http://www.newtheory.org

ISSN: 2149-1402

Received: 03.04.2015 Published: 07.12.2015 Year: 2015, Number: 9, Pages: 01-10 Original Article^{**}

WEAKLY $\mathcal{I}_{a\delta}$ -CLOSED SETS

Ochanathevar Ravi^{1,*} <s Vellingiri Rajendran² <n KasthuriChattiar Indirani³ <in

<siingam@yahoo.com> <mathsraj05@yahoo.co.in> <indirani009@ymail.com>

¹Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai Dt, Tamilnadu, India.
²Department of Mathematics, KSG College, Coimbatore, Tamilnadu, India.
³Department of Mathematics, Nirmala College for Women, Coimbatore, Tamilnadu, India.

Abstract – In this paper, the notion of weakly $\mathcal{I}_{g\delta}$ -closed sets in ideal topological spaces is introduced and studied. The relationships of weakly $\mathcal{I}_{g\delta}$ -closed sets and various properties of weakly $\mathcal{I}_{g\delta}$ -closed sets are investigated.

Keywords – generalized class of τ^* , weakly $\mathcal{I}_{g\delta}$ -closed set, ideal topological space, generalized closed set, $\mathcal{I}_{q\delta}$ -closed set, pre $*_{\mathcal{I}}$ -closed set, pre $*_{\mathcal{I}}$ -open set.

1 Introduction and Preliminaries

In this paper, (X, τ) represents topological space on which no separation axioms are assumed unless explicitly stated. The closure and the interior of a subset G of a space X will be denoted by cl(G) and int(G), respectively.

In 1937, Stone [16] introduced and studied the notion of regular open sets in topological spaces. A subset G of X is said to be regular open [16] if int(cl(G))=G. The complement of regular open set is regular closed. In 1968, Veličko [19] introduced the notion of δ -open sets, which are stronger than open sets in order to investigate the characterization of H-closed spaces. A point $x \in X$ is called a δ -cluster point of G if $G \cap U \neq \emptyset$ for every regular open set U containing x. The set of all δ -cluster points of G is called the δ -closure of G and is denoted by $cl_{\delta}(G)$. If $cl_{\delta}(G)=G$, then G is called δ -closed. The complement of a δ -closed set is δ -open. In 1968, Zaitsav [20] introduced and studied the notion of π -open sets. A finite union of regular open sets is said to be π -open [20]. The complement of a π -open set is π -closed.

In 1999, Dontchev et al. studied the notion of generalized closed sets in ideal topological spaces called \mathcal{I}_{g} -closed sets [2]. In 2008, Navaneethakrishnan and Paulraj Joseph have studied some characterizations of normal spaces via \mathcal{I}_{g} -open sets [10].

^{**} Edited by Metin Akdağ (Area Editor) and Naim Çağman (Editor-in-Chief).

^{*} Corresponding Author.

In 2013, Ekici and Ozen [6] introduced a generalized class of τ^* . Ravi et. al [14, 15] introduced another generalized classes of τ^* called weakly \mathcal{I}_g -closed sets and weakly $\mathcal{I}_{\pi g}$ -closed sets respectively.

The main aim of this paper is to study the notion of weakly $\mathcal{I}_{g\delta}$ -closed sets in ideal topological spaces. Moreover, this generalized class of τ^* generalize $\mathcal{I}_{g\delta}$ -open sets and weakly $\mathcal{I}_{g\delta}$ -open sets. The relationships of weakly $\mathcal{I}_{g\delta}$ -closed sets and various properties of weakly $\mathcal{I}_{g\delta}$ -closed sets are discussed.

Definition 1.1. A subset G of a topological space (X, τ) is said to be

- 1. g-closed [9] if $cl(G) \subseteq H$ whenever $G \subseteq H$ and H is open in X;
- 2. g-open [9] if $X \setminus G$ is g-closed;
- 3. weakly g-closed [17] if $cl(int(G)) \subseteq H$ whenever $G \subseteq H$ and H is open in X.

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

- 1. $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$ and
- 2. $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$ [8].

Given a topological space (X, τ) with an ideal \mathcal{I} on X if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator $(\bullet)^* : \mathcal{P}(X) \to \mathcal{P}(X)$, called a local function [8] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap A \notin \mathcal{I}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $\mathrm{cl}^*(\bullet)$ for a topology $\tau^*(\mathcal{I}, \tau)$, called the *-topology and finer than τ , is defined by $\mathrm{cl}^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [18]. We will simply write A* for $A^*(\mathcal{I}, \tau)$ and τ^* for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. On the other hand, $(A, \tau_A, \mathcal{I}_A)$ where τ_A is the relative topology on A and $\mathcal{I}_A = \{A \cap J : J \in \mathcal{I}\}$ is an ideal topological space for an ideal topological space (X, τ, \mathcal{I}) and $A \subseteq$ X [7]. For a subset $A \subseteq X$, $\mathrm{cl}^*(A)$ and $\mathrm{int}^*(A)$ will, respectively, denote the closure and the interior of A in (X, τ^*) .

