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L,M are strictly two sided commutative quantales lattices. Basic properties of (L,M)-fuzzy topoge-
nous spaces are studied, (L,M)-fuzzy topological spaces, (L,M)-fuzzy uniform spaces and (L,M)-
fuzzy proximity space are characterized in the framework of (L,M)-fuzzy topogenous spaces. We
study some relationships between previous spaces and give their examples. The notion of their
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1 Introduction

The concepts of topogenous order and topogenous space were first introduced by
Császèr [8] in 1963. These concepts allow to develop a unified approach to the
three spaces: topologies, proximities and uniformities. This enabled him to evolve a
theory including the foundations of the three classical theories of topological spaces,
uniform spaces and proximity spaces.

In the case of the fuzzy structures there are at least two notions of fuzzy topoge-
nous structures, the first notion worked out in (Katsaras 1983 [24], 1985 [26], 1988
[27]) present a unified approach to the theories of Chang in 1968 [6] fuzzy topological
spaces, Hutton fuzzy uniform spaces (Hutton, 1977 [19]), Katsaras fuzzy proximity
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*Corresponding Author.



Journal of New Theory 8 (2015) 01-28 2

spaces (Katsaras 1979 [21], 1985 [26], 1990 [28]) and Artico fuzzy proximity (Artico
and Moresco 1984 [2]).

The second notion worked out in Katsaras (1990 [28],1991 [29]) agree very well
with Lowen fuzzy topological spaces (Lowen 1976 [35]) and Lowen-Höhle fuzzy uni-
form spaces (Lowen 1981 [36]). Čimoka [7] introduced L-fuzzy topogenous struc-
tures in complete lattices. El-Dardery investigated L-fuzzy topogenous order which
induced L-fuzzy topology [9].

Based on the idea of (L,M)-fuzzy topological space introduced by Kubiak [33, 34]
(the motivation for this concept comes from an idea of Höhle [15] which was called
fuzzifying topology in [46]).

In this paper, we introduce the concept of an (L,M)-fuzzy topogenous space,
where L,M are strictly two sided commutative quantales lattices. Basic proper-
ties of (L,M)-fuzzy topogenous spaces are studied, (L,M)-fuzzy topological spaces,
(L,M)-fuzzy uniform space and (L,M)-fuzzy proximity space are characterized in
the framework of (L,M)-fuzzy topogenous spaces. We give some important propo-
sitions that link the previous spaces to each other. We study some relationships
between previous spaces and give their examples. The notion of their continuity
property is investigated.

2 Preliminary

In this paper, Let X be a non-empty set and let L = (L,≤,∨,∧, 0, 1) be a completely
distributive lattice with the least element 0L and the greatest element 1L in L.

Definition 2.1. [14, 16, 41] A complete lattice (L,≤,¯) is called a strictly two-
sided commutative quantale (stsc-quantale, for short) iff it satisfies the following
properties.

(L1) (L,¯) is a commutative semigroup,
(L2) x = x¯ 1, for each x ∈ L and 1 is the universal upper bound,
(L3) ¯ is distributive over arbitrary joins, i.e. (

∨
i xi)¯ y =

∨
i(xi ¯ y).

There exists a further binary operation → (called the implication operator or
residuated) satisfying the following condition

x → y =
∨
{z ∈ L|x¯ z ≤ y}.

Then it satisfies Galois correspondence; i.e, (x¯ z) ≤ y iff z ≤ (x → y).

Remark 2.2. Every completely distributive lattice (L,≤,∧,∨,∗ ) with an order re-
versing involution ∗ is a stsc-quantale (L,≤,¯,⊕,∗ ) with an order reversing involu-
tion ∗ where ¯ = ∧ and ⊕ = ∨.

In this paper, we always assume that (L,≤,¯,⊕,∗ ) (resp. (M,≤,¯,⊕,∗ )) is a
stsc-quantale with an order reversing involution ∗ which is defined by

x⊕ y = (x∗ ¯ y∗)∗, x∗ = x → 0
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unless otherwise specified.

Lemma 2.3. [16, 17, 42] For each x, y, z, xi, yi, w ∈ L, we have the following prop-
erties.

(1) 1 → x = x, 0¯ x = 0 and x → 0 = x∗,
(2) If y ≤ z, then x¯y ≤ x¯z, x⊕y ≤ x⊕z, x → y ≤ x → z and z → x ≤ y → x,
(3) x¯ y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y,
(4) (

∧
i yi)

∗ =
∨

i y
∗
i , (

∨
i yi)

∗ =
∧

i y
∗
i ,

(5) x¯ (
∧

i yi) ≤
∧

i(x¯ yi),
(6) x⊕ (

∧
i yi) =

∧
i(x⊕ yi), x⊕ (

∨
i yi) =

∨
i(x⊕ yi),

(7) x → (
∧

i yi) =
∧

i(x → yi),
(8) (

∨
i xi) → y =

∧
i(xi → y),

(9) x → (
∨

i yi) ≥
∨

i(x → yi),
(10) (

∧
i xi) → y ≥ ∨

i(xi → y),
(11) (x¯ y) → z = x → (y → z) = y → (x → z),
(12) x¯ (x → y) ≤ y and x → y ≤ (y → z) → (x → z),
(13) x¯ (x∗ ⊕ y∗) ≤ y∗, x¯ y = (x → y∗)∗ and x⊕ y = x∗ → y,
(14) (x → y)¯ (z → w) ≤ (x¯ z) → (y ¯ w),
(15) x → y ≤ (x¯ z) → (y ¯ z) and (x → y)¯ (y → z) ≤ x → z,
(16) (x → y)¯ (z → w) ≤ (x⊕ z) → (y ⊕ w).

Definition 2.4. [10, 11] For a given set X, define a binary mapping S : LX×LX → L
by

S(λ, µ) =
∧
x∈X

(λ(x) → µ(x)) ∀ λ, µ ∈ LX ,

then S is an L-partial order on LX . For λ, µ ∈ LX , S(λ, µ) can be interpreted as
the degree to which λ is a subset of µ. It is called the subsethood degree or the
fuzzy inclusion order.

Lemma 2.5. [10, 11] Let S be the fuzzy inclusion order, then ∀ λ, µ, ρ, ν ∈ LX and
a ∈ L the following statements hold

(1) µ ≤ ρ ⇔ S(µ, ρ) = 1,
(2) S(λ, ρ)¯ (ρ, µ) ≤ S(λ, µ),
(3) µ ≤ ρ ⇒ S(λ, µ) ≤ S(λ, ρ) and S(µ, λ) ≥ S(ρ, λ) ∀ λ ∈ LX ,
(4) S(λ, µ)¯ S(ρ, ν) ≤ S(λ¯ ρ, µ¯ ν), and S(λ, µ)∧ S(ρ, ν) ≤ S(λ∧ ρ, µ∧ ν).

Definition 2.6. [34] A map T : LX → M is called an (L,M)-fuzzy topology on X
if it satisfies the following conditions.

(O1) T (0X) = T (1X) = 1M ,
(O2) T (λ1 ¯ λ2) ≥ T (λ1)¯ T (λ2) ∀ λ1, λ2 ∈ LX ,
(O3) T (

∨
i λi) ≥

∧
i T (λi) ∀ λi ∈ LX , i ∈ I.

The pair (X, T ) is called an (L,M)-fuzzy topological space. Let (X, T1) and
(Y, T2) be L-fuzzy topological spaces and f : X → Y be a map. Then f is called
LF -continuous if

T2(λ) ≤ T1(f
←(λ)) ∀ λ ∈ LY .
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Definition 2.7. [7] A map F : LX → M is called an (L, M)-fuzzy cotopology on X
if it satisfies the following conditions.

(F1) F(0X) = F(1X) = 1,
(F2) F(λ1 ⊕ λ2) ≥ F(λ1)¯F(λ2), ∀ λ1, λ2 ∈ LX ,
(F3) F(

∨
i λi) ≥

∧
iF(λi), ∀ λi ∈ LX , i ∈ I.

The pair (X,F) is called an (L,M)-fuzzy cotopological space. Let (X,F1) and
(Y,F2) be (L, M)-fuzzy topological spaces and f : X → Y be a map. Then f is
called LF -continuous if

F2(λ) ≤ F1(f
←(λ)), ∀λ ∈ LY .

3 Perfect (L,M)-fuzzy topogenous structures and

(L,M)-fuzzy topologies

Definition 3.1. A mapping ξ : LX × LX → L is called an (L,M)-fuzzy semi-
topogenous order on X if it satisfies the following axioms.

(ST1) ξ(1X , 1X) = ξ(0X , 0X) = 1M ,
(ST2) ξ(λ, µ) ≤ S(λ, µ),
(ST3) If λ1 ≤ λ, µ ≤ µ1, then ξ(λ, µ) ≤ ξ(λ1, µ1).

