,q), \inf_{i \in I} \mu_i(y,q) \} = \min\{ \bigcap_{i \in I} \mu_i(x,q), \bigcap_{i \in I} \mu_i(y,q) \}. \end{split}$$

Again

$$\bigcap_{i \in I} \mu_i(x\gamma y, q) = \inf_{i \in I} \{\mu_i(x\gamma y, q)\} \ge \inf_{i \in I} \{\mu_i(x, q)\} = \bigcap_{i \in I} \mu_i(x, q).$$

Suppose $x \leq y$. Then $\mu_i(x,q) \geq \mu_i(y,q)$ for all $i \in I$ which implies $\bigcap_{i \in I} \mu_i(x,q) \geq \bigcap_{i \in I} \mu_i(y,q)$.

Hence $\bigcap_{i=1}^{n} \mu_i$ is a *Q*-fuzzy right ideal of *S*.

Similarly, we can prove the result for Q-fuzzy left ideal also.

Proposition 3.8. Let $\{\mu_i : i \in I\}$ be a family of *Q*-fuzzy ideals of *S* such that $\mu_i \subseteq \mu_j$ or $\mu_j \subseteq \mu_i$ for $i, j \in I$. Then $\bigcup_{i \in I} \mu_i$ is a *Q*-fuzzy ideal of *S*.

Proof. The proof follows by routine verification.

Definition 3.9. Let f be a function from a set X to a set Y; μ be a Q-fuzzy subset of X and σ be a Q-fuzzy subset of Y.

Then image of μ under f, denoted by $f(\mu)$, is a Q-fuzzy subset of Y defined by

$$f(\mu)(y,q) = \begin{cases} \sup_{x \in f^{-1}(y)} & \text{if } f^{-1}(y) \neq \phi \\ x \in f^{-1}(y) & 0 & \text{otherwise} \end{cases}$$

The pre-image of σ under f, symbolized by $f^{-1}(\sigma)$, is a Q-fuzzy subset of X defined by

$$f^{-1}(\sigma)(x,q) = \sigma(f(x),q) \ \forall x \in X.$$

Proposition 3.10. Let $f : R \to S$ be a morphism of ordered Γ -semirings i.e. Γ -semiring homomorphism satisfying additional condition $a \leq b \Rightarrow f(a) \leq f(b)$. Then if ϕ is a *Q*-fuzzy left ideal of *S*, then $f^{-1}(\phi)$ is also a *Q*-fuzzy left ideal of *R*.

Proof. Let $f : R \to S$ be a morphism of ordered Γ -semirings and ϕ is a Q-fuzzy left ideal of S and $q \in Q, \gamma \in \Gamma$.

Now $f^{-1}(\phi)(0_R,q) = \phi(0_S,q) \ge \phi(x',q) \ne 0$ for some $x' \in S$. Therefore $f^{-1}(\phi)$ is non-empty. Now, for any $r, s \in R$

$$\begin{aligned} f^{-1}(\phi)(r+s,q) &= \phi(f(r+s),q) = \phi(f(r)+f(s),q) \\ &\geq \min\{\phi(f(r),q),\phi(f(s),q)\} \\ &= \min\{(f^{-1}(\phi))(r,q),(f^{-1}(\phi))(s,q)\}. \end{aligned}$$

Again

$$(f^{-1}(\phi))(r\gamma s, q) = \phi(f(r\gamma s), q) = \phi(f(r)\gamma f(s), q) \ge \phi(f(s), q) = (f^{-1}(\phi))(s, q)$$

Also if $r \leq s$, then $f(r) \leq f(s)$. Then

$$(f^{-1}(\phi))(r,q) = \phi(f(r),q) \ge \phi(f(s),q) = (f^{-1}(\phi))(s,q)$$

Thus $f^{-1}(\phi)$ is a Q-fuzzy left ideal of R.

Definition 3.11. Let μ and ν be Q-fuzzy subsets of X. The cartesian product of μ and ν is defined by $(\mu \times \nu)((x, y), q) = \min\{\mu(x, q), \nu(y, q)\}$ for all $x, y \in X$ and $q \in Q$.

Theorem 3.12. Let μ and ν be fuzzy left ideals of an ordered Γ -semiring S. Then $\mu \times \nu$ is a Q-fuzzy left ideal of $S \times S$.

