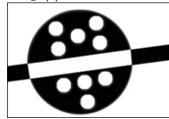
http://www.newtheory.org

ISSN: 2149-1402



New Theory

Received: 07.02.2015 Accepted: 11.04.2015 Year: 2015, Number: 4, Pages: 1-5 Original Article^{**}

NEW SUPRA TOPOLOGIES FROM OLD VIA IDEALS

Ali Kandil¹ Osama A. Tantawy² Sobhy A. El-Sheikh³ Shawqi A. Hazza^{4,*} <dr.ali kandil@yahoo.com> <drosamat@yahoo.com> <sobhyelsheikh@yahoo.com> <shawqialalimi@yahoo.com>

¹Department of Mathematics, Faculty of Science, Helwan University, Helwan, Egypt ²Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt ³Department of Mathematics, Faculty of Education, Ain Shams University, Cairo, Egypt ⁴Department of Mathematics, Faculty of Education, Taiz University, Taiz, Yemen

Abstract – In this paper, we define a supra topology obtained as an associated structure on a supra topological space (X, τ) induced by an ideal on X. Such a supra topology is studied in certain detail as to some of it is basic properties.

Keywords - Ideals, Local function, Supra topology, Supra topological space.

1 Introduction

The concept of ideal in topological space was first introduced by Kuratowski [4] and Vaidyanathswamy[9]. They also have defined local function in ideal topological space. Further Hamlett and Jankovic [2] studied the properties of ideal topological spaces and they have introduced another operator called Ψ - operator. They have also obtained a new topology from original ideal topological space. Using the local function, they defined a Kuratowski Closure operator in new topological space. Further, they showed that interior operator of the new topological space can be obtained by Ψ - operator. In [7], the authors introduced two operators ()^{*s} and ψ_{τ} in supra topological space. Mashhour et al[6] introduced the notion of supra topological space. El-Sheikh [1] studied the properties of supra topological space. In this paper, we introduced a new supra topology from old via ideal. Further we have discussed the properties of this supra topology.

2 Preliminary

Definition 2.1. [6] Let X be a nonempty set. A class τ of subsets of X is said to be a supra topology on X if it satisfies the following axioms:-

^{**} Edited by Metin Akdağ (Area Editor) and Naim Çağman (Editor-in-Chief).

^{*} Corresponding Author.

- 1. $X, \emptyset \in \tau$.
- 2. The arbitrary union of members of τ is in τ .

The members of τ are then called supra-open sets(s-open, for short). The pair (X, τ) is called a supra topological space. A subset A of a topological space (X, τ) is called a supra-closed set(sclosed, for short) if its complement A^c is an s-open set. The family of all s-closed sets is denoted by $\tau^c = \{F : F^c \in \tau\}.$

Definition 2.2. [6] Let (X, τ) be a supra topological space and $A \subseteq X$. Then

- 1. $Scl_{\tau}(A) = \cap \{F \in \tau^{c} : A \subseteq F\}$ is called the supra-closure of $A \in P(X)$.
- 2. $Sint_{\tau}(A) = \bigcup \{ M \in \tau : M \subseteq A \}$ is called the supra-interior of $A \in P(X)$.

Definition 2.3. [6] Let (X, τ) be a supra topological space and $x \in X$ be an arbitrary point. A set $M \subseteq X$ is called a supra-neighborhood (s-nbd, for short) of x if $x \in M \in \tau$. The family of all s-neighborhood of x is denoted by $\tau(x) = \{M \subseteq X : x \in M \in \tau\}$. We write M_x stands for the s-nbd of x.

Theorem 2.1. [6] Let (X, τ) be a supra topological space and $A \subseteq X$. Then

- (a) $x \in Scl_{\tau}(A) \Leftrightarrow M_x \cap A \neq \phi \ \forall M_x \in \tau(x).$
- **(b)** $[Sint_{\tau}(A^c)]^c = Scl_{\tau}(A).$

Definition 2.4. [6] Let τ_1 and τ_2 be two supra topologies on a set X such that $\tau_1 \subseteq \tau_2$. Then we say that τ_2 is stronger (finer) than τ_1 or τ_1 is weaker (coarser) than τ_2 .