Definition 1.2. A subset G of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. \mathcal{I}_q -closed [2] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is open in (X, τ, \mathcal{I}) .
- 2. \mathcal{I}_{rq} -closed [11] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is regular open in (X, τ, \mathcal{I}) .
- 3. $\mathcal{I}_{\pi q}$ -closed [13] if $G^* \subseteq H$ whenever $G \subseteq H$ and H is π -open in (X, τ, \mathcal{I}) .
- 4. pre^{*}_{\mathcal{I}}-open [5] if G \subseteq int^{*}(cl(G)).
- 5. pre $^*_{\mathcal{I}}$ -closed [5] if X\G is pre $^*_{\mathcal{I}}$ -open.
- 6. \mathcal{I} -R closed [1] if $G = cl^*(int(G))$.
- 7. *-closed [7] if $G = cl^*(G)$ or $G^* \subseteq G$.

Remark 1.3. [6] In any ideal topological space, every \mathcal{I} -R closed set is *-closed but not conversely.

Definition 1.4. Let (X, τ, \mathcal{I}) be an ideal topological space. A subset G of X is said to be

- 1. a weakly \mathcal{I}_g -closed set [14] if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is an open set in X.
- 2. a weakly $\mathcal{I}_{\pi g}$ -closed set [15] if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is a π -open set in X.
- 3. a weakly \mathcal{I}_{rg} -closed set [6] if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is a regular open set in X.

Remark 1.5. [3] The following holds in any topological space:

regular open set $\Rightarrow \pi$ -open set $\Rightarrow \delta$ -open set \Rightarrow open set.

These implications are not reversible.

2 Properties of Weakly $\mathcal{I}_{q\delta}$ -closed Sets

Definition 2.1. A subset G of an ideal topological space (X, τ, \mathcal{I}) is said to be

- 1. $\mathcal{I}_{g\delta}$ -closed if $G^* \subseteq H$ whenever $G \subseteq H$ and H is δ -open in (X, τ, \mathcal{I}) .
- 2. weakly $\mathcal{I}_{g\delta}$ -closed if $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is δ -open in (X, τ, \mathcal{I}) .

Theorem 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. The following properties are equivalent:

- 1. G is a weakly $\mathcal{I}_{q\delta}$ -closed set,
- 2. $cl^*(int(G)) \subseteq H$ whenever $G \subseteq H$ and H is a δ -open set in X.

Proof. $(1) \Rightarrow (2)$: Let G be a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) . Suppose that $G \subseteq$ H and H is a δ -open set in X. We have $(int(G))^* \subseteq H$. Since $int(G) \subseteq G \subseteq H$, then $(int(G))^* \cup int(G) \subseteq H$. This implies that $cl^*(int(G)) \subseteq H$.

 $(2) \Rightarrow (1)$: Let $cl^*(int(G)) \subseteq H$ whenever $G \subseteq H$ and H is a δ -open in X. Since $(int(G))^* \cup int(G) \subseteq H$, then $(int(G))^* \subseteq H$ whenever $G \subseteq H$ and H is a δ -open set in X. Therefore G is a weakly $\mathcal{I}_{q\delta}$ -closed set in (X, τ, \mathcal{I}) .

Theorem 2.3. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is δ -open and weakly $\mathcal{I}_{g\delta}$ -closed, then G is *-closed.

Proof. Let G be a δ -open and weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) . Since G is δ -open and weakly $\mathcal{I}_{g\delta}$ -closed, $cl^*(G) = cl^*(int(G)) \subseteq G$. Thus, G is a *-closed set in (X, τ, \mathcal{I}) .

Theorem 2.4. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly $\mathcal{I}_{g\delta}$ -closed set, then $(int(G))^* \setminus G$ contains no any nonempty δ -closed set.

Proof. Let G be a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) . Suppose that H is a δ -closed set such that $H \subseteq (int(G))^* \backslash G$. Since G is a weakly $\mathcal{I}_{g\delta}$ -closed set, $X \backslash H$ is δ -open and $G \subseteq X \backslash H$, then $(int(G))^* \subseteq X \backslash H$. We have $H \subseteq X \backslash (int(G))^*$. Hence, $H \subseteq (Int(G))^* \cap (X \backslash (int(G))^*) = \emptyset$. Thus, $(int(G))^* \backslash G$ contains no any nonempty δ -closed set.