Proof. Let $(x_1, x_2), (y_1, y_2) \in S \times S, \gamma \in \Gamma$ and $q \in Q$. Then

 $\begin{aligned} &(\mu \times \nu)((x_1, x_2) + (y_1, y_2), q) \\ &= (\mu \times \nu)((x_1 + y_1, x_2 + y_2), q) \\ &= \min\{\mu(x_1 + y_1, q), \nu(x_2 + y_2, q)\} \\ &\geq \min\{\min\{\mu(x_1, q), \mu(y_1, q)\}, \min\{\nu(x_2, q), \nu(y_2, q)\}\} \\ &= \min\{\min\{\mu(x_1, q), \nu(x_2, q)\}, \min\{\mu(y_1, q), \nu(y_2, q)\}\} \\ &= \min\{(\mu \times \nu)((x_1, x_2), q), (\mu \times \nu)((y_1, y_2), q)\} \end{aligned}$

and

$$(\mu \times \nu)((x_1, x_2)\gamma(y_1, y_2), q) = (\mu \times \nu)((x_1\gamma y_1, x_2\gamma y_2), q) = \min\{\mu(x_1\gamma y_1, q), \nu(x_2\gamma y_2, q)\} \ge \min\{\mu(y_1, q), \nu(y_2, q)\} = (\mu \times \nu)((y_1, y_2), q).$$

Also if $(x_1, x_2) \le (y_1, y_2)$, then

$$(\mu \times \nu)((x_1, x_2), q) = \min\{\mu(x_1, q), \nu(x_2, q)\} \ge \min\{\mu(y_1, q), \nu(y_2, q)\}$$

Therefore $\mu \times \nu$ is a Q-fuzzy left ideal of $S \times S$.

Proposition 3.13. For any three *Q*-fuzzy subset μ_1 , μ_2 , μ_3 of an ordered Γ -semiring *S*, $\mu_1 o_1(\mu_2 + \mu_3) = (\mu_1 o_1 \mu_2) + (\mu_1 o_1 \mu_3)$.

Proof. Let μ_1 , μ_2 , μ_3 be any three fuzzy subset of an ordered Γ -semiring S and $x \in S$, $\gamma \in \Gamma$, $q \in Q$. Then $(\mu_1 \circ \mu_2(\mu_2 + \mu_3))(x, q)$

$$\begin{aligned} &(\mu_1 o_1(\mu_2 + \mu_3))(x, q) \\ &= \sup_{x \le y \gamma z} \{\min\{\mu_1(y, q), (\mu_2 + \mu_3)(z, q)\}\} \\ &= \sup_{x \le y \gamma z} \{\min\{\mu_1(y, q), \sup_{z \le a + b} \{\min\{\mu_2(a, q), \mu_3(b, q)\}\}\}\} \\ &= \sup\{\min\{\sup\{\min\{\mu_1(y, q), \mu_2(a, q)\}\}, \sup\{\min\{\mu_1(y, q), \mu_3(b, q)\}\}\}\} \\ &\le \sup\{\min\{(\mu_1 o_1 \mu_2)(y \gamma a, q), (\mu_1 o_1 \mu_3)(y \gamma b, q)\}\} \\ &\le ((\mu_1 o_1 \mu_2) + (\mu_1 o_1 \mu_3))(x, q). \end{aligned}$$

 Also

$$\begin{array}{l} ((\mu_1 o_1 \mu_2) +_1 (\mu_1 o_1 \mu_3))(x,q) \\ = \sup \{ \min \{ (\mu_1 o_1 \mu_2)(x_1,q), (\mu_1 o_1 \mu_3)(x_2,q) \} \} \\ = \sup \{ \min \{ \sup_{x \le x_1 + x_2} \sup_{x_1 \le c_1 \gamma_1 d_1} \{ \min \{ \mu_1(c_1,q), \mu_2(d_1,q) \} \}, \sup_{x_2 \le c_2 \gamma_2 d_2} \{ \min \{ \mu_1(c_2,q), \mu_3(d_2,q) \} \} \} \\ \leq \sup \{ \min \{ \mu_1(c_1 + c_2,q), \sup \{ \min \{ \mu_2(d_1,q), \mu_3(d_2,q) \} \} \} \\ x \le x_1 + x_2 \le c_1 \gamma_1 d_1 + c_2 \gamma_2 d_2 < (c_1 + c_2) \gamma(d_1 + d_2) \\ \leq \sup_{x \le c \gamma d} \{ \min \{ \mu_1(c,q), (\mu_2 + 1, \mu_3)(d,q) \} \} \\ = (\mu_1 o_1(\mu_2 + 1, \mu_3))(x,q). \end{array}$$

Therefore $\mu_1 o_1(\mu_2 + \mu_3) = (\mu_1 o_1 \mu_2) + (\mu_1 o_1 \mu_3).$

Theorem 3.14. If μ_1 , μ_2 be any two *Q*-fuzzy ideals of an ordered Γ -semiring *S*, then $\mu_1 + \mu_2$ is also so.