Remark 3.2. If ξ is an (L,M)-fuzzy semi-topogenous order on X. Then
(1) If ξ(λ, µ) = 1M , then λ ≤ µ,
(2) ξ(1X , λ) ≤ ∧

x λ(x) and ξ(λ, 0X) ≤ ∧
x λ∗(x),

(3) Define a mapping ξs : LX × LX → M as ξs(λ, µ) = ξ(µ∗, λ∗). Then ξs is an
(L,M)-fuzzy semi-topogenous order on X.

Definition 3.3. An (L,M)-fuzzy semi-topogenous order ξ on X is called symmetric
if

(S) ξ = ξs.

Definition 3.4. For every λ1, λ2, µ1, µ2 ∈ LX , an (L, M)-fuzzy semi-topogenous
order ξ is called

(1) (L, M)-fuzzy topogenous if

(T ) ξ(λ1 ¯ λ2, µ1 ¯ µ2) ≥ ξ(λ1, µ1)¯ ξ(λ2, µ2),

(2) (L, M)-fuzzy co-topogenous if

(CT ) ξ(λ1 ⊕ λ2, µ1 ⊕ µ2) ≥ ξ(λ1, µ1)¯ ξ(λ2, µ2),

(3) (L,M)-fuzzy bitopogenous if ξ are (L,M)-fuzzy topogenous and (L,M)-fuzzy
cotopogenous.
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Remark 3.5. Let (L = M,¯ = ∧,⊕ = ∨) be a complete lattice, then (L,M)-fuzzy
bitopogenous order is an L-fuzzy topogenous in a Čimoka sense from:

(T) ξ(λ ∧ λ, µ1 ∧ µ2) ≥ ξ(λ, µ1) ∧ ξ(λ2, µ2),
(CT) ξ(λ1 ∨ λ2, µ ∨ µ) ≥ ξ(λ1, µ) ∧ ξ(λ2, µ).

Definition 3.6. An (L,M)-fuzzy topogenous (resp. cotopogenous) order ξ on X is
said to be L-fuzzy topogenous (resp. cotopogenous) space if ξ ◦ ξ ≥ ξ, where

(TS) (ξ1 ◦ ξ2)(λ, µ) =
∨

ρ∈LX ξ1(λ, ρ)¯ ξ2(ρ, µ).

Definition 3.7. An (L,M)-fuzzy semi-topogenous order ξ on X is called perfect if
(ST4) ξ(

∨
i λi, µ) ≥ ∧

i ξ(λi, µ).
An (L,M)-fuzzy semi-topogenous order ξ on X is called co-perfect if
(ST5) ξ(λ,

∧
i µi) ≥

∧
i ξ(λ, µi).

An (L,M)-fuzzy semi-topogenous order ξ on X is called bi-perfect if ξ are (L,M)-
fuzzy perfect and (L,M)-fuzzy co-perfect.

Theorem 3.8. Let ξ1 and ξ2 be (L,M)-fuzzy cotopogenous (respectively, topoge-
nous, perfect, co-perfect) order on X. Define the composition (ξ1 ◦ ξ2) of ξ1 and ξ2

by

(ξ1 ◦ ξ2)(λ, µ) =
∨
ρ∈X

ξ1(λ, ρ)¯ ξ2(ρ, µ).

Then (ξ1 ◦ ξ2) is (L,M)-fuzzy cotopogenous (respectively, topogenous perfect, co-
perfect) order on X.

Proof. (ST2) By Lemma 2.5 (2), we have

(ξ1 ◦ ξ2)(λ, µ) =
∨
ρ∈X

ξ1(λ, ρ)¯ ξ2(ρ, µ) ≤
∨
ρ∈X

S(λ, ρ)¯ S(ρ, µ) ≤ S(λ, µ).

(CT)

(ξ1 ◦ ξ2)(λ1, µ1)¯ (ξ1 ◦ ξ2)(λ2, µ2)

=
∨

ρ1∈LX

(ξ1(λ1, ρ1)¯ ξ2(ρ1, µ1))¯
∨

ρ2∈LX

(ξ1(λ2, ρ2)¯ ξ2(ρ2, µ2))

≤
∨

ρ1,ρ2∈LX

((ξ1(λ1, ρ1)¯ ξ1(λ2, ρ2))¯ (ξ2(ρ1, µ1)¯ ξ2(ρ2, µ2)))

≤
∨

ρ1,ρ2∈LX

(ξ1(λ1 ⊕ λ2, ρ1 ⊕ ρ2)¯ ξ2(ρ1 ⊕ ρ2, µ1 ⊕ µ2) ≤ (ξ1 ◦ ξ2)(λ1 ⊕ λ2, µ1 ⊕ µ2).

Other cases are similarly proved .

Theorem 3.9. Let ξ be a co-perfect (L,M)-fuzzy cotopogenous order, then
(1) The mapping Fξ : LX → M defined by Fξ(λ) = ξ(λ, λ) is an (L,M)-fuzzy

cotopology on X,
(2) ξs is a perfect (L,M)-fuzzy topogenous order.
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Proof. (1) (F1) Fξ(0X) = ξ(0X , 0X) = ξ(1X , 1X) = Fξ(1X) = 1,

(F2) Fξ(λ1⊕ λ2) = ξ(λ1⊕ λ2, λ1⊕ λ2) ≥ ξ(λ1, λ1)¯ ξ(λ2, λ2) = Fξ(λ1)¯Fξ(λ2),

(F3) Fξ(
∧

i λi) = ξ(
∧

i λi,
∧

i λi) ≥
∧

i ξ(
∧

i λi, λi) ≥
∧

i ξ(λi, λi) =
∧

iFξ(λi).

(2) (T ) ξs(λ1 ¯ λ2, µ1 ¯ µ2) = ξ((µ1 ¯ µ2)
∗, (λ1 ¯ λ2)

∗)

= ξ(µ∗1 ⊕ µ∗2, λ
∗
1 ⊕ λ∗2) ≥ ξ(µ∗1, λ

∗
1)¯ ξ(µ∗2, λ

∗
2) ≥ ξs(λ1, µ1)¯ ξs(λ2, µ2).

Other cases are easily proved.

Theorem 3.10. Let F be an (L,M)-fuzzy cotopology on X, then
(1) The mapping ξF : LX × LX → M defined by

ξF(λ, µ) =
∨
{F(γ) | λ ≤ γ ≤ µ, γ ∈ LX}

is a co-perfect L-fuzzy cotopogenous space. Moreover, FξF = F ,

(2) If ξ is a co-perfect (L,M)-fuzzy cotopogenous order, then ξFξ
≤ ξ.

Proof. (1) (ST1) ξF(0X , 0X) =
∨{F(γ) | 0X ≤ γ ≤ 0X , γ ∈ LX} = F(0X) = 1,

ξF(1X , 1X) =
∨{F(γ) | 1X ≤ γ ≤ 1X , γ ∈ LX} = F(1X) = 1.

(ST2) If λ ≤ γ, then S(λ, µ) = 1. If λ 6≤ γ, then

∨
{F(γ) | λ ≤ γ ≤ µ, γ ∈ LX} = 0.

It is trivial.
(ST3) If λ1 ≤ λ, µ ≤ µ1, then λ1 ≤ λ ≤ γ ≤ µ ≤ µ1. So, λ1 ≤ γ ≤ µ1. Thus,

ξF(λ, µ) =
∨
{F(γ) | λ ≤ γ ≤ µ, γ ∈ LX}

≤
∨
{F(γ) | λ1 ≤ γ ≤ µ1, γ ∈ LX} = ξF(λ1, µ1).

(CT)

ξF(λ1, µ1)¯ ξF(λ2, µ2) =
( ∨

{F(γ1) | λ1 ≤ γ1 ≤ µ1}
)¯ ( ∨

{F(γ2) | λ2 ≤ γ2 ≤ µ2}
)

≤
∨
{F(γ1)¯F(γ2) | λ1 ⊕ λ2 ≤ γ1 ⊕ γ2 ≤ µ1 ⊕ µ2}

≤
∨
{F(γ1 ⊕ γ2) | λ1 ⊕ λ2 ≤ γ1 ⊕ γ2 ≤ µ1 ⊕ µ2}

≤
∨
{F(γ) | λ1 ⊕ λ2 ≤ γ ≤ µ1 ⊕ µ2}

= ξF(λ1 ⊕ λ2, µ1 ⊕ µ2).
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(ST5)

ξF(λ,
∧
i

µi) =
∨
{F(γ)|λ ≤ γ ≤

∧
i

µi} =
∨
{F(γ)|γ =

∧
i

γi, λ ≤ γi ≤ µi}

≥
∨
{
∧
i

F(γi)|λ ≤ γi ≤ µi} =
∧
i

( ∨
{F(γi)|λ ≤ γi ≤ µi}

)
=

∧
i

ξF(λ, µi).

Finally, FξF (λ) = ξF(λ, λ) =
∨{F(γ) | λ ≤ γ ≤ λ, γ ∈ LX} = F(λ).