Theorem 2.5. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly $\mathcal{I}_{q\delta}$ -closed set, then $cl^*(int(G))\backslash G$ contains no any nonempty δ -closed set.

Proof. Suppose that H is a δ -closed set such that $H \subseteq cl^*(int(G))\backslash G$. By Theorem 2.4, it follows from the fact that $cl^*(int(G))\backslash G = ((int(G))^* \cup int(G))\backslash G$.

Theorem 2.6. Let (X, τ, \mathcal{I}) be an ideal topological space. The following properties are equivalent:

- 1. G is pre^{*}_{\mathcal{I}}-closed for each weakly $\mathcal{I}_{q\delta}$ -closed set G in (X, τ , \mathcal{I}),
- 2. Each singleton $\{x\}$ of X is a δ -closed set or $\{x\}$ is pre^{*}_I-open.

Proof. (1) \Rightarrow (2) : Let G be pre^{*}_I-closed for each weakly $\mathcal{I}_{g\delta}$ -closed set G in (X, τ , \mathcal{I}) and $\mathbf{x} \in \mathbf{X}$. We have $\mathrm{cl}^*(\mathrm{int}(\mathbf{G})) \subseteq \mathbf{G}$ for each weakly $\mathcal{I}_{g\delta}$ -closed set G in (X, τ , \mathcal{I}). Assume that {x} is not a δ -closed set. It follows that X is the only δ -open set containing X\{x}. Then, X\{x} is a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ , \mathcal{I}). Thus, $\mathrm{cl}^*(\mathrm{int}(X\setminus\{x\})) \subseteq X\setminus\{x\}$ and hence {x} $\subseteq \mathrm{int}^*(\mathrm{cl}(\{x\}))$. Consequently, {x} is pre^{*}_I-open.

 $(2) \Rightarrow (1)$: Let G be a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) . Let $x \in cl^*(int(G))$.

Suppose that $\{x\}$ is $\operatorname{pre}_{\mathcal{I}}^*$ -open. We have $\{x\} \subseteq \operatorname{int}^*(\operatorname{cl}(\{x\}))$. Since $x \in \operatorname{cl}^*(\operatorname{int}(G))$, then $\operatorname{int}^*(\operatorname{cl}(\{x\})) \cap \operatorname{int}(G) \neq \emptyset$. It follows that $\operatorname{cl}(\{x\}) \cap \operatorname{int}(G) \neq \emptyset$. We have $\operatorname{cl}(\{x\} \cap \operatorname{int}(G)) \neq \emptyset$ and then $\{x\} \cap \operatorname{int}(G) \neq \emptyset$. Hence, $x \in \operatorname{int}(G)$. Thus, we have $x \in G$.

Suppose that $\{x\}$ is a δ -closed set. By Theorem 2.5, $cl^*(int(G))\setminus G$ does not contain $\{x\}$. Since $x \in cl^*(int(G))$, then we have $x \in G$. Consequently, we have $x \in G$.

Thus, $cl^*(int(G)) \subseteq G$ and hence G is $pre^*_{\mathcal{I}}$ -closed.

Theorem 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If $cl^*(int(G)) \setminus G$ contains no any nonempty *-closed set, then G is a weakly $\mathcal{I}_{g\delta}$ -closed set.

Proof. Suppose that $cl^*(int(G))\backslash G$ contains no any nonempty *-closed set in (X, τ, \mathcal{I}) . Let $G \subseteq H$ and H be a δ -open set. Assume that $cl^*(int(G))$ is not contained in H. It follows that $cl^*(int(G))\cap(X\backslash H)$ is a nonempty *-closed subset of $cl^*(int(G))\backslash G$. This is a contradiction. Hence G is a weakly $\mathcal{I}_{q\delta}$ -closed set.

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly $\mathcal{I}_{g\delta}$ -closed set, then $int(G) = H \setminus K$ where H is \mathcal{I} -R closed and K contains no any nonempty δ -closed set.

Proof. Let G be a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) . Take $K = (int(G))^* \backslash G$. Then, by Theorem 2.4, K contains no any nonempty δ -closed set. Take $H = cl^*(int(G))$. Then $H = cl^*(int(H))$. Moreover, we have $H \backslash K = ((int(G))^* \cup int(G)) \backslash ((int(G))^* \backslash G)$ $= ((int(G))^* \cup int(G)) \cap (X \backslash (int(G))^* \cup G) = int(G)$.

Theorem 2.9. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. Assume that G is a weakly $\mathcal{I}_{g\delta}$ -closed set. The following properties are equivalent:

- 1. G is $\operatorname{pre}^*_{\mathcal{I}}$ -closed,
- 2. $cl^*(int(G)) \setminus G$ is a δ -closed set,
- 3. $(int(G))^* \setminus G$ is a δ -closed set.