Proof. Assume that $\mu_1, \ \mu_2$ are any two fuzzy ideals of an ordered Γ -semiring S and $x, \ y \in S, \ \gamma \in \Gamma$, $q \in Q$. Then

$$\begin{aligned} (\mu_1 + \mu_2)(x + y, q) &= \sup_{\substack{x + y \le c + d}} \{ \min\{\mu_1(c, q), \mu_2(d, q) \} \} \\ &\geq \sup\{\min\{\mu_1(a_1 + a_2, q), \mu_2(b_1 + b_2, q) \} \} \\ &= \sup\{\min\{\mu_1(a_1, q), \mu_1(a_2, q), \mu_2(b_1, q), \mu_2(b_2, q) \} \} \\ &= \min\{\sup\{\min\{\mu_1(a_1, q), \mu_1(a_2, q), \mu_2(b_1, q), \mu_2(b_2, q) \} \} \\ &= \min\{(\mu_1 + \mu_2)(x, q), (\mu_1 + \mu_2)(y, q) \}. \end{aligned}$$

Now assume μ_1 , μ_2 are as Q-fuzzy right ideals and we have

$$(\mu_{1} + \mu_{2})(x\gamma y, q) = \sup_{\substack{x\gamma y \le c+d \\ \le \sup\{\min\{\mu_{1}(c,q), \mu_{2}(d,q)\}\}}} \{\min\{\mu_{1}(x_{1}\gamma y, q), \mu_{2}(x_{2}\gamma y, q)\}\}$$

$$\geq \sup_{\substack{x\gamma y \le (x_{1}+x_{2})\gamma y \\ \ge \sup_{\substack{x\le x_{1}+x_{2} \\ = (\mu_{1}+1, \mu_{2})(x,q).}} \{\min\{\mu_{1}(x_{1},q), \mu_{2}(x_{2},q)\}\}$$

Similarly assuming μ_1 , μ_2 are as fuzzy left ideal, we can show that

 $(\mu_1 + \mu_2)(x\gamma y, q) \ge (\mu_1 + \mu_2)(y, q).$

Now suppose $x \leq y$. Then $\mu_1(x) \geq \mu_1(y)$ and $\mu_2(x) \geq \mu_2(y)$.

$$(\mu_1 + \mu_2)(x,q) = \sup_{\substack{x \le x_1 + x_2 \\ y \le y_1 + y_2 }} \{\min\{\mu_1(x_1,q), \mu_2(x_2,q)\}\}$$

$$\geq \sup_{\substack{x \le y \le y_1 + y_2 \\ y \le y_1 + y_2 }} \{\min\{\mu_1(y_1,q), \mu_2(y_2,q)\}\}$$

$$= \sup_{\substack{y \le y_1 + y_2 \\ y \le y_1 + y_2 }} \{\min\{\mu_1(y_1,q), \mu_2(y_2,q)\}\}$$

Hence $\mu_1 +_1 \mu_2$ is a *Q*-fuzzy ideal of *S*.

Theorem 3.15. If μ_1 , μ_2 be any two Q-fuzzy ideals an ordered Γ -semiring S, then $\mu_1 o_1 \mu_2$ is also so. *Proof.* Let μ_1 , μ_2 be any two Q-fuzzy ideals of an ordered Γ -semiring S and $x, y \in S, \gamma \in \Gamma, q \in Q$. Then