(2) ξFξ
(λ, µ) =

∨
{Fξ(γ) | λ ≤ γ ≤ µ} =

∨
{ξ(γ, γ) | λ ≤ γ ≤ µ} ≤ ξ(λ, µ).

Theorem 3.11. Let ξ be a perfect (L,M) -fuzzy topogenous order, then
(1) The mapping Tξ : LX → M defined by Tξ(λ) = ξ(λ, λ) is an L-fuzzy topology

on X,
(2) ξs is a coperfect (L,M)-fuzzy cotopogenous order such that Fξs(λ) = Tξ(λ

∗),
(3) If ξ is a symmetric bi-perfect (L,M)-fuzzy bitopogenous order, then Tξ = Fξ.

Proof. (1) It is similarly proved as Theorem 3.9(1).
(2) Tξ(λ

∗) = ξ(λ∗, λ∗) = ξs(λ, λ) = Fξs(λ),
(3) Tξ(λ) = ξ(λ, λ) = ξs(λ, λ) = Fξs(λ).

Theorem 3.12. Let T be an (L,M)-fuzzy topology on X.
(1) The mapping ξT : LX × LX → M defined by

ξT (λ, µ) =
∨
{T (γ) | λ ≤ γ ≤ µ, γ ∈ LX}

is a perfect (L,M)-fuzzy topogenous space. Moreover, TξT = T ,
(2) If FT (λ) = T (λ∗) is an (L,M)-fuzzy topology on X, then ξFT = ξs

T .

Proof. (1) It is similarly proved as Theorem 3.10 (1).

(2) ξFT (λ, µ) =
∨
{FT (γ)|λ ≤ γ ≤ µ} =

∨
{T (γ∗)|µ∗ ≤ γ∗ ≤ λ∗} = ξT (µ∗, λ∗) = ξs

T (λ, µ).

Example 3.13. Let (L = M = [0, 1],¯,→) be a complete residuated lattice defined
by

x¯ y = (x + y − 1) ∨ 0, x → y = (1− x + y) ∧ 1.

Let X = {x, y} be a set and u, v ∈ LX such that

u(x) = 0.6, u(y) = 0.5, v(x) = 0.4, v(y) = 0.7.

Define T ,F : LX → M as follows

T (λ) =





1, if λ ∈ {1X , 0X}
0.6, if λ = u,
0.3, if λ = u¯ u,
0, otherwise

,F(λ) =





1, if λ ∈ {1X , 0X}
0.7, if λ = v,
0.4, if λ = v ⊕ v,
0, otherwise.
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(1) Since 0.3 = T (u ¯ u) ≥ T (u) ¯ T (u) = 0.2 , T is an (L,M)-fuzzy topology
on X. By Theorem, we obtain a perfect topogenous space ξT : LX × LX → L as
follows

ξT (λ, ρ) =





1, if λ = 0X or ρ = 1X ,
0.6, if u¯ u � λ ≤ u ≤ ρ,
0.3, if 0X 6= λ ≤ u¯ u ≤ ρ, u � ρ,
0, otherwise.

By Theorem 3.12, we obtain a co-perfect cotopogenous space ξs
T : LX ×LX → L

as follows

ξs
T (λ, ρ) =





1, if λ = 0X or ρ = 1X

0.6, if λ ≤ u∗ ≤ ρ, ρ 6≥ u∗ ⊕ u∗

0.3, if λ ≤ u∗ ⊕ u∗ ≤ ρ 6= 1X , λ 6≤ u∗,
0, otherwise.

Moreover, Fξs
T (λ) = T (λ∗).

(2) Since 0.4 = F(v⊕ v) ≥ F(v)¯F(v) = 0.4, F is an (L,M)-fuzzy cotopology
on X. By Theorem 3.10, we obtain co-perfect cotopogenous order ξF : LX×LX → M
as follows

ξF(λ, ρ) =





1, if λ = 0X or ρ = 1X

0.7, if v ⊕ v 6≥ λ ≤ v ≤ ρ,
0.5, if 0X 6= λ ≤ v ⊕ v ≤ ρ, v 6≤ ρ,
0, otherwise.

By Theorem 3.10, we obtain perfect topogenous order ξF : LX × LX → M as
follows

ξs
F(λ, ρ) =





1, if λ = 0X or ρ = 1X

0.7, if v ⊕ v 6≥ λ ≤ v∗ ≤ ρ, ρ 6≥ v∗ ¯ v∗

0.5, if λ ≤ v∗ ¯ v∗ ≤ ρ, λ 6≤ v∗,
0, otherwise.

Moreover, Tξs
F (λ) = F(λ∗).

Definition 3.14. Let ξX and ξY be two (L,M)-fuzzy semi-topogenous orders on
X and Y , respectively. A mapping f : (X, ξX) → (Y, ξY ) is said to be topogenous
continuous if

ξY (λ, µ) ≤ ξX(f←(λ), f←(µ)), ∀ λ, µ ∈ LY .

Theorem 3.15. Let (X, ξX) and (Y, ξY ) be perfect (L,M)-fuzzy topogenous space.
If a mapping f : (X, ξX) → (Y, ξY ) is topogenous continuous, then the mapping
f : (X, TξX

) → (Y, TξY
) is LF -continuous.

Conversely, a mapping f : (X, TX) → (Y, TY ) is LF -continuous iff f : (X, ξTX
) →

(Y, ξTY
) is topogenous continuous.
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Proof. Since f : (X, ξX) → (Y, ξY ) is LF -topogenous continuous, then

TξX
(f←(λ)) = ξX(f←(λ), f←(λ)) ≥ ξY (λ, λ) = TξY

(λ).

Conversely, since f : (X, TX) → (Y, TY ) is LF -continuous, then

ξTY
(λ, µ) =

∨
{TY (γ) | λ ≤ γ ≤ µ} ≤

∨
{TX(f←(γ)) | f←(λ) ≤ f←(γ) ≤ f←(µ)}

≤
∨
{TX(ρ) | ρ = f←(γ), f←(λ) ≤ ρ ≤ f←(µ)}

= ξTX
(f←(λ), f←(µ)).

Conversely, since TξTX
= TX and TξTX

= TX from Theorem 3.12(1), it is trivial.

Corollary 3.16. Let (X, ξX) and (Y, ξY ) be co-perfect (L,M)-fuzzy cotopogenous
space. If a mapping f : (X, ξX) → (Y, ξY ) is topogenous continuous, then the
mapping f : (X,FξX

) → (Y,FξY
) is LF -continuous.

Conversely, a mapping f : (X,FX) → (Y,FY ) is LF -continuous iff f : (X, ξFX
) →

(Y, ξFY
) is topogenous continuous.

Lemma 3.17. Let f : X → Y be a mapping, then the following inequalities hold.
(1) (f→(µ∗))∗ ≤ f→(µ),
(2) S(f→(λ), (f→(µ∗))∗) ≤ S(λ, µ), ∀ λ, µ ∈ LX ,
(3) S(λ, µ) ≤ S(f←(λ), f←(µ)) ∀ λ, µ ∈ LY ,
(4) f→(λ¯ µ) ≤ f→(λ)¯ f→(µ),
(5) f→(λ⊕ µ) ≤ f→(λ)⊕ f→(µ),
(6) (f→((λ¯ µ)∗))∗ ≥ (f→(λ∗))∗ ¯ (f→(µ∗))∗,
(7) (f→((λ⊕ µ)∗))∗ ≥ (f→(λ∗))∗ ⊕ (f→(µ∗))∗.

Proof. (1)

(f→(µ∗))∗(y) = (
∨

x∈f−1(y)

µ∗(x))∗ =
∧

x∈f−1({y})
µ(x) ≤

∨

x∈f−1({y})
µ(x) = (f→(µ))(y).

(2) Let y◦ ∈ Y , then

S(f→(λ), (f→(µ∗))∗) =
∧
y∈Y

(f→(λ) → (f→(µ∗))∗)(y)

≤ f→(λ)(y◦) → (f→(µ∗))∗(y◦)

=
∨

x∈f−1(y◦)

λ(x) → (
∨

x∈f−1(y◦)

µ∗(x))∗

=
∨

x∈f−1(y◦)

λ(x) →
∧

x∈f−1(y◦)

µ(x) ≤ λ(x) → µ(x).

Hence, S(f→(λ), (f→(µ∗))∗) ≤ S(λ, µ).
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(3)

S(f←(λ), f←(µ)) =
∧
x∈X

(λ(f(x)) → µ(f(x))) ≥
∧
y∈Y

(λ(y) → µ(y)) = S(λ, µ).

(4)

f→(λ¯ µ)(y) =
∨

x∈f−1({y})
(λ¯ µ)(x) ≤ (

∨

x∈f−1({y})
λ(x))¯ (

∨

x∈f−1({y})
µ(x))

≤ f→(λ)(y)¯ f→(µ)(y).