Definition 2.5. [6] Let (X, τ) be a supra topological space and $\beta \subseteq \tau$. Then β is called a base for the supra topology τ (s-base, for short) if every s-open set $M \in \tau$ is a union of members of β . Equivalently, β is a supra-base for τ if for any point p belonging to a s-open set M, there exists $B \in \beta$ with $p \in B \subseteq M$.

Definition 2.6. [6] A mapping $c : P(X) \to P(X)$ is said to be a supra closure operator if it satisfies the following axioms:

- 1. $c(\phi) = \phi$,
- 2. $A \subseteq c(A) \ \forall A \in P(X),$
- 3. $c(A) \cup c(B) \subseteq c(A \cup B) \ \forall A, B \in P(X).$
- 4. $c(c(A)) = c(A) \ \forall A \in P(X)$. "idempotent condition",

Theorem 2.2. [6] Let X be a nonempty set and let the mapping $c : P(X) \to P(X)$ be a supra closure operator. Then

the collection

$$\tau = \{ G \subseteq X : c(G^c) = G^c \}$$

is a supra topology on X induced by the supra closure operator c.

Definition 2.7. [7] Let (X, τ) be a supra topological space with an ideal \mathcal{I} on X. Then

$$A^{*^{s}}(\mathcal{I}) = \{ x \in X : M_{x} \cap A \notin \mathcal{I} \ \forall M_{x} \in \tau(x) \}, \, \forall A \in P(X) \}$$

is called the supra-local function(s-local function, for short) of A with respect to \mathcal{I} and τ (here and henceforth also, A^{*^s} stands for $A^{*^s}(\mathcal{I})$).

Theorem 2.3. [7] Let (X, τ) be a supra topological space with ideals \mathcal{I} and \mathcal{J} on X and let A and B be two subsets of X. Then

1.
$$\phi^{*} = \phi$$
.

2. $A \subseteq B \Rightarrow A^{*^s} \subseteq B^{*^s}$, 3. $\mathcal{I} \subseteq \mathcal{J} \Rightarrow A^{*^s}(\mathcal{J}) \subseteq A^{*^s}(\mathcal{I})$, 4. $A^{*^s} = Scl_{\tau}(A^{*^s}) \subseteq Scl_{\tau}(A)$, 5. $(A^{*^s})^{*^s} \subseteq A^{*^s}$, 6. $A^{*^s} \cup B^{*^s} \subseteq (A \cup B)^{*^s}$, 7. $(A \cap B)^{*^s} \subseteq A^{*^s} \cap B^{*^s}$ 8. $M \in \tau \Rightarrow M \cap A^{*^s} = M \cap (M \cap A)^{*^s} \subseteq (M \cap A)^{*^s}$, 9. $H \in \mathcal{I} \Rightarrow (A \cup H)^{*^s} = A^{*^s} = (A \setminus H)^{*^s}$.

3 New Supra Topologies From Old via Ideals

In this section, we generate a supra topology obtained as an associated structure on a supra topological space (X, τ) , induced by an ideal on X. Such a supra topology is studied in certain details as to some of its basic properties.

Lemma 3.1. Let (X, τ) be a supra topological space, $A \subseteq X$ and \mathcal{I} be an ideal on X. Then $M \in \tau$, $M \cap A \in \mathcal{I} \Rightarrow M \cap A^{*^s} = \phi$.

Proof. Let $x \in M \cap A^{*^s}$. Then $x \in M$, $x \in A^{*^s} \Rightarrow M_x \cap A \notin \mathcal{I} \forall M_x \in \tau(x)$. Since $x \in M \in \tau$, then $M \cap A \notin \mathcal{I}$.