$$\begin{aligned} (\mu_1 o_1 \mu_2)(x+y,q) &= \sup_{\substack{x+y \leq c\gamma d \\ x+y \leq c_1 \gamma_1 d_1 + c_2 \gamma_2 d_2 < (c_1+c_2)\gamma(d_1+d_2) \\ \geq \sup\{\min\{\mu_1(c_1,q),\mu_1(c_2,q),\mu_2(d_1,q),\mu_2(d_2,q)\}\} \\ &\geq \sup\{\min\{\sup_{x \leq c_1 \gamma_1 d_1} \{\mu_1(c_1,q),\mu_2(d_1,q)\}, \sup\{\min\{\mu_1(c_2,q),\mu_2(d_2,q)\}\}\} \\ &\geq \min\{\sup_{x \leq c_1 \gamma_1 d_1} \{\mu_1(c_1,q),\mu_2(d_1,q)\}\}, \sup\{\min\{\mu_1(c_2,q),\mu_2(d_2,q)\}\}\} \\ &= \min\{(\mu_1 o_1 \mu_2)(x),(\mu_1 o_1 \mu_2)(y)\}. \end{aligned}$$

Now assume μ_1 , μ_2 are as Q-fuzzy right ideals and we have

$$\begin{aligned} (\mu_1 o_1 \mu_2)(x\gamma y) &= \sup_{x\gamma y \leq c\gamma d} \{\min\{\mu_1(c,q), \mu_2(d,q)\}\} \\ &\geq \sup_{x\gamma y \leq (x_1\gamma_1 x_2)\gamma_2 y} \{\mu_1(x_1,q), \mu_2(x_2\gamma_2 y,q)\}\} \\ &\geq \sup_{x \leq x_1\gamma_1 x_2} \{\min\{\mu_1(x_1,q), \mu_2(x_2,q)\}\} \\ &= (\mu_1 o_1 \mu_2)(x,q). \end{aligned}$$

Similarly assuming μ_1 , μ_2 are as Q-fuzzy left ideal, we can show that $(\mu_1 o_1 \mu_2)(x\gamma y, q) \ge (\mu_1 o_1 \mu_2)(y, q)$.

Now suppose $x \leq y$. Then $\mu_1(x) \geq \mu_1(y)$ and $\mu_2(x) \geq \mu_2(y)$.

$$(\mu_1 o_1 \mu_2)(x,q) = \sup_{\substack{x \le x_1 \gamma x_2 \\ y \le y_1 \gamma y_2 }} \{\min\{\mu_1(x_1,q), \mu_2(x_2,q)\}\}$$

$$\geq \sup_{\substack{x \le y \le y_1 \gamma y_2 \\ y \le y_1 \gamma y_2 }} \{\min\{\mu_1(y_1,q), \mu_2(y_2,q)\}\}$$

$$= \sup_{\substack{y \le y_1 \gamma y_2 \\ (\mu_1 o_1 \mu_2)(y,q).}$$

Hence $\mu_1 o_1 \mu_2$ is a *Q*-fuzzy ideal of *S*.

Theorem 3.16. The set of all Q-fuzzy left ideals of S form a complete lattice.

Proof. Suppose the set of all Q-fuzzy left ideals of S is denoted by FLI(S). Now, for $\mu_1, \mu_2 \in FLI(S)$, define a relation \leq such that $\mu_1 \leq \mu_2$ if and only if $\mu_1(x,q) \leq \mu_2(x,q)$ for all $x \in S$, $q \in Q$. Then FLI(S) is a poset with respect to the relation \leq .

Now, for every pair of elements say μ_1, μ_2 of FLI(S), we see that $\mu_1 + \mu_2$ is the least upper bound and $\mu_1 \cap \mu_2$ is the greatest lower bound of μ_1 and μ_2 . Thus FLI(S) is a lattice.

Suppose ψ is a fuzzy subset of S such that $\psi(x,q) = 1$ for all $x \in S$, $q \in Q$. Then $\psi \in FLI(S)$ and for all $\mu \in FLI(S)$, $\mu(x,q) \leq \psi(x,q)$ for all $x \in S$, $q \in Q$. So, ψ is the greatest element of FLI(S).

Let $\{\mu_i : i \in I\}$ be a non-empty family of Q-fuzzy left ideals of S. Then $\bigcap_{i \in I} \mu_i \in FLI(S)$. Also it is the greatest lower bound of $\{\mu_i : i \in I\}$.

Hence FLI(S) is a complete lattice.