(5)

f→(λ⊕ µ)(y) =
∨

x∈f−1({y})
(λ⊕ µ)(x) ≤ (

∨

x∈f−1({y})
λ(x))⊕ (

∨

x∈f−1({y})
µ(x))

≤ f→(λ)(y)⊕ f→(µ)(y).

Other cases are easily proved.

Theorem 3.18. let f : X → Y be a mapping. Let ξ be an (L,M)-fuzzy topogenous
(co-topogenous, perfect, co-perfect, respectively) order on Y . We define the pre-
image f←(ξ) of ξ under f as

f←(ξ)(λ, µ) = ξ(f→(λ), (f→(µ∗))∗), ∀ λ, µ ∈ LX .

Then,
(1) f←(ξ) is an (L,M)-fuzzy topogenous (co-topogenous, perfect, co-perfect, re-

spectively) order on X. Moreover, if ξ ◦ ξ ≤ ξ, then f←(ξ) ◦ f←(ξ) ≤ f←(ξ).
(2) A mapping f : (X, ξX) → (Y, ξY ) is topogenous continuous if and only if

f←(ξ) ≤ ξX .

Proof. (1) (ST2) By Lemma 3.17, we have

f←(ξ)(λ, µ) = ξ(f→(λ), (f→(µ∗))∗) ≤ S(f→(λ), (f→(µ∗))∗) ≤ S(λ, µ).

(T)

f←(ξ)(λ1 ¯ λ2, µ1 ¯ µ2) = ξ(f→(λ1 ¯ λ2), (f
→((µ1 ¯ µ2)

∗))∗)

= ξ(f→(λ1)¯ f→(λ2), (f
→(µ∗1))

∗ ¯ (f→(µ∗2))
∗)

≥ ξ(f→(λ1), (f
→(µ∗))∗)¯ ξ(f→(λ2), (f

→(µ∗))∗)

= f←(ξ)(λ1, µ1)¯ f←(ξ)(λ2, µ2).

(CT)

f←(ξ)(λ1 ⊕ λ2, µ1 ⊕ µ2) = ξ(f→(λ1 ⊕ λ2), (f
→((µ1 ⊕ µ2)

∗))∗) (by Lemma 3.17)

= ξ(f→(λ1)⊕ f→(λ2), (f
→(µ∗1))

∗ ⊕ (f→(µ∗2))
∗)

≥ ξ(f→(λ1), (f
→(µ∗))∗)¯ ξ(f→(λ2), (f

→(µ∗))∗)

= f←(ξ)(λ1, µ1)¯ f←(ξ)(λ2, µ2).
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If ξ ◦ ξ ≤ ξ, then f←(ξ) ◦ f←(ξ) ≤ f←(ξ) since

f←(ξ) ◦ f←(ξ)(λ, µ) =
∨

ρ∈LX

(f←(ξ)(λ, ρ)¯ f→(ξ)(ρ, µ))

=
∨

ρ∈LX

(ξ(f→(λ), (f→(ρ∗))∗)¯ ξ(f→(ρ), (f→(µ∗))∗) (by Lemma 3.17(1))

≤
∨

ρ∈LX

(ξ(f→(λ), f→(ρ))¯ ξ(f→(ρ), (f→(µ∗))∗)

≤ ξ(f→(λ), (f→(µ∗))∗) = f←(ξ)(λ, µ).

(2) For any ρ, ν ∈ LX , we have

f←(ξ)(ρ, ν) = ξ(f→(ρ), (f→(ν∗)∗)) ≤ ξX(f←(f→(ρ)), f←(f→(ν∗)∗)) ≤ ξX(ρ, ν),

ξX(f←(λ), f←(µ)) ≥ f←(ξ)(f←(λ), f←(µ)) = ξ(f→f←(λ), (f→(f←(µ))∗)∗) ≥ ξ(λ, µ).

4 Perfect (L,M)-fuzzy topogenous space and (L,M)-

fuzzy quasi-proximities

Kim et al [30] introduced the concept of L-fuzzy proximities in a strictly two sided,
commutative quantales. We here reintroduce them in a slightly different way as
follows.

Definition 4.1. A mapping δ : LX × LX → M is called an (L,M)-fuzzy quasi-
proximity on X if it satisfies the following axioms.

(QP1) δ(0X , 1X) = δ(1X , 0X) = 0M ,
(QP2) δ(λ, µ) ≥ ∨

x∈X(λ¯ µ)(x),
(QP3) If λ1 ≤ λ2, ρ1 ≤ ρ2, then δ(λ1, ρ1) ≤ δ(λ2, ρ2) ∀ ρ ∈ LX ,
(QP4) δ(λ1 ¯ λ2, ρ1 ⊕ ρ2) ≤ δ(λ1, ρ1)⊕ δ(λ2, ρ2),
(QP5) δ(λ, µ) ≥ ∧

ρ{δ(λ, ρ)⊕ δ(µ, ρ∗)}.
The pair (X, δ) is called an (L,M)-fuzzy quasi-proximity space. We call δ(λ, µ)

a gradation of nearness.

Let δ1 and δ2 be (L,M)-fuzzy quasi-proximities on X. Then δ1 is called coarser
than δ2 if δ2(λ, µ) ≤ δ1(λ, µ) for all λ, µ ∈ LX .

An (L, M)-fuzzy quasi-proximity is called (L,M)-fuzzy proximity on X if it sat-
isfies the following axiom

(P) δ(λ, µ) = δ(µ, λ).

An (L,M)-fuzzy quasi-proximity is called perfect if it satisfies the following axiom
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(PP) δ(
∨

i∈Γ λi, µ) =
∨

i∈Γ δ(λi, ρ).

An (L,M)-fuzzy quasi-proximity is called co-perfect if it satisfies the following
axiom

(CPP) δ(λ,
∨

i∈Γ ρi) =
∨

i∈Γ δ(λ, ρi).

Proposition 4.2. (1) If δ is an (L,M)-fuzzy quasi-proximity space and we define
δs : LX × LX → M by

δs(λ, µ) = δ(µ∗, λ∗), ∀ λ, µ ∈ LX ,

then δs is an (L,M)-fuzzy quasi-proximity space.

(2) If (X, ξ) is a perfect (L,M)-fuzzy topogenous space and we define δξ : LX ×
LX → M by

δξ(λ, µ) = ξ∗(λ, µ∗) ∀ λ, µ ∈ LX ,

then δξ is a perfect (L,M)-fuzzy quasi-proximity space on X. Moreover, if ξ is
symmetric, then δξ is a bi-perfect (L,M)-fuzzy proximity space on X.

(3) If (X, ξ) is a co-perfect (L,M)-fuzzy co-topogenous space and we define δξ :
LX × LX → M by

δξ(λ, µ) = ξ∗(µ, λ∗) ∀ λ, µ ∈ LX ,

then δξ is a co-perfect (L,M)-fuzzy quasi-proximity space on X. Moreover, if ξ is
symmetric, then δξ is a bi-perfect (L,M)-fuzzy proximity space on X.

(4) If δ is an (resp. perfect) (L,M)-fuzzy quasi-proximity space and we define
ξδ : LX × LX → M by

ξδ(λ, µ) = δ∗(λ, µ∗) ∀ λ, µ ∈ LX ,

then ξδ is an (resp. perfect) (L, M)-fuzzy topogenous space such that δξδ
= δ.

Moreover, if ξ is an (resp. perfect) (L,M)-fuzzy topogenous space, then ξδξ
= ξ.

(5) If δ is an (resp. co-perfect) (L, M)-fuzzy quasi-proximity space and we define
ξδ : LX × LX → M by

ξδ(λ, µ) = δ∗(µ∗, λ) ∀ λ, µ ∈ LX ,

then ξδ is an (resp. co-perfect) (L,M)-fuzzy co-topogenous space such that δξδ
= δ.

Moreover, if ξ is an (resp. co-perfect) (L,M)-fuzzy co-topogenous space, then ξδξ
= ξ.

Proof. (1) It is easily proved.

(2) (QP1) δξ(1X , 0X) = ξ∗(1X , 0∗X) = ξ∗(1X , 0X) = 0M . Similarly, δξ(0X , 1X) = 0.
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(QP2) By Definition 3.1 (ST2) and Lemma 2.3 (16), we have

δξ(λ, µ) ≥ (S(λ, µ∗))∗ = (
∧
x∈X

(λ(x) → µ∗(x))∗ =
∨
x∈X

(λ(x) → µ∗(x))∗ =
∨
x∈X

(λ¯µ)(x).

(QP3) If λ ≥ µ, then

ξ(λ, ρ∗) ≤ ξ(µ, ρ∗) iff ξ∗(µ, ρ∗) ≤ ξ∗(λ, ρ∗), then δξ(µ, ρ) ≤ δξ(λ, ρ).

