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Abstract − In this paper, we investigate a new form of continuity called perfect ω-irresoluteness
and we use functions which have this type of continuity as a tool to set new characterizations of
some properties of topological spaces.
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1 Introduction

An ω-closed set is a set which contains all its condensation points [5]. Since the
advent of this notion, lots of topologist have studied on it and most of topological
notions such as continuity, compactness, connectedness were generalized. Especially,
some new strong and weak forms of continuity have been arised during the last
years. One of these is ω-irresoluteness introduced by Al-Zoubi [4]. On the other
hand, in 1984, Noiri [8] introduced and investigated the notion of perfect continuity
of functions between topological spaces.

This paper devoted to investigate a new type of continuity is stronger than ω-
irresoluteness and perfect continuity. In section 3, definition and fundamental prop-
erties are given. In section 4, we use perfectly ω-irresolute functions as a tool to
set new characterizations of connectedness. Moreover some separation axioms re-
lated to ω-open sets are investigated. The last section deals with graphs of perfectly
ω-irresolute functions.

2 Preliminaries

Throughout the present paper, spaces always mean topological spaces on which no
separation axiom is assumed unless explicitly stated and f : (X, τ) → (Y, σ) (or
simply f : X → Y ) denotes a function f from a topological space (X, τ) into a
topological space (Y, σ). Let A be a subset of a space X. A point x ∈ X is called
a condensation point of A if for each open set U with x ∈ U , the set U ∩ A is
uncountable. A is called ω-closed [5] if it contains all its condensation points. The
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complement of an ω-closed set is called ω-open