Definition 3.17. Let
$$\mu$$
 be a Q -fuzzy subset of X and $\alpha \in [0,1$ - $\sup\{\mu(x,q) : x \in X, q \in Q\}\}, \beta \in [0,1]$.
The mappings $\mu_{\alpha}^{T} : X \to [0,1], \mu_{\beta}^{M} : X \to [0,1]$ and $\mu_{\beta,\alpha}^{MT} : X \to [0,1]$ are called a Q -fuzzy translation,
 Q -fuzzy multiplication and Q -fuzzy magnified translation of μ respectively if $\mu_{\alpha}^{T}(x,q) = \mu(x,q) + \alpha$,
 $\mu_{\beta}^{M}(x,q) = \beta \cdot \mu(x,q)$ and $\mu_{\beta,\alpha}^{MT}(x,q) = \beta \cdot \mu(x,q) + \alpha$ for all $x \in X, q \in Q$.

Theorem 3.18. Let μ be a *Q*-fuzzy subset of *S* and $\alpha \in [0,1$ - $\sup\{\mu(x) : x \in X\}$], $\beta \in (0,1]$. Then μ is a *Q*-fuzzy left ideal of *S* if and only if $\mu_{\beta,\alpha}^{MT}$, the *Q*-fuzzy magnified translation of μ , is also a *Q*-fuzzy left ideal of *S*.

Proof. Suppose μ is a Q-fuzzy left ideal of S. Let $x, y \in S, \gamma \in \Gamma, q \in Q$. Then

$$\mu_{\beta,\alpha}^{MT}(x+y,q) = \beta.\mu(x+y,q) + \alpha \geq \beta.\min\{\mu(x,q),\mu(y,q)\} + \alpha = \min\{\beta.\mu(x,q),\beta.\mu(y,q)\} + \alpha = \min\{\beta.\mu(x,q) + \alpha,\beta.\mu(y,q) + \alpha\} = \min\{\mu_{\beta,\alpha}^{MT}(x,q),\mu_{\beta,\alpha}^{MT}(y,q)\}$$

and

$$\mu_{\beta,\alpha}^{MT}(x\gamma y) = \beta.\mu(x\gamma y,q) + \alpha \ge \beta.\mu(y,q) + \alpha = \mu_{\beta,\alpha}^{MT}(y,q)$$

Therefore $\mu_{\beta,\alpha}^{MT}$ is a *Q*-fuzzy left ideal of *S*.

Conversely, suppose $\mu_{\beta,\alpha}^{MT}$ is a *Q*-fuzzy left ideal of *S*. Then for $x, y \in S, \gamma \in \Gamma, q \in Q$,

$$\begin{split} \mu_{\beta,\alpha}^{MT}(x+y,q) &\geq \min\{\mu_{\beta,\alpha}^{MT}(x,q), \mu_{\beta,\alpha}^{MT}(y,q)\}\\ \Rightarrow &\beta.\mu(x+y,q) + \alpha \geq \min\{\beta.\mu(x,q) + \alpha, \beta.\mu(y,q) + \alpha\}\\ \Rightarrow &\beta.\mu(x+y,q) + \alpha \geq \min\{\beta.\mu(x,q), \beta.\mu(y,q)\} + \alpha\\ \Rightarrow &\beta.\mu(x+y,q) \geq \beta.\min\{\mu(x,q), \mu(y,q)\}\\ \Rightarrow &\mu(x+y,q) \geq \min\{\mu(x,q), \mu(y,q)\} \end{split}$$

and

$$\mu_{\beta,\alpha}^{MT}(x\gamma y,q) \ge \mu_{\beta,\alpha}^{MT}(y,q)$$

$$\Rightarrow \beta.\mu(x\gamma y,q) + \alpha \ge \beta.\mu(y,q) + \alpha$$

$$\Rightarrow \mu(x\gamma y,q) \ge \mu(y,q).$$

Hence μ is a Q-fuzzy left ideal of S.

Corollary 3.19. Let μ be a *Q*-fuzzy subset of *S* and $\alpha \in [0,1-\sup\{\mu(x) : x \in X, q \in Q\}], \beta \in (0,1]$. Then the following are equivalent

- (i) μ is a Q-fuzzy left ideal of S
- (ii) μ_{α}^{T} , the Q-fuzzy translation of μ , is a Q-fuzzy left ideal of S
- (iii) μ_{β}^{M} , the Q-fuzzy multiplication of μ , is a Q-fuzzy left ideal of S.

Definition 3.20. A *Q*-fuzzy left ideal μ of an ordered Γ -semiring *S*, is said to be normal *Q*-fuzzy left ideal if there exists $x \in S$, $q \in Q$, such that $\mu(x, q) = 1$.