(QP4)

δξ(λ1 ¯ λ2, ρ1 ⊕ ρ2) = ξ∗(λ1 ¯ λ2, (ρ1 ⊕ ρ2)
∗) = ξ∗(λ1 ¯ λ2, ρ

∗
1 ¯ ρ∗2)

≤ ξ∗(λ1, ρ
∗
1)⊕ ξ∗(λ2, ρ

∗
2) = δξ(λ1, ρ1)⊕ δξ(λ2, ρ2).

(QP5) Since ξ ◦ ξ ≥ ξ by definition 3.7, then

δξ(λ, µ) = ξ∗(λ, µ∗) ≥ (ξ ◦ ξ)∗(λ, µ∗) =
( ∨

γ∈LX

ξ(λ, γ)¯ ξ(γ, µ∗)
)∗

=
∧

γ∈LX

ξ∗(λ, γ)⊕ ξ∗(γ, µ∗) =
∧

γ∈LX

δξ(λ, γ∗)⊕ δξ(γ, µ).

(PP) δξ(
∨

i∈Γ λi, µ) = ξ∗(
∨

i∈Γ λi, µ
∗) =

∨
i∈Γ ξ∗(λi, µ

∗) =
∨

i∈Γ δξ(λi, µ).

Let ξ = ξs be given, then ξ is co-perfect by

ξ(λ,
∧
i∈Γ

ρi) = ξs(λ,
∧
i∈Γ

ρi) = ξ(
∨
i∈Γ

ρ∗i , λ
∗) =

∧
i∈Γ

ξ(ρ∗i , λ
∗) =

∧
i∈Γ

ξs(λ, ρi) =
∧
i∈Γ

ξ(λ, ρi).

(P) δξ(λ, µ) = ξ∗(λ, µ∗) = (ξs)∗(λ, µ∗) = ξ∗(µ, λ∗) = δξ(µ, λ).

(CPP) δξ(λ,
∨

i∈Γ ρi) = ξ∗(λ,
∧

i∈Γ ρ∗i ) =
∨

i∈Γ ξ∗(λ, ρ∗i ) =
∨

i∈Γ δξ(λ, ρi). Hence
δξ is a biperfect (L,M)-fuzzy proximity space on X.

(3) It is similarly proved as (2).

(QP4)

δξ(λ1 ¯ λ2, ρ1 ⊕ ρ2) = ξ∗(ρ1 ⊕ ρ2, (λ1 ¯ λ2)
∗) = ξ∗(ρ1 ⊕ ρ2, λ

∗
1 ⊕ λ∗2)

≤ ξ∗(ρ1, λ
∗
1)⊕ ξ∗(ρ2, λ

∗
2) = δξ(λ1, ρ1)⊕ δξ(λ2, ρ2).

Other cases are similarly proved as (2).

(4) (ST1) ξδ(1X , 1X) = δ∗(1X , 1∗X) = δ∗(1X , 0X) = 0∗ = 1M ,

ξδ(0X , 0X) = δ∗(0X , 0∗X) = δ∗(0X , 1X) = 0∗ = 1M .
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(ST2) From Lemma 2.3 (16), we have

ξδ(λ, µ) = δ∗(λ, µ∗) ≤ ( ∨
x∈X

(λ¯ µ∗)(x)
)∗

=
∧
x∈X

(λ¯ µ∗)∗(x)

=
∧
x∈X

(λ(x) → µ(x)) = S(λ, µ).

(ST3) If λ1 ≤ λ, µ ≤ µ1, then from (QP3) and (QP6)

ξδ(λ, µ) = δ∗(λ, µ∗) ≥ δ∗(λ1, µ
∗) = δ∗(µ∗, λ1) ≥ δ∗(µ∗1, λ1) = δ∗(λ1, µ

∗
1) = ξδ(λ1, µ1).

(ST4) Obviously, ξδ(λ, µ) = δ∗(λ, µ∗) = δ∗(µ∗, λ) = ξδ(µ
∗, λ∗) = ξs

δ(λ, µ).

(T)

ξδ(λ1, µ1)¯ ξδ(λ2, µ2) = δ∗(λ1, µ
∗
1)¯ δ∗(λ2, µ

∗
2) =

(
δ(λ1, µ

∗
1)⊕ δ(λ2, µ

∗
2)

)∗
≤ δ∗(λ1 ¯ λ2, µ

∗
1 ⊕ µ∗2) = δ∗(λ1 ¯ λ2, (µ1 ¯ µ2)

∗) = ξδ(λ1 ¯ λ2, µ1 ¯ µ2).

δξδ
(λ, µ) = ξ∗δ (λ, µ∗) = δ(λ, µ), ξδξ

(λ, µ) = δ∗ξ (λ, µ∗) = ξ(λ, µ).

(5) (CT)

ξδ(λ1, µ1)¯ ξδ(λ2, µ2) = δ∗(µ∗1, λ1)¯ δ∗(µ∗2, λ2) =
(
δ(µ∗1, λ1)⊕ δ(µ∗2, λ2)

)∗
≤ δ∗(µ∗1 ¯ µ∗2, λ1 ⊕ λ2) = δ∗((µ1 ⊕ µ2)

∗, λ1 ⊕ λ2) = ξδ(λ1 ⊕ λ2, µ1 ⊕ µ2).

δξδ
(λ, µ) = ξ∗δ (µ, λ∗) = δ(λ, µ), ξδξ

(λ, µ) = δ∗ξ (µ
∗, λ) = ξ(λ, µ).

Theorem 4.3. Let δ be an (L, M)-fuzzy quasi-proximity on X, then

(1) If δ is perfect and the mapping Tδ : LX → M defined by Tδ(λ) = δ∗(λ, λ∗),
then Tδ is an (L,M)-fuzzy topology on X.

(2) If δ is co-perfect and the mapping Fδ : LX → M defined by Fδ(λ) = δ∗(λ∗, λ),
then Fδ is an (L,M)-fuzzy cotopology on X.

(3) If δ is a perfect (L, M)-fuzzy proximity on X, then Tδ(λ) = Fδ(λ).

Proof. (1) Let δ be a perfect (L,M)-fuzzy quasi-proximity on X and define ξδ(λ, µ) =
δ∗(λ, µ∗), then ξδ a perfect (L,M)-fuzzy topogenuous and

Tδ(λ) = δ∗(λ, λ∗) = ξδ(λ, λ).

Hence Tδ is an (L,M)-fuzzy topology on X.

(2) It is easily proved as Tδ(λ) = δ∗(λ, λ∗) = δ∗(λ∗, λ) = Tδ(λ).
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Theorem 4.4. Let F be an (L,M)-fuzzy co-topology on X, then

(1) The mapping δF : LX × LX → M defined by

δF(λ, µ) =
∧
{(F(γ))∗ | µ ≤ γ ≤ λ∗}

is a co-perfect (L,M)-fuzzy quasi-proximity space. Moreover, FδF = F .

(2) If δ is a co-perfect (L,M)-fuzzy quasi-proximity on X, then δFδ
≥ δ.

Theorem 4.5. Let T be an (L,M)-fuzzy topology on X, then

(1) The mapping δT : LX × LX → M defined by

δT (λ, µ) =
∧
{(T (γ))∗ | λ ≤ γ ≤ µ∗}

is a perfect (L,M)-fuzzy quasi-proximity space. Moreover, TδT = T .

(2) If FT (λ) = T (λ∗) is an (L,M)-fuzzy topology on X, then δFT = δs
T .

Example 4.6. Let ξi be given as Example 3.13 and since δξi
(λ, ρ) = ξ∗i (λ, ρ∗), then

we have
δξ1(λ, ρ) = S∗(λ, ρ∗) =

∨
x∈X

(λ¯ ρ)(x),

δξ2(λ, ρ) =

{
0, if λ = 0X , or ρ = 0X ,
1, otherwise

, δξ3(λ, ρ) =

{
0, if λ ≤ ρ∗,
1, otherwise.

Example 4.7. Let T ,F be given as Example 3.13.

(1) By Theorems 4.2(2) and 4.5, we obtain a perfect (L,M)-quasi-proximity
δξT = δT : LX × LX → M as follows

δξT (λ, ρ) =





0, if λ = 0X or ρ = 0X

0.4, if u¯ u 6≥ λ ≤ u ≤ ρ∗,
0.7, if 0X 6= λ ≤ u¯ u ≤ ρ∗, u 6≤ ρ∗,
1, otherwise.

By Theorems 4.2(2) and 4.5, we obtain a co-perfect (L,M)-quasi-proximity
δξs
T = δξT ∗ : LX × LX → M with T ∗(λ) = T (λ∗) as follows

δξs
T (λ, ρ) =





0, if λ = 0X or ρ = 0X

0.4, if λ ≤ u∗ ≤ ρ∗, ρ∗ 6≥ u∗ ⊕ u∗

0.7, if λ ≤ u∗ ⊕ u∗ ≤ ρ∗ 6= 1X , λ 6≤ u∗,
1, otherwise.