Proof. $(1) \Rightarrow (2)$: Let G be pre^{*}_{*I*}-closed. We have $cl^*(int(G)) \subseteq G$. Then, $cl^*(int(G)) \setminus G = \emptyset$. Thus, $cl^*(int(G)) \setminus G$ is a δ -closed set.

 $(2) \Rightarrow (1)$: Let $cl^*(int(G)) \setminus G$ be a δ -closed set. Since G is a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) , then by Theorem 2.5, $cl^*(int(G)) \setminus G = \emptyset$. Hence, we have $cl^*(int(G)) \subseteq G$. Thus, G is pre^{*}_{\mathcal{I}}-closed.

(2) \Leftrightarrow (3) : It follows easily from that $cl^*(int(G))\backslash G = (int(G))^*\backslash G$.

Theorem 2.10. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$ be a weakly $\mathcal{I}_{g\delta}$ -closed set. Then $G \cup (X \setminus (int(G))^*)$ is a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) .

Proof. Let G be a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) . Suppose that H is a δ -open set such that $G \cup (X \setminus (int(G))^*) \subseteq H$. We have $X \setminus H \subseteq X \setminus (G \cup (X \setminus (int(G))^*)) =$ $(X \setminus G) \cap (int(G))^* = (int(G))^* \setminus G$. Since $X \setminus H$ is a δ -closed set and G is a weakly $\mathcal{I}_{g\delta}$ -closed set, it follows from Theorem 2.4 that $X \setminus H = \emptyset$. Hence, X = H. Thus, X is the only δ -open set containing $G \cup (X \setminus (int(G))^*)$. Consequently, $G \cup (X \setminus (int(G))^*)$ is a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) .

Corollary 2.11. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$ be a weakly $\mathcal{I}_{g\delta}$ -closed set. Then $(int(G))^* \setminus G$ is a weakly $\mathcal{I}_{g\delta}$ -open set in (X, τ, \mathcal{I}) .

Proof. Since $X \setminus ((int(G))^* \setminus G) = G \cup (X \setminus (int(G))^*)$, it follows from Theorem 2.10 that $(int(G))^* \setminus G$ is a weakly $\mathcal{I}_{g\delta}$ -open set in (X, τ, \mathcal{I}) .

Theorem 2.12. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. The following properties are equivalent:

- 1. G is a *-closed and δ -open set,
- 2. G is \mathcal{I} -R closed and δ -open set,
- 3. G is a weakly $\mathcal{I}_{q\delta}$ -closed and δ -open set.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$: Obvious.

(3) \Rightarrow (1) : Since G is δ -open and weakly $\mathcal{I}_{g\delta}$ -closed, $cl^*(int(G)) \subseteq G$ and so G = $cl^*(int(G))$. Then G is \mathcal{I} -R closed and hence it is *-closed.

Proposition 2.13. Every $\operatorname{pre}^*_{\mathcal{I}}$ -closed set is weakly $\mathcal{I}_{q\delta}$ -closed but not conversely.

Proof. Let $H \subseteq G$ and G be a δ -open set in X. Since H is $\operatorname{pre}_{\mathcal{I}}^*$ -closed, $\operatorname{cl}^*(\operatorname{int}(H)) \subseteq H \subseteq G$. Hence H is weakly $\mathcal{I}_{q\delta}$ -closed set.

Example 2.14. Let (X, τ, \mathcal{I}) be an ideal topological space such that $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{c\}, \{a, c\}\}$ and $\mathcal{I} = \{\emptyset, \{c\}\}$. Then $\{a, c\}$ is weakly $\mathcal{I}_{g\delta}$ -closed set but not pre^{*}_{*I*}-closed.

3 Further Properties

Theorem 3.1. Let (X, τ, \mathcal{I}) be an ideal topological space. The following properties are equivalent:

- 1. Each subset of (X, τ, \mathcal{I}) is a weakly $\mathcal{I}_{g\delta}$ -closed set,
- 2. G is $\operatorname{pre}^*_{\mathcal{I}}$ -closed for each δ -open set G in X.

Proof. (1) \Rightarrow (2) : Suppose that each subset of (X, τ, \mathcal{I}) is a weakly $\mathcal{I}_{g\delta}$ -closed set. Let G be a δ -open set in X. Since G is weakly $\mathcal{I}_{g\delta}$ -closed, then we have $cl^*(int(G)) \subseteq G$. Thus, G is pre^{*}_{\mathcal{I}}-closed.