Proposition 3.21. Given a Q-fuzzy left ideal μ of an ordered Γ -semiring S, let μ_+ be a Q-fuzzy set in S obtained by $\mu_+(x,q) = \mu(x,q) + 1 - \mu(0,q)$ for all $x \in S$, $q \in Q$. Then μ_+ is a normal Q-fuzzy left ideal of S, which contains μ .

Proof. For all $x, y \in S$ $\gamma \in \Gamma$, $q \in Q$, we have $\mu_+(0,q) = \mu(0,q) + 1 - \mu(0,q) = 1$. Now,

$$\mu_{+}(x+y,q) = \mu(x+y,q) + 1 - \mu(0,q) \geq \min\{\mu(x,q),\mu(y,q)\} + 1 - \mu(0,q) = \min\{\{\mu(x,q) + 1 - \mu(0,q)\}, \{\mu(y,q) + 1 - \mu(0,q)\}\} = \min\{\mu_{+}(x),\mu_{+}(y)\}$$

and

$$\mu_+(x\gamma y,q) = \mu(x\gamma y,q) + 1 - \mu(0,q) \ge \mu(y,q) + 1 - \mu(0,q) = \mu_+(y,q)$$

Suppose $x \leq y$. Then

$$\mu(x,q) \ge \mu(y,q) \Rightarrow \mu(x,q) + 1 - \mu(0,q) \ge \mu(y,q) + 1 - \mu(0,q) \Rightarrow \mu_+(x) \ge \mu_+(y).$$

Therefore, μ_+ is a normal Q-fuzzy left ideal of S and from definition of $\mu_+, \mu \subseteq \mu_+$.

Let $\mathcal{NQ}(S)$ denote the set of all normal Q-fuzzy left ideals of S. Then $\mathcal{NQ}(S)$ is a poset under inclusion.

Theorem 3.22. Let $\mu \in \mathcal{NQ}(S)$ be non-constant such that it is a maximal element of $(\mathcal{NQ}(S), \subseteq)$. Then μ takes only two values 0 and 1.

Proof. Since μ is normal, we have $\mu(0,q) = 1$. Let $x_0 \neq 0 \in S$ with $\mu(x_0,q) \neq 1$. We claim that $\mu(x_0,q) = 0$. If not, then $0 < \mu(x_0) < 1$. Define on S a Q-fuzzy set ν by $\nu(x,q) = \frac{1}{2}[\mu(x,q) + \mu(x_0,q)]$ for all $x \in S, q \in Q$. Then ν is well-defined and for all $x, y \in S, \gamma \in \Gamma$ and $q \in Q$ we have

$$\begin{split} \nu(x+y,q) &= \frac{1}{2} [\mu(x+y,q) + \mu(x_0,q)] \\ &\geq \frac{1}{2} [\min[\mu(x,q),\mu(y,q)] + \mu(x_0,q)] \\ &= \min[\frac{1}{2} [\mu(x,q) + \mu(x_0,q)], \frac{1}{2} [\mu(y,q) + \mu(x_0,q)]] \\ &= \min[\nu(x,q),\nu(y,q)] \end{split}$$

and

$$\nu(x\gamma y,q) = \frac{1}{2}[\mu(x\gamma y,q) + \mu(x_0,q)] \ge \frac{1}{2}[\mu(y,q) + \mu(x_0,q)] = \nu(y,q).$$

Hence ν is a Q-fuzzy left ideal of S. Hence by Proposition 3.21, ν_+ is a normal Q-fuzzy left ideal of S. Now,

$$\nu_{+}(x,q) = \nu(x,q) + 1 - \nu(0,q) = \frac{1}{2}[\mu(x,q) + \mu(x_{0},q)] + 1 - \frac{1}{2}[\mu(0,q) + \mu(x_{0},q)] = \frac{1}{2}[\mu(x) + 1]\dots(1)$$

In particular, $\nu_+(0,q) = \frac{1}{2}[\mu(0,q)+1] = 1$ and $\nu_+(x_0,q) = \frac{1}{2}[\mu(x_0,q)+1]....(2)$.

From (1) we see that ν_+ is non-constant as μ is non-constant. From (2) we see that $\mu(x_0, q) < \nu_+(x_0, q)$. This violates the maximality of μ and so we get a contradiction. This completes the proof.