Moreover, Fδξs
T
(λ) = T (λ∗).
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(2) By Theorems 4.2(2) and 4.4, we obtain co-perfect (L,M)-quasi-proximity
δξF = δF : LX × LX → M as follows

δξF (λ, ρ) =





0, if λ = 0X or ρ = 0X

0.3, if v ⊕ v 6≥ λ ≤ v ≤ ρ∗,
0.5, if 0X 6= λ ≤ v ⊕ v ≤ ρ∗, v 6≤ ρ∗,
1, otherwise.

By Theorems 4.2(2) and 4.4, we obtain perfect (L,M)-quasi-proximity
δξs
F = δF∗ : LX × LX → M with F∗(λ) = F(λ∗) as follows

δξs
F (λ, ρ) =





0, if λ = 0X or ρ = 0X

0.3, if v ⊕ v 6≥ λ ≤ v∗ ≤ ρ∗, ρ∗ 6≥ v∗ ¯ v∗

0.5, if λ ≤ v∗ ¯ v∗ ≤ ρ∗, λ 6≤ v∗,
1, otherwise.

Moreover, Tδξs
F
(λ) = F(λ∗).

Definition 4.8. Let (X, δX) and (Y, δY ) be two (L,M)-fuzzy quasi-proximity spaces.
A mapping f : (X, δX) → (Y, δY ) is said to be L-fuzzy proximally continuous if

δX(λ, µ) ≤ δY (f→(λ), f→(µ)), ∀ λ, µ ∈ LX ,

or equivalently, δX(f←(λ), f←(µ)) ≤ δY (λ, µ).

Theorem 4.9. A mapping f : (X, δX) → (Y, δY ) of two (L, M)-fuzzy quasi-proximity
spaces is L-fuzzy proximally continuous iff the the mapping f : (X, ξδX

) → (Y, ξδY
)

is topogenous continuous.

Conversely, a mapping f : (X, ξX) → (Y, ξY ) of (L, M)-fuzzy topogenous spaces
is topogenous continuous iff the mapping f : (X, δξX

) → (Y, δξY
) of the corresponding

(L,M)-fuzzy quasi-proximity spaces is L-fuzzy proximally continuous.

Proof. Since f : (X, δX) → (Y, δY ) is L-fuzzy proximally continuous, then

ξδX
(f←(λ), f←(µ)) = δ∗X(f←(λ), (f←(µ))∗)

= δ∗X(f←(λ), f←(µ∗)) ≤ δ∗Y (λ, µ∗) = ξδY
(λ, µ).

Conversely, Since f : (X, ξX) → (Y, ξY ) is topogenous continuous, then

δξX
(f←(λ), f←(µ)) = ξ∗X(f←(λ), (f←(µ))∗)

= ξ∗X(f←(λ), f←(µ∗)) ≤ ξ∗Y (λ, µ∗) = δξY
(λ, µ).

Theorem 4.10. Let (Y, δ) be an (L,M)-fuzzy quasi-proximity space, X be a non-
empty set and f : X → Y be a mapping. We define δf : LX × LX → M by

δf (λ, µ) = δ(f→(λ), f→(µ)), ∀ λ, µ ∈ LX .
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Then,
(1) δf is the coarsest (L,M)-fuzzy quasi-proximity for which f is L-fuzzy

proximally continuous,
(2) A mapping g : (Z, ξ) → (X, δf ) is L-fuzzy proximally continuous iff f ◦ g

is L-fuzzy proximally continuous.

Proof. (QP1) δf (1X , 0X) = δ(f→(1X), f→(0X)) ≤ δ(1Y , 0Y ) = 0M . Similarly,

δf (0X , 1X) = 0M .

(QP2)

δf (λ, µ) = δ(f→(λ), f→(µ)) ≥
∨
y∈Y

(f→(λ)¯ f→(µ))(y)

≥
∨

x∈f←(y◦)

λ(x)¯
∨

x∈f←(y◦)

µ(x) ≥
∨
x∈X

λ(x)¯ µ(x) =
∨
x∈X

(λ¯ µ)(x).

(QP3) If λ ≤ µ, then δf (λ, ρ) = δ(f→(λ), f→(ρ)) ≤ δ(f→(µ), f→(ρ)) = δf (µ, ρ).

(QP4)

δf (λ1, ρ1)⊕ δf (λ2, ρ2) = δ(f→(λ1), f
→(ρ1))⊕ δ(f→(λ2), f

→(ρ2))

≥ δ(f→(λ1)¯ f→(λ2), f
→(ρ1)⊕ f→(ρ2))

≥ δ(f→(λ1 ¯ λ2), f
→(ρ1 ⊕ ρ2)) = δf (λ1 ¯ λ2, ρ1 ⊕ ρ2).

(QP5) Since δf (λ, (f←(ρ))∗) = δ(f→(λ), f→(f←(ρ∗))) ≤ δ(f→(λ), ρ∗), then we
have

δf (λ, µ) = δ(f→(λ), f→(µ)) ≥
∧

ρ∈LX

δ(f→(λ), ρ)⊕ δ(f→(µ), ρ∗)

≥
∧

f←(ρ)∈LX

δf (λ, f←(ρ))⊕ δf (µ, (f→(ρ))∗)

≥
∧

γ∈LX

δf (λ, γ)⊕ δf (µ, γ∗).

From the definition of δf , f is L-fuzzy proximally continuous. Let f : (X, δ1) →
(Y, δ) be L-fuzzy proximally continuous, and since

δ1(λ, µ) ≤ δ(f→(λ), f→(µ)) = δf (λ, µ).

Then, δf is coarser than δ1.

(2) Let g be L-fuzzy proximally continuous. So,

ξ(λ, µ) ≤ δf (g
→(λ), g→(µ)) = δ(f→(g→(λ)), f→(g→(µ))).

Hence, f ◦ g is L-fuzzy proximally continuous. Let f ◦ g be L-fuzzy proximally
continuous, then

ξ(λ, µ) ≤ δ(f→(g→(λ)), f→(g→(µ))) = δf (g
→(λ), g→(µ)).

Then g is L-fuzzy proximally continuous.



Journal of New Theory 8 (2015) 01-28 18

5 (L,M)-fuzzy topogenous order induced by (L,M)-

fuzzy quasi uniformity

Definition 5.1. [31, 47] A mapping U : LX×X → M is called an (L,M)-fuzzy
quasi-uniformity on X iff it satisfies the properties.

(LU1) There exists u ∈ LX×X such that U(u) = 1M ,
(LU2) If v ≤ u, then U(v) ≤ U(u),
(LU3) For every u, v ∈ LX×X , U(u¯ v) ≥ U(u)¯ U(v),
(LU4) If U(u) 6= 0M , then 14 ≤ u, where

1∆(x, y) =

{
1 if x = y
0 if x 6= y,

(LU5) U ≤ U ◦ U , where U ◦ U(u) =
∨{U(v)¯ U(w) | v ◦ w ≤ u},

v ◦ w(x, y) =
∨
z∈X

(v(z, x)¯ v(x, y)), ∀ x, y ∈ X.

Remark 5.2. Let (X,U) be an (L,M)-fuzzy quasi-uniform space, then by (LU1)
and (LU2), we have U(1X×X) = 1M because u ≤ 1X×X for all u ∈ LX×X .

Definition 5.3. [31, 47] Let (X,U) and (Y,V) be (L,M)-fuzzy uniform spaces,
and φ : X → Y ba a mapping. Then φ is said to be L-uniformly continuous if

V(v) ≤ U((φ× φ)←(v)),

for every v ∈ LY×Y .

Lemma 5.4. [31] Let (X,U) be an (L, M)-fuzzy quasi-uniform space. For each
u ∈ LX×X and λ ∈ LX , the image u[λ] of λ with respect to u is the fuzzy subset of
X defined by

u[λ](x) =
∨
y∈X

(λ(y)¯ u(y, x)), ∀ x ∈ X.

For each u, v, u1, u2 ∈ LX×X and λ, ρ, λ1, λ2, λi ∈ LX , we have

(1) λ ≤ u[λ], for each U(u) > 0M ,
(2) u ≤ u ◦ u, for each U(u) > 0M ,
(3) (v ◦ u)[λ] = v[u[λ]],
(4) u[

∨
i λi] =

∨
i u[λi],

(5) (u1 ¯ u2)[λ1 ¯ λ2] ≤ u1[λ1]¯ u2[λ2],
(6) (u1 ¯ u2)[λ1 ⊕ λ2] ≤ u1[λ1]⊕ u2[λ2].
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Theorem 5.5. Let (X,U) be an (L,M)-fuzzy quasi-uniform space. Define a map-
ping ξU : LX × LX → M by

ξU(λ, µ) =
∨
{U(u) | u[λ] ≤ µ}.

Then (X, ξU) is an (L,M)-fuzzy topogenous space.