 $(2) \Rightarrow (1)$: Let G be a subset of (X, τ, \mathcal{I}) and H be a δ -open set such that G \subseteq H. By (2), we have $cl^*(int(G)) \subseteq cl^*(int(H)) \subseteq$ H. Thus, G is a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) .

Theorem 3.2. Let (X, τ, \mathcal{I}) be an ideal topological space. If G is a weakly $\mathcal{I}_{g\delta}$ -closed set and $G \subseteq H \subseteq cl^*(int(G))$, then H is a weakly $\mathcal{I}_{g\delta}$ -closed set.

Proof. Let $H \subseteq K$ and K be a δ -open set in X. Since $G \subseteq K$ and G is a weakly $\mathcal{I}_{g\delta}$ -closed set, then $cl^*(int(G)) \subseteq K$. Since $H \subseteq cl^*(int(G))$, then $cl^*(int(H)) \subseteq cl^*(int(G)) \subseteq K$. Thus, $cl^*(int(H)) \subseteq K$ and hence, H is a weakly $\mathcal{I}_{g\delta}$ -closed set.

Corollary 3.3. Let (X, τ, \mathcal{I}) be an ideal topological space. If G is a weakly $\mathcal{I}_{g\delta}$ -closed and open set, then $cl^*(G)$ is a weakly $\mathcal{I}_{g\delta}$ -closed set.

Proof. Let G be a weakly $\mathcal{I}_{g\delta}$ -closed and open set in (X, τ, \mathcal{I}) . We have $G \subseteq cl^*(G) \subseteq cl^*(G) = cl^*(int(G))$. Hence, by Theorem 3.2, $cl^*(G)$ is a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) .

Theorem 3.4. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a nowhere dense set, then G is a weakly $\mathcal{I}_{g\delta}$ -closed set.

Proof. Let G be a nowhere dense set in X. Since $int(G) \subseteq int(cl(G))$, then $int(G) = \emptyset$. Hence, $cl^*(int(G)) = \emptyset$. Thus, G is a weakly $\mathcal{I}_{q\delta}$ -closed set in (X, τ, \mathcal{I}) .

Remark 3.5. The reverse of Theorem 3.4 is not true in general as shown in the following example.

Example 3.6. In Example 2.14, $\{a, c\}$ is a weakly $\mathcal{I}_{g\delta}$ -closed set but not a nowhere dense set.

Remark 3.7. The intersection of two weakly $\mathcal{I}_{g\delta}$ -closed sets in an ideal topological space need not be a weakly $\mathcal{I}_{g\delta}$ -closed set.

Example 3.8. Let (X, τ, \mathcal{I}) be an ideal topological space such that $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. Then $A = \{a, b, d\}$ and $B = \{a, b, c\}$ are weakly $\mathcal{I}_{g\delta}$ -closed sets but their intersection $\{a, b\}$ is not a weakly $\mathcal{I}_{g\delta}$ -closed set.

Theorem 3.9. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. Then G is a weakly $\mathcal{I}_{g\delta}$ -open set if and only if $H \subseteq int^*(cl(G))$ whenever $H \subseteq G$ and H is a δ -closed set.

Proof. Let H be a δ -closed set in X and H \subseteq G. It follows that X\H is a δ -open set and X\G \subseteq X\H. Since X\G is a weakly $\mathcal{I}_{g\delta}$ -closed set, then $cl^*(int(X\setminus G)) \subseteq$ X\H. We have X\int^*(cl(G)) \subseteq X\H. Thus, H \subseteq int*(cl(G)).

Conversely, let K be a δ -open set in X and X\G \subseteq K. Since X\K is a δ -closed set such that X\K \subseteq G, then X\K \subseteq int*(cl(G)). We have X\int*(cl(G)) = cl*(int(X\G)) \subseteq K. Thus, X\G is a weakly $\mathcal{I}_{g\delta}$ -closed set. Hence, G is a weakly $\mathcal{I}_{g\delta}$ -open set in (X, τ, \mathcal{I}).

Theorem 3.10. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly $\mathcal{I}_{g\delta}$ -closed set, then $cl^*(int(G))\backslash G$ is a weakly $\mathcal{I}_{g\delta}$ -open set in (X, τ, \mathcal{I}) .

Proof. Let G be a weakly $\mathcal{I}_{g\delta}$ -closed set in (X, τ, \mathcal{I}) . Suppose that H is a δ -closed set such that $H \subseteq cl^*(int(G)) \setminus G$. Since G is a weakly $\mathcal{I}_{g\delta}$ -closed set, it follows from Theorem 2.5 that $H = \emptyset$. Thus, we have $H \subseteq int^*(cl(cl^*(int(G)) \setminus G))$. It follows from Theorem 3.9 that $cl^*(int(G)) \setminus G$ is a weakly $\mathcal{I}_{g\delta}$ -open set in (X, τ, \mathcal{I}) .