Lemma 3.2. Let (X, τ) be a supra topological space and \mathcal{I} be an ideal on X. Then $(A \cup A^{*^s})^{*^s} \subseteq A^{*^s} \forall A \in P(X).$

Proof. Let $x \notin A^{*^s}$. Then there exists $M_x \in \tau(x)$ such that $M_x \cap A \in \mathcal{I} \Rightarrow M_x \cap A^{*^s} = \phi$ (By Lemma 3.1). Hence, $M_x \cap (A \cup A^{*^s}) = (M_x \cap A) \cup (M_x \cap A^{*^s}) = M_x \cap A \in \mathcal{I}$. Therefore, $x \notin (A \cup A^{*^s})^{*^s}$. Hence, $(A \cup A^{*^s})^{*^s} \subseteq A^{*^s}$.

Theorem 3.1. Let (X, τ) be a supra topological space and \mathcal{I} be an ideal on X. Then the operator

$$cl_{\mathcal{I}}^{*^{s}}: P(X) \to P(X)$$

defined by

$$cl_{\mathcal{T}}^{*^{s}}(A) = A \cup A^{*^{s}} \,\forall A \in P(X)$$

is a supra closure operator and hence it generates a supra topology

$$\tau^*(\mathcal{I}) = \{A \in P(X) : cl_{\mathcal{I}}^{*^s}(A^c) = A^c\}$$

which is finer than τ .

When there is no ambiguity we will write cl^{*^s} for $cl^{*^s}_{\mathcal{I}}$ and τ^* for $\tau^*(\mathcal{I})$.

Proof. (i) By Theorem 2.3, $\phi^{*s} = \phi$, we have $cl^{*s}(\phi) = \phi$

(ii) Clear that, $A \subseteq cl^{*^s}(A) \ \forall A \in P(X)$.

(*iii*) Let $A, B \in P(X)$. Then, $cl^{*^{s}}(A) \cup cl^{*^{s}}(B) = (A \cup A^{*^{s}}) \cup (B \cup B^{*^{s}}) = (A \cup B) \cup (A^{*^{s}} \cup B^{*^{s}}) \subseteq (A \cup B) \cup (A \cup B)^{*^{s}} = cl^{*^{s}}(A \cup B)$ (by using Theorem 2.3). Hence, $cl^{*^{s}}(A) \cup cl^{*^{s}}(B) \subseteq cl^{*^{s}}(A \cup B)$.

(iv) Let $A \in P(X)$. Since, by (ii), $A \subseteq cl^{*^{s}}(A)$, then $cl^{*^{s}}(A) \subseteq cl^{*^{s}}(cl^{*^{s}}(A))$. On the other hand, $cl^{*^{s}}(cl^{*^{s}}(A)) = cl^{*^{s}}(A \cup A^{*^{s}}) = (A \cup A^{*^{s}}) \cup (A \cup A^{*^{s}})^{*^{s}} \subseteq A \cup A^{*^{s}} \cup A^{*^{s}} = cl^{*^{s}}(A)$ (by Lemma 3.2), it follows that $cl^{*^{s}}(cl^{*^{s}}(A)) \subseteq cl^{*^{s}}(A)$. Hence $cl^{*^{s}}(cl^{*^{s}}(A)) = cl^{*^{s}}(A)$. Consequently, $cl^{*^{s}}$ is a supra closure operator. Also, it is easy to show that the collection $\tau^{*}(\mathcal{I}) = \{A \in P(X) : cl^{*^{s}}(A^{c}) = A^{c}\}$ is a supra topology on X which is called the supra topology induced by the supra closure operator. Next, from Theorem 2.3(4) we have $A^{*^{s}} \subseteq Scl_{\tau}(A) \Rightarrow A \cup A^{*^{s}} \subseteq A \cup Scl_{\tau}(A) = Scl_{\tau}(A) \Rightarrow cl^{*^{s}}(A) \subseteq Scl_{\tau}(A)$. Hence $\tau \subseteq \tau^{*}(\mathcal{I})$.