Proof. . (ST1) Since u[0X ] = 0X and u[1X ] = 1X , for U(u) = 1M , we have
ξU(1X , 1X) = ξU(0X , 0X) = 1M .

(ST2) Since for all U(u) > 0M , we have λ ≤ u[λ]. Then if ξU(λ, µ) = 1M , we
have λ ≤ µ.

(ST3) If λ1 ≤ λ, µ ≤ µ1, then

ξU(λ, µ) =
∨
{U(u) | u[λ] ≤ µ} ≤

∨
{U(u) | u[λ] ≤ µ1}

≤
∨
{U(u) | u[λ1] ≤ µ1} = ξU(λ1, µ1).

(T)

ξU(λ1, µ1)¯ ξU(λ2, µ2) =
∨
{U(u) | u[λ1] ≤ µ1} ¯

∨
{U(v) | v[λ2] ≤ µ2}

≤
∨
{U(u)¯ U(v) | u[λ1]¯ v[λ2] ≤ µ1 ¯ µ2}

≤
∨
{U(u¯ v) | (u¯ v)[λ1 ¯ λ2] ≤ µ1 ¯ µ2}

≤
∨
{U(w) | w[λ1 ¯ λ2] ≤ µ1 ¯ µ2}

= ξU(λ1 ¯ λ2, µ1 ¯ µ2).

(CT)

ξU(λ1, µ1)¯ ξU(λ2, µ2) =
∨
{U(u) | u[λ1] ≤ µ1} ¯

∨
{U(v) | v[λ2] ≤ µ2}

≤
∨
{U(u)¯ U(v) | u[λ1]⊕ v[λ2] ≤ µ1 ⊕ µ2}

≤
∨
{U(u¯ v) | u¯ v[λ1 ⊕ λ2] ≤ µ1 ⊕ µ2}

= ξU(λ1 ⊕ λ2, µ1 ⊕ µ2).

(TS) For each u ∈ LX×X such that u[λ] ≤ µ, by (LU5), we have

U(u) =
∨
{U(v)¯ U(w) | v ◦ w ≤ u}.
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Thus,
∨
{U(u) | u[λ] ≤ µ} ≤

∨
{U(v)¯ U(w) | v ◦ w[λ] = v[w[λ]] ≤ µ}

≤
∨

γ∈LX

{
∨
{U(v)¯ U(w) | w[λ] ≤ γ, v[γ] ≤ µ}}

≤
∨

γ∈LX

{
∨
{U(v) | v[γ] ≤ µ} ¯

∨
{U(w) | w[λ] ≤ γ}}

=
∨

γ∈LX

ξU(λ, γ)¯ ξU(γ, µ).

Example 5.6. Let (L = M = [0, 1],¯,→) be a complete residuated lattice defined
as

x¯ y = (x + y − 1) ∨ 0, x → y = (1− x + y) ∧ 1.

Let X = {x, y, z} be a set and w ∈ LX×X such that

w =




1 0.5 0.3
0.7 1 0.5
0.6 0.6 1


 , w ¯ w =




1 0 0
0.4 1 0
0.2 0.2 1


 .

Define U : LX×X → M as follows

U(u) =





1, if u = >X×X ,
0.6, if w ≤ u 6= >X×X ,
0.3, if w ¯ w ≤ u 6≥ w,
0, otherwise.

Since 0.3 = U(w¯w) ≥ U(w)¯U(w) = 0.2 and w◦w = w, (w¯w)◦(w¯w) =
(w ¯ w), then U is an (L,M)-fuzzy quasi-uniformity on X.

By Theorem 5.5, we obtain (L,M)-fuzzy topogenous order ξU : LX × LX → M
as follows

ξU(λ, ρ) =





1, if λ ≤ ∨
x∈X λ(x) ≤ ρ,

0.6, if 0X 6= λ ≤ w[λ] ≤ ρ,
∨

x∈X λ(x) � ρ,
0.3, if λ ≤ (w ¯ w)[λ] ≤ ρ, w[λ] 6≤ ρ,
0, otherwise.

Definition 5.7. Let (X, ξX) and (Y, ξY ) be two (L,M)-fuzzy topogenous orders
and let f : X → Y be a map. Then f : (X, ξX) → (Y, ξY ) is called an L-fuzzy open
topogenous map if

ξX(λ, µ) ≤ ξY (f→(λ), f→(µ)), ∀ λ, µ ∈ LX×X .

Theorem 5.8. Let (X,U) and (Y,V) be (L,M)-fuzzy quasi-uniform spaces. If
f : (X,U) → (Y,V) is LF -uniformly continuous, then f : (X, ξU) → (Y, ξV) is an
L-fuzzy open topogenous map.
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Proof. Let v[f→(λ)] ≤ f→(µ), then

(f × f)←(v)[λ] = f←(v[f→(λ)]) ≤ f←f→(µ) ≤ µ.

Hence,

ξV(f→(λ), f→(µ)) =
∨
{V(v) | v[f→(λ)] ≤ f→(µ)}

≥
∨
{U((f × f)←(v)) | f←(v[f→(λ)]) ≤ f←(f→(µ))}

≥
∨
{U((f × f)←(v)) | (f × f)←(v)[λ] ≤ µ}

≥
∨
{U(w) | w[λ] ≤ µ} = ξU(λ, µ).

Theorem 5.9. Let (X,U) be an (L,M)-quasi uniform space. Define a mapping
ξU : LX×X → L such that

ξU(λ, ρ) =
∨
u

{U(u)¯ S(u[λ], u[ρ∗]∗)
}
,

then ξU is an (L,M)-fuzzy topogenous order.

Proof. (ST1) Since u[0X ] = 0X , and u[1X ] = 1X , then

ξU(0X , 0X) = ξU(1X , 1X) =
∨
u

U(u) = 1M .

(ST2) By (QU1) and Lemma 2.3 (16), we have

ξU(λ, µ) ≤
∧
x∈X

(
u[λ]¯ u[µ∗]

)∗
(x) =

∧
x∈X

(
u[λ] → (u[µ∗])∗

)
(x).

For U(u) > 0M , we have λ ≤ u[λ] and µ ≥ (u[µ∗])∗. Thus, by Lemma 2.3 (2), we
have

∧
x∈X

(
u[λ](x) → (u[µ∗])∗

)
(x) ≤

∧
x∈X

(
u[λ](x) → µ(x)

) ≤
∧
x∈X

(
λ(x) → µ(x)

)
= S(λ, µ).

Since λ ≤ u[λ], u[ρ∗]∗ ≤ ρ,

ξU(λ, ρ) =
∨
u

{U(u)¯ S(u[λ], u[ρ∗]∗)
} ≤

∨
u

{U(u)¯ S(λ, ρ)
} ≤ S(λ, ρ).

Therefore, ξU(λ, µ) ≤ S(λ, µ).

(ST3) It is obvious.
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(ST4) By Lemma 2.5(3) and Lemma 5.4(5), we have

ξU(λ1 ¯ λ2, ρ1 ¯ ρ2) =
∨
u

{U(u)¯ S(u[λ1 ¯ λ2], u[(ρ1 ¯ ρ2)
∗]∗)

}

≥
∨
u

{U(u)¯ S(u[λ1]¯ u[λ2], u[ρ∗1]
∗ ¯ u[ρ∗2]

∗)
}

≥
∨
u

{U(u)¯ S(u[λ1], u[ρ∗1]
∗)} ¯

∨
u

{U(u)¯ S(u[λ2], u[ρ∗2]
∗)

}

= ξU(λ1, ρ1)¯ ξU(λ2, ρ2).

(T) By Lemma 2.5(3) and Lemma 5.4(6), we have

ξU(λ1 ⊕ λ2, ρ1 ⊕ ρ2) =
∨
u

{U(u)¯ S(u[λ1 ⊕ λ2], u[(ρ1 ⊕ ρ2)
∗]∗)

}

≥
∨
u

{U(u)¯ S(u[λ1]⊕ u[λ2], u[ρ∗1]
∗ ⊕ u[ρ∗2]

∗)
}

≥
∨
u

{U(u)¯ S(u[λ1], u[ρ∗1]
∗)} ¯

∨
u

{U(u)¯ S(u[λ2], u[ρ∗2]
∗)

}

= ξU(λ1, ρ1)¯ ξU(λ2, ρ2).

Theorem 5.10. Let (X,U) and (Y,V) be two (L, M)-fuzzy quasi uniform spaces
and f : X → Y be LF -uniformly continuous, then f : (X, ξU) → (Y, ξV) is L- fuzzy
topogenous continuous.