Theorem 3.11. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly $\mathcal{I}_{g\delta}$ -open set, then H = X whenever H is a δ -open set and $int^*(cl(G)) \cup (X \setminus G) \subseteq H$.

Proof. Let H be a δ -open set in X and $int^*(cl(G)) \cup (X\backslash G) \subseteq H$. We have $X\backslash H \subseteq (X\backslash int^*(cl(G))) \cap G = cl^*(int(X\backslash G))\backslash (X\backslash G)$. Since $X\backslash H$ is a δ -closed set and $X\backslash G$ is a weakly $\mathcal{I}_{g\delta}$ -closed set, it follows from Theorem 2.5 that $X\backslash H = \emptyset$. Thus, we have H = X.

Theorem 3.12. Let (X, τ, \mathcal{I}) be an ideal topological space. If G is a weakly $\mathcal{I}_{g\delta}$ -open set and $\operatorname{int}^*(\operatorname{cl}(G)) \subseteq H \subseteq G$, then H is a weakly $\mathcal{I}_{g\delta}$ -open set.

Proof. Let G be a weakly $\mathcal{I}_{g\delta}$ -open set and $\operatorname{int}^*(\operatorname{cl}(G)) \subseteq H \subseteq G$. Since $\operatorname{int}^*(\operatorname{cl}(G)) \subseteq H \subseteq G$, then $\operatorname{int}^*(\operatorname{cl}(G)) = \operatorname{int}^*(\operatorname{cl}(H))$. Let K be a δ -closed set and K \subseteq H. We have K \subseteq G. Since G is a weakly $\mathcal{I}_{g\delta}$ -open set, it follows from Theorem 3.9 that K $\subseteq \operatorname{int}^*(\operatorname{cl}(G)) = \operatorname{int}^*(\operatorname{cl}(H))$. Hence, by Theorem 3.9, H is a weakly $\mathcal{I}_{g\delta}$ -open set in (X, τ, \mathcal{I}) .

Corollary 3.13. Let (X, τ, \mathcal{I}) be an ideal topological space and $G \subseteq X$. If G is a weakly $\mathcal{I}_{g\delta}$ -open and closed set, then int^{*}(G) is a weakly $\mathcal{I}_{g\delta}$ -open set.

Proof. Let G be a weakly $\mathcal{I}_{g\delta}$ -open and closed set in (X, τ, \mathcal{I}) . Then $int^*(cl(G)) = int^*(G) \subseteq int^*(G) \subseteq G$. Thus, by Theorem 3.12, $int^*(G)$ is a weakly $\mathcal{I}_{g\delta}$ -open set in (X, τ, \mathcal{I}) .

Definition 3.14. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called $Q_{\mathcal{I}}$ -set if $A = M \cup N$ where M is δ -closed and N is pre^{*}_{\mathcal{I}}-open.

Remark 3.15. Every $\operatorname{pre}^*_{\mathcal{I}}$ -open (resp. δ -closed) set is $Q_{\mathcal{I}}$ -set but not conversely.

Example 3.16. Let (X, τ, \mathcal{I}) be an ideal topological space such that $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{d\}\}$. Then $\{b, d\}$ is a $Q_{\mathcal{I}}$ -set but it is neither pre^{*}_{\mathcal{I}}-open nor δ -closed.

Theorem 3.17. For a subset H of (X, τ, \mathcal{I}) , the following are equivalent.

- 1. H is $\text{pre}^*_{\mathcal{I}}$ -open.
- 2. H is a $Q_{\mathcal{I}}$ -set and weakly $\mathcal{I}_{q\delta}$ -open.

Proof. (1) \Rightarrow (2): By Remark 3.15, H is a Q_{*I*}-set. By Proposition 2.13, H is weakly $\mathcal{I}_{a\delta}$ -open.

 $(2) \Rightarrow (1)$: Let H be a $Q_{\mathcal{I}}$ -set and weakly $\mathcal{I}_{g\delta}$ -open. Then there exist a δ -closed set M and a pre^{*}_{\mathcal{I}}-open set N such that $H = M \cup N$. Since $M \subseteq H$ and H is weakly $\mathcal{I}_{g\delta}$ -open, by Theorem 3.9, $M \subseteq int^*(cl(H))$. Also, we have $N \subseteq int^*(cl(N))$. Since $N \subseteq H$, $N \subseteq int^*(cl(N)) \subseteq int^*(cl(H))$. Then $H = M \cup N \subseteq int^*(cl(H))$. So H is pre^{*}_{\mathcal{I}}-open.