Journal of New Theory 4 (2015) 1-5

Example 3.1. Let (X, τ) be a supra topological space. If $\mathcal{I} = \{\phi\}$, then $\tau = \tau^*(\mathcal{I})$. In fact, if $x \in Scl(A)$, then, (by Theorem 2.1(a)), $M_x \cap A \neq \phi \ \forall M_x \in \tau(x) \Rightarrow M_x \cap A \notin \{\phi\} = \mathcal{I} \ \forall M_x \in \tau(x) \Rightarrow x \in A^{*^s} \Rightarrow x \in A \cup A^{*^s} = cl^{*^s}(A)$. Hence $Scl(A) \subseteq cl^{*^s}(A)$, but, by Theorem 3.1, $cl^{*^s}(A) \subseteq Scl_{\tau}(A)$. Hence $cl^{*^s}(A) = Scl_{\tau}(A) \ \forall A \in P(X)$. Consequently, $\tau = \tau^*(\mathcal{I}) = \tau^*(\{\phi\})$.

Theorem 3.2. Let (X, τ) be a supra topological space and let \mathcal{I}_1 , \mathcal{I}_2 be two ideals on X. Then If $\mathcal{I}_1 \subseteq \mathcal{I}_2$, then $\tau^*(\mathcal{I}_1) \subseteq \tau^*(\mathcal{I}_2)$.

Proof. Let $M \in \tau^*(\mathcal{I}_1)$. Then $cl_{\mathcal{I}_1}^{*^s}(M^c) = M^c \Rightarrow M^c = M^c \cup M^{c*^s}(\mathcal{I}_1) \Rightarrow M^{c*^s}(\mathcal{I}_1) \subseteq M^c \Rightarrow M^{c*^s}(\mathcal{I}_2) \subseteq M^c$ (by Theorem 2.3) implies $M^c = M^c \cup M^{c*^s}(\mathcal{I}_2) \Rightarrow cl_{\mathcal{I}_2}^{*^s}(M^c) = M^c \Rightarrow M \in \tau^*(\mathcal{I}_2)$.

Theorem 3.3. Let (X, τ) be a supra topological space and let \mathcal{I} be an ideal on X. Then

- (1) $H \in \mathcal{I} \Rightarrow H^c \in \tau^*(\mathcal{I}).$
- (2) $A^{*^s} = cl^{*^s}(A^{*^s}) \ \forall A \in P(X), i.e. \ A^{*^s} \ is \ a \ \tau^*(\mathcal{I}) \text{-closed} \ \forall A \in P(X).$

Proof. (1) In Theorem 2.3(9), put $A = \phi \Rightarrow H^{*^s} = \phi \forall H \in \mathcal{I}$. Hence $cl^{*^s}(H) = H \cup \phi = H \Rightarrow H^c \in \tau^*(\mathcal{I})$ i.e. H is a $\tau^*(\mathcal{I})$ -closed $\forall H \in \mathcal{I}$. (2) From Theorem 2.3(5), we have $(A^{*^s})^{*^s} \subseteq A^{*^s} \Rightarrow A^{*^s} = A^{*^s} \cup (A^{*^s})^{*^s} = cl^{*^s}(A^{*^s})$. Hence A^{*^s} is a $\tau^*(\mathcal{I})$ -closed.

Lemma 3.3. Let (X, τ) be a supra topological space and \mathcal{I} be an ideal on X. Then F is a τ^* -closed if and only if $F^{*^s} \subseteq F$.

Proof. Straightforward.