Proof. Since (f × f)←(v)[f←(λ)] = f←(v[f→(f←(λ))]) ≤ f←(v[λ]) and by Theorem
5.7 for u = (f × f)←(v), we have for all λ, µ ∈ LX

ξV(λ, µ) =
∨
v

{V(v)¯ S(v[λ], (v[µ∗])∗)}

≤
∨
v

{V(v)¯ S(f←(v[λ]), f←((v[µ∗])∗))}

≤
∨
u

{U(u)¯ S(u[f←(λ)], (u[f←(µ∗)]))∗)} ≤ ξU(f←(λ), f←(µ)).

Lemma 5.11. For every λ, ρ ∈ LX , we define uλ,ρ, u
−1
λ,ρ : X ×X → L by

uλ,ρ(x, y) = λ(x) → ρ(y), u−1
λ,ρ(x, y) = uλ,ρ(y, x),

then we have the following statements

(1) 1X×X = u0X , 0X
= u1X , 1X

,
(2) If λ1 ≤ λ2 and ρ1 ≤ ρ2, then uλ2,ρ1 ≤ uλ1,ρ2 ,
(3) If λ ≤ ρ, then 14 ≤ uλ,ρ,
(4) For every uµ,ρ ∈ LX×X and λ ∈ LX , we have uγ,ρ ◦ uλ,γ ≤ uλ,ρ,
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(5) uλ1,ρ1 ¯ uλ2,ρ2 ≤ uλ1¯λ2 , uρ1¯ρ2 ,
(6) uλ1,ρ1 ¯ uλ2,ρ2 ≤ uλ1⊕λ2 , uρ1⊕ρ2 ,
(7) u−1

λ,ρ = uρ∗,λ∗ ,

(8) u−1
λ1¯λ2,ρ1¯ρ2

= uρ∗1⊕ρ∗2,λ∗1⊕λ∗2 ,

(9) u−1
λ1⊕λ2,ρ1⊕ρ2

= uρ∗1¯ρ∗2,λ∗1¯λ∗2 .

Proof.

(1) 1X×X(x, y) = 1 = u0X ,0X
(x, y) = 0X(x) → 0X(y) = 1X(x) → 1X(y) = u1X ,1X

(x, y).

(2) Let λ1 ≤ λ2 and ρ1 ≤ ρ2, then

uλ2,ρ1(x, y) = λ2(x) → ρ1(y) ≤ λ1(x) → ρ2(y) = uλ1,ρ2(x, y).

(3) Since 14[λ] = λ ≤ ρ, then 14 ≤ uλ,ρ.

(4)

uγ,ρ(x, z) ◦ uλ,γ(x, z) =
∨
y∈X

((γ(y) → ρ(z))¯(λ(x) → γ(y))) ≤ λ(x) → ρ(y) = uλ,ρ(x, z).

(5)

(uλ1,ρ1 ¯ uλ2,ρ2)(x, z) = uλ1,ρ1(x, z)¯ uλ2,ρ2(x, z)

≤ (λ1(x) → ρ1(y))¯ (λ2(x) → ρ2(y))

≤ λ1(x)¯ λ2(x) → ρ1(y)¯ ρ2(y) = uλ1¯λ2 , uρ1¯ρ2(x, y).

(6)

(uλ1,ρ1 ¯ uλ2,ρ2)(x, y) = uλ1,ρ1(x, y)¯ uλ2,ρ2(x, y)

≤ (λ1(x) → ρ1(y))¯ (λ2(x) → ρ2(y))

≤ λ1(x)⊕ λ2(x) → ρ1(y)⊕ ρ2(y) = uλ1⊕λ2 , uρ1⊕ρ2(x, y).

(7) u−1
λ,ρ(x, y) = uλ,ρ(y, x) = λ(y) → ρ(x) = ρ∗(x) → λ∗(y) = uρ∗,λ∗(x, y).

(8),(9) are similarly proved.

In the following theorem, we obtain an (L,M)-fuzzy quasi uniform space from
an (L,M)-fuzzy topogenous order.

Theorem 5.12. Let (X, ξ) be an (L,M)-fuzzy quasi topogenous space. Define
Uξ : LX×X → M by

Uξ(u) =
∨
{¯n

i=1ξ(µi, ρi) | ¯n
i=1 uµi,ρi

≤ u},
where

∨
is taken over every finite family {uµi,ρi

| i = 1, 2, 3, ...., n}. Then,

(1) Uξ is an (L,M)-fuzzy quasi uniformity on X,

(2) ξUξ
= ξ.
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Proof. (1) (LU1) Since ξ(0X , 0X) = ξ(1X , 1X) = 1M , there exists 1X×X = u0X ,0X
=

u1X ,1X
∈ LX×X . It follows Uξ(1X×X) = 1M .

(LU2) It is trivial from the definition of Uξ.

(LU3) For every u, v ∈ LX×X , each two families {uµi,ρi
| ¯n

i=1 uµi,ρi
≤ u} and

{uνj ,wj
| ¯k

j=1 uνj ,wj
≤ v}, we have

Uξ(u)¯ Uξ(v) =
( ∨

{¯n
i=1ξ(µi, ρi)| ¯n

i=1 uµi,ρi
≤ u})¯ ( ∨

{¯k
j=1ξ(νi, wi)| ¯k

j=1 uνi,wi
≤ v})

≤
∨
{(¯n

i=1ξ(µi, ρi))¯ (¯k
j=1ξ(νi, wi)) | ¯n

i=1 uµi,ρi
≤ u, ¯k

j=1 uνi,wi
≤ v}

≤
∨
{(¯n

i=1ξ(µi, ρi))¯ (¯k
j=1ξ(νi, wi)) | (¯n

i=1uµi,ρi
)¯ (¯k

j=1uνi,wi
) ≤ u¯ v}

≤ Uξ(u¯ v).

(LU4) If U(u) 6= 0M , there exists a family {uλi,ρi
| ¯m

i=1 uλi,ρi
≤ u} such that

¯m
j=1 ξ(λi, ρi) 6= 0M . Since ξ(λi, ρi) 6= 0M , for i = 1, 2, ..., m, then λi ≤ ρi for

i = 1, 2, ...,m, i.e. 14 ≤ uλi,ρi
. Thus 14 ≤ ¯m

i=1uλi,ρi
≤ u.

(LU5) Suppose there exists u ∈ LX×X such that
∨
{Uξ(v)¯ Uξ(w) | v ◦ w ≤ u} � Uξ(u).

Put t =
∨{ Uξ(v) ¯ Uξ(w) | v ◦ w ≤ u}. From the Definition of Uξ(u), there exists

family {uµi,ρi
| ¯m

i=1 uµi,ρi
≤ u} such that

t � ¯m
i=1ξ(λi, ρi).

Since ξ ◦ ξ ≥ ξ, t � ¯m
i=1ξ ◦ ξ(λi, ρi) = ¯m

i=1{
∨

γ∈LX{ξ(γ, ρi)¯ (ξ(λi, γ))}} and L

is a stsc-quantal, then there exist γi ∈ LX such that

t � ¯m
i=1(ξ(γi, ρi)¯ ξ(λi, γi)).

On the other hand vi = uγi,ρi
, wi = uλi,γi

, then it satisfies

vi ◦ wi ≤ uγi, ρi
◦ uλi,γi

≤ uλi,ρi
, Uξ(vi) ≥ ξ(γi, ρi), Uξ(wi) ≥ ξ(λi, γi).

Let v = ¯m
i=1vi and w = ¯m

i=1wi be given. Since vi ◦ wi ≤ uλi,ρi
, for each

i = 1, 2, 3, ......, m, we have
(¯m

i=1 vi

) ◦ (¯m
i=1 vi

)
= ¯m

i=1 (vi ◦ wi) ≤ ¯m
i=1 uλi,ρi

≤ u.

Then, we have v ◦ w ≤ u, Uξ(v) ≥ ¯m
i=1 Uξ(vi) and Uξ(w) ≥ ¯m

i=1 Uξ(wi). Thus,

t =
∨
{Uξ(w)¯ Uξ(w) | w ◦ w ≤ u} ≥ Uξ(v)¯ Uξ(w) ≥ ¯m

i=1 (ξ(γi, ρi)¯ ξ(λi, γi)).

It is a contradiction. Thus, Uξ is an (L, M)-fuzzy quasi uniformity on X.

(2) Since u[λ] ≤ ρ, then u ≤ uλ,ρ. Hence,

ξUξ
(λ, ρ) =

∨
{Uξ(u) | u[λ] ≤ ρ} = Uξ(uλ,ρ) = ξ(λ, ρ).
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6 Conclusion

The main purpose of this paper is to introduce concepts in fuzzy set theory, namely
that an (L,M)-fuzzy semi-topogenous order, (L,M)-fuzzy topogenous space, (L,M)-
fuzzy uniform space and the (L,M)-fuzzy proximity space in strictly two sided,
commutative quantales. On the other hand, we study some relationships between
previous spaces and we give their examples. As a special case our (L,M)-fuzzy
topogenous structures contain classical Császèr topogenous structures, Katasaras
fuzzy topogenous structures and Čimoka L-fuzzy topogenous structures.
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