The following example shows that the concepts of weakly $\mathcal{I}_{g\delta}$ -open set and $Q_{\mathcal{I}}$ -set are independent.

Example 3.18. In Example 3.16, {c} is weakly $\mathcal{I}_{g\delta}$ -open set but not $Q_{\mathcal{I}}$ -set. Also {d} is $Q_{\mathcal{I}}$ -set but not weakly $\mathcal{I}_{g\delta}$ -open set.

Remark 3.19. The following diagram holds for any ideal topological space:

 $\begin{array}{cccc} \mathcal{I}_{g\delta}\text{-closed set} & \longrightarrow & \text{weakly } \mathcal{I}_{g\delta}\text{-closed set} \\ & \downarrow & & \downarrow \\ \mathcal{I}_{rg}\text{-closed set} & \longrightarrow & \text{weakly } \mathcal{I}_{rg}\text{-closed set} \end{array}$

None of the implications is reversible as shown in the following examples and in [6].

Example 3.20. Let (X, τ, \mathcal{I}) be an ideal topological space such that $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset\}$. Then $\{a, b\}$ is \mathcal{I}_{rg} -closed set but not $\mathcal{I}_{g\delta}$ -closed.

Example 3.21. In Example 3.20, {a, b} is weakly \mathcal{I}_{rg} -closed set but not weakly $\mathcal{I}_{g\delta}$ -closed.

Example 3.22. In Example 3.20, $\{c\}$ is weakly $\mathcal{I}_{g\delta}$ -closed set but not $\mathcal{I}_{g\delta}$ -closed.

4 $g\delta$ -pre^{*}_{\mathcal{I}}-normal Spaces

Definition 4.1. An ideal topological space (X, τ, \mathcal{I}) is said to be $g\delta$ -pre^{*}_{\mathcal{I}}-normal if for every pair of disjoint δ -closed subsets A, B of X, there exist disjoint pre^{*}_{\mathcal{I}}-open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$.

Theorem 4.2. The following properties are equivalent for a space (X, τ, I) .

- 1. X is $g\delta$ -pre^{*}_{\mathcal{I}}-normal;
- 2. for any disjoint δ -closed sets A and B, there exist disjoint weakly $\mathcal{I}_{g\delta}$ -open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$;
- 3. for any δ -closed set A and any δ -open set B containing A, there exists a weakly $\mathcal{I}_{g\delta}$ -open set U such that $A \subseteq U \subseteq cl^*(int(U)) \subseteq B$.

Proof. (1) \Rightarrow (2): The proof is obvious.

 $(2) \Rightarrow (3)$: Let A be any δ -closed set of X and B any δ -open set of X such that $A \subseteq B$. Then A and X\B are disjoint δ -closed sets of X. By (2), there exist disjoint weakly $\mathcal{I}_{g\delta}$ -open sets U, V of X such that $A \subseteq U$ and X\B \subseteq V. Since V is weakly $\mathcal{I}_{g\delta}$ -open set, by Theorem 3.9, X\B \subseteq int*(cl(V)) and U \cap int*(cl(V)) = \emptyset . Therefore we obtain cl*(int(U)) \subseteq cl*(int(X\V)) and hence $A \subseteq U \subseteq$ cl*(int(U)) \subseteq B.

(3) \Rightarrow (1): Let A and B be any disjoint δ -closed sets of X. Then $A \subseteq X \setminus B$ and X \B is δ -open and hence there exists a weakly $\mathcal{I}_{g\delta}$ -open set G of X such that $A \subseteq G \subseteq cl^*(int(G)) \subseteq X \setminus B$. Put U = int*(cl(G)) and V = X \cl*(int(G)). Then U and V are disjoint pre*_{\mathcal{I}}-open sets of X such that $A \subseteq U$ and $B \subseteq V$. Therefore X is $g\delta$ -pre*_{\mathcal{I}}-normal.

Definition 4.3. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ is said to be weakly $\mathcal{I}_{g\delta}$ -continuous if $f^{-1}(V)$ is weakly $\mathcal{I}_{q\delta}$ -closed in X for every closed set V of Y.

Definition 4.4. A function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ is called weakly $\mathcal{I}_{g\delta}$ -irresolute if $f^{-1}(V)$ is weakly $\mathcal{I}_{g\delta}$ -closed in X for every weakly $\mathcal{J}_{g\delta}$ -closed of Y.

Definition 4.5. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be δ -closed [4, 12] if f(V) is δ -closed in Y for every δ -closed set V of X.

Definition 4.6. A topological space (X, τ) is said to be δ -normal if for every pair of disjoint δ -closed subsets A, B of X, there exist disjoint open sets U, V of X such that $A \subseteq U$ and $B \subseteq V$.