Theorem 3.4. Let (X, τ_1) and (X, τ_2) be two supra topological spaces and \mathcal{I} be an ideal on X. Then

$$\tau_1 \subseteq \tau_2 \Rightarrow A^{*^s}(\mathcal{I}, \tau_2) \subseteq A^{*^s}(\mathcal{I}, \tau_1).$$

Proof. Let $x \in A^{*^{s}}(\mathcal{I}, \tau_{2})$, then $M_{x} \cap A \notin \mathcal{I} \ \forall M_{x} \in \tau_{2}(x) \Rightarrow M_{x} \cap A \notin \mathcal{I} \ \forall M_{x} \in \tau_{1}(x) \Rightarrow x \in A^{*^{s}}(\mathcal{I}, \tau_{1})$. Hence, $A^{*^{s}}(\mathcal{I}, \tau_{2}) \subseteq A^{*^{s}}(\mathcal{I}, \tau_{1})$.

Corollary 3.1. Let (X, τ_1) and (X, τ_2) be two supra topological spaces and \mathcal{I} be an ideal on X. Then

$$\tau_1 \subseteq \tau_2 \Rightarrow \tau_1^*(\mathcal{I}) \subseteq \tau_2^*(\mathcal{I}).$$

Proof. It follows from Theorem 3.4. ■

Theorem 3.5. Let (X, τ) be a supra topological space and \mathcal{I} be an ideal on X. Then the collection

$$\beta(\mathcal{I},\tau) = \{M - H : M \in \tau, H \in \mathcal{I}\}$$

is a base for the supra topology $\tau^*(\mathcal{I})$.

Proof. Let $M \in \tau^*$ and $x \in M$. Then M^c is a τ^* -closed so that $cl^{*^s}(M^c) = M^c$, and hence $M^{c*^s} \subseteq M^c$ (by Lemma 3.3). Then $x \notin M^{c*^s}$ and so there exists $V \in \tau(x)$ such that $V \cap M^c \in \mathcal{I}$. Putting $H = V \cap M^c$, then $x \notin H$ and $H \in \mathcal{I}$. Thus $x \in V \setminus H = V \cap H^c = V \cap (V \cap M^c)^c = V \cap (V^c \cup M) = V \cap M \subseteq M$. Hence, $x \in V \setminus H \subseteq M$, where $V \setminus H \in \beta(\mathcal{I}, \tau)$. Hence M is the union of sets in $\beta(\mathcal{I}, \tau)$.

Note that, τ^* is a supra topology, so it is not closed under finite intersection, thus, we need only to prove that $M \in \tau^*$ is a union of sets in $\beta(\mathcal{I}, \tau)$ as done above.

Theorem 3.6. For any ideal on a supra topological space (X, τ) , we have

$$\tau \subseteq \beta(\mathcal{I}, \tau) \subseteq \tau^*.$$

Proof. Let $M \in \tau$. Then $M = M \setminus \phi \in \beta(\mathcal{I}, \tau)$. Hence $\tau \subseteq \beta(\mathcal{I}, \tau)$. Now, let $G \in \beta(\mathcal{I}, \tau)$, then there exists $M \in \tau$ and $H \in \mathcal{I}$ such that $G = M \setminus H$. Then, $cl^{*^s}(G^c) = cl^{*^s}(M \setminus H)^c = (M \setminus H)^c \cup ((M \setminus H)^c)^{*^s} = (M^c \cup H) \cup (M^c \cup H)^{*^s}$. But, $H \in \mathcal{I}$, then, by Theorem 2.3(9), $(M^c \cup H)^{*^s} = M^{c*^s}$ and so, $cl^{*^s}(M \setminus H)^c = M^c \cup H \cup M^{c*^s} \subseteq M^c \cup H$ (by Lemma 3.3). Hence $cl^{*^s}(M \setminus H)^c \subseteq M^c \cup H = (M \setminus H)^c$, but $(M \setminus H)^c \subseteq cl^{*^s}(M \setminus H)^c$. Hence $cl^{*^s}(M \setminus H)^c = (M \setminus H)^c$. Therefore, $G = M \setminus H \in \tau^*$. Hence $\beta(\mathcal{I}, \tau) \subseteq \tau^*$. Consequently, $\tau \subseteq \beta(\mathcal{I}, \tau) \subseteq \tau^*$.