Theorem 3.23. Let S be an ordered Γ -semiring. Then set of all Q-fuzzy ideals of S (in short FI(S)) is zerosumfree Γ -semiring with infinite element 1 under the operations of sum and composition of Q-fuzzy ideals of S.

Proof. Clearly $\phi \in FI(S)$. Suppose μ_1, μ_2, μ_3 to be three Q-fuzzy ideals of S. Then (i) $\mu_1 +_1 \mu_2 \in FI(S)$, (ii) $\mu_1 o_1 \mu_2 \in FI(S)$, (iii) $\mu_1 +_1 \mu_2 = \mu_2 +_1 \mu_1$, (iv) $\phi +_1 \mu_1 = \mu_1$, (v) $\mu_1 +_1 (\mu_2 +_1 \mu_3) = (\mu_1 +_1 \mu_2) +_1 \mu_3$, (vi) $\mu_1 o_1(\mu_2 o_1 \mu_3) = (\mu_1 o_1 \mu_2) o_1 \mu_3$, (vii) $\mu_1 o_1(\mu_2 + \mu_3) = (\mu_1 o_1 \mu_2) + (\mu_1 o_1 \mu_3),$ (viii) $(\mu_2 + \mu_3)o_1\mu_1 = (\mu_2 o_1\mu_1) + (\mu_3 o_1\mu_1).$ Also $\phi +_1 \mu_1 = \mu_1 +_1 \phi = \mu_1$. Thus FI(S) is a Γ -semiring under the operations of sum and composition of Q-fuzzy ideals of S. Now $\mathbf{1} \subseteq \mathbf{1} +_1 \mu_1$ for $\mu_1 \in FI(S)$. Also $(\mathbf{1}+_{1}\mu)(x,q) = \sup \{\min\{\mathbf{1}(y,q),\mu(z,q)\} : y,z \in S, \ q \in Q\} \le 1 = \mathbf{1}(x,q) \text{ for all } x \in S, \ q \in Q.$ $x \le y + z$ Therefore $\mathbf{1} +_1 \mu_1 \subseteq \mathbf{1}$ and hence $\mathbf{1} +_1 \mu_1 = \mathbf{1}$ for all $\mu_1 \in FI(S)$. Thus **1** is an infinite element of FI(S). Next let $\mu_1 + \mu_2 = \phi$ for $\mu_1, \mu_2 \in FI(S)$. Then $\mu_1 \subseteq \mu_1 + \mu_2 = \phi \subseteq \mu_1$ and so $\mu_1 = \phi$. Similarly, it can be shown that $\mu_2 = \phi$. Hence the Γ -semiring FI(S) is zerosumfree.

Acknowledgement

The author is thankful to the Referees and the Editors for their valuable comments.

References

- M. Akram, A. A. Sathakathulla, On Q-Fuzzy Prime Bi-Γ-ideals of Γ-semigroups, International Journal of Algebra and Statistics, 1(2), 123-129, 2012.
- [2] A. P. Gan, Y. L. Jiang, On ordered ideals in ordered semiring, Journal of Mathematical Research and Exposition, 31(6), 989-996, 2011.
- [3] J.S.Golan, Semirings and their applications, Kluwer Academic Publishers, 1999.
- [4] N. Kehayopulu, M. Tsingelis, *Fuzzy ideal in ordered semigroups*, Quasigroups and Related Systems 15, 279-289, 2007.
- [5] Y.B.Jun, C.Y.Lee, Fuzzy Γ -rings, Pusom Kyongnam Math J., 8(2),63-170, 1992.
- [6] S. Lekkoksung, On Q-fuzzy bi-Γ-ideals in Γ-semigroups, Int. Journal of Math. Analysis, 6(8), 365-370, 2012.
- [7] S. Lekkoksung, On Q-fuzzy ideals in ordered semigroups, International Journal of Pure and Applied Mathematics, 92(3), 369-379, 2014.
- [8] S.K. Majumder, On Q-fuzzy ideals in Γ-semigroups, World Academy of Science, Engineering of Technology, 60, 1443-1447, 2011.
- [9] M.M.K.Rao, Γ -semirings-1, Southeast Asian Bull. of Math., 19, 49-54, 1995.
- [10] L. A. Zadeh, *Fuzzy sets*, Information and Control, 8, 338 353, 1965.