Theorem 4.7. Let $f: X \to Y$ be a weakly $\mathcal{I}_{g\delta}$ -continuous δ -closed injection. If Y is δ -normal, then X is $g\delta$ -pre^{*}_{\mathcal{I}}-normal.

Proof. Let A and B be disjoint δ -closed sets of X. Since f is δ -closed injection, f(A) and f(B) are disjoint δ -closed sets of Y. By the δ -normality of Y, there exist disjoint open sets U and V in Y such that f(A) \subseteq U and f(B) \subseteq V. Since f is weakly $\mathcal{I}_{g\delta}$ -continuous, then f⁻¹(U) and f⁻¹(V) are weakly $\mathcal{I}_{g\delta}$ -open sets of X such that A \subseteq f⁻¹(U) and B \subseteq f⁻¹(V). Therefore X is $g\delta$ -pre* $_{\mathcal{I}}$ -normal by Theorem 4.2.

Theorem 4.8. Let $f : X \to Y$ be a weakly $\mathcal{I}_{g\delta}$ -irresolute δ -closed injection. If Y is $g\delta$ -pre^{*}_{\mathcal{I}}-normal, then X is $g\delta$ -pre^{*}_{\mathcal{I}}-normal.

Proof. Let A and B be disjoint δ -closed sets of X. Since f is δ -closed injection, f(A) and f(B) are disjoint δ -closed sets of Y. Since Y is $g\delta$ -pre^{*}_{\mathcal{I}}-normal, by Theorem 4.2, there exist disjoint weakly $\mathcal{J}_{g\delta}$ -open sets U and V in Y such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Since f is weakly $\mathcal{I}_{g\delta}$ -irresolute, then $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint weakly $\mathcal{I}_{g\delta}$ -open sets of X such that $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$. Therefore X is $g\delta$ -pre^{*}_{\mathcal{I}}-normal.

References

- [1] A. Acikgoz and S. Yuksel, Some new sets and decompositions of $A_{\mathcal{I}-R^-}$ continuity, α - \mathcal{I} -continuity, continuity via idealization, Acta Math. Hungar., 114(1-2)(2007), 79-89.
- [2] J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japonica, 49(1999), 395-401.
- [3] J. Dontchev and T. Noiri, Quasi-normal spaces and πg -closed sets, Acta Math. Hungar., 89(3)(2000), 211-219.
- [4] J. Dontchev and M. Ganster, On δ -generalized closed sets and $T_{3/4}$ spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17(1996), 15-31.
- [5] E. Ekici, On $\mathcal{AC}_{\mathcal{I}}$ -sets, $\mathcal{BC}_{\mathcal{I}}$ -sets, $\beta_{\mathcal{I}}^*$ -open sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform, 20(2011), 47-54.
- [6] E. Ekici and S. Ozen, A generalized class of τ^* in ideal spaces, Filomat, 27(4)(2013), 529-535.
- [7] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4)(1990), 295-310.
- [8] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- [9] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(2)(1970), 89-96.

- [10] M. Navaneethakrishnan and J. Paulraj Joseph, g-closed sets in ideal topological spaces, Acta Math. Hungar., 119(4)(2008), 365-371.
- [11] M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces, Acta Math. Hungar., 125(4)(2009), 327-340.
- [12] T. Noiri, A generalization of perfect functions, J. London Math. Soc., 17(2)(1978), 540-544.
- [13] M. Rajamani, V. Inthumathi and S. Krishnaprakash, $\mathcal{I}_{\pi g}$ -closed sets and $\mathcal{I}_{\pi g}$ continuity, Journal of Advanced Research in Pure Mathematics, 2(4)(2010), 63-72.
- [14] O. Ravi, R. Senthil Kumar and A. Hamari Choudhi, Weakly \mathcal{I}_g -closed sets, Bulletin of the International Mathematical Virtual Institute, 4(2014), 1-9.
- [15] O. Ravi, G. Selvi, S. Murugesan and S. Vijaya, Weakly $\mathcal{I}_{\pi g}$ -closed sets, Journal of New Results in Science, 4(2014), 22-32.
- [16] M. H. Stone, Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 357-381.
- [17] P. Sundaram and N. Nagaveni, On weakly generalized continuous maps, weakly generalized closed maps and weakly generalized irresolute maps in topological spaces, Far East J. Math. Sci., 6(6)(1998), 903-1012.
- [18] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1946.
- [19] N. V. Veličko, H-closed topological spaces, Amer. Math. Soc. Transl. 78(1968), 103-118.
- [20] V. Zaitsav, On certain classes of topological spaces and their bicompactifications, Dokl. Akad Nauk SSSR, 178(1968), 778-779.