Corollary 3.2. Let (X, τ) be a supra topological space and \mathcal{I} be an ideal on X. Then If $\mathcal{I} = \{\phi\}$, then $\tau = \beta(\mathcal{I}, \tau) = \tau^*$.

Proof. It follows from Example 3.1 and Theorem 3.6 . \blacksquare

Theorem 3.7. Let (X, τ) be a supra topological space and \mathcal{I} be an ideal on X. Then, $\tau^{**} = \tau^*$.

Proof. From Theorem 3.1, we have $\tau^* \subseteq \tau^{**}$. Now, let $N \in \tau^{**}$, then N can be written as $N = \bigcup_{\alpha \in \Lambda} (M^*_{\alpha} \cap H^c_{\alpha})$ such that $M^*_{\alpha} \in \tau^*$ and $H_{\alpha} \in \mathcal{I} \quad \forall \alpha \in \Lambda$. But, $M^*_{\alpha} = \bigcup_{j \in J} (M_{\alpha_j} \cap H^c_{\alpha_j})$ where $M_{\alpha_j} \in \tau$ and $H_{\alpha_j} \in \mathcal{I}$, then $N = \bigcup_{\alpha \in \Lambda} (M^*_{\alpha} \cap H^c_{\alpha})$ $= \bigcup_{\alpha \in \Lambda} [\bigcup_{j \in J} (M_{\alpha_j} \cap H^c_{\alpha_j}) \cap H^c_{\alpha}]$ $= \bigcup_{\alpha \in \Lambda} [\bigcup_{j \in J} (M_{\alpha_j} \cap (H^c_{\alpha_j} \cap H^c_{\alpha}))]$ $= \bigcup_{\alpha \in \Lambda} [\bigcup_{j \in J} (M_{\alpha_j} \cap (H_{\alpha_j} \cup H_{\alpha})^c)]$ putting $S_{\alpha_j} = H_{\alpha_j} \cup H_{\alpha}$, then

$$N = \bigcup_{\alpha \in \Lambda} [\bigcup_{j \in J} (M_{\alpha_j} \cap S_{\alpha_j}^c)].$$

Since $H_{\alpha_j}, H_{\alpha}(=H_{\alpha_j} \cup H_{\alpha}) \in \mathcal{I}$, then $S_{\alpha_j} \in \mathcal{I}$, also $\cup_{j \in J} M_{\alpha_j} \in \tau$, it follows that $\cup_{j \in J} M_{\alpha_j} \cap S_{\alpha_j}^c \in \beta(\mathcal{I}, \tau)$. Consequently, $N \in \tau^*$.

References

- S. A. El-Sheikh, Dimension Theory of Bitopological Spaces, Master Thesis, Ain Shams University, Cairo, Egypt, 1987.
- [2] D. S. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [3] A. Kandil, O. A. E. Tantawy and M. Abdelhakem, Flou Topological Spaces via Flou Ideals, Int. J. App. Math., (23)(5)(2010), 837-885.
- [4] K. Kuratowski, Topology, New York: Academic Press, Vol: I, 1966.
- [5] A.S. Mashhur, M.E. Abd EI-Monsef and I.A. Hasanein, On pretopological spaces, Bull. Math. R.S. Roumanie, 28(76)(1984), 39-45.
- [6] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math., 14(4) (1983), 502-510.
- [7] S. Modak and S. Mistry, Ideal on supra Topological space, Int. J. Math. Ann., 1(6) (2012), 1-10.
- [8] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. D. Dissertation, Univ. of California at Santa Barbara, 1967.
- [9] R. Vaidyanathaswamy, The localisation theory in set topology, Proc. Indian Acad. Sci. 20 (1945), 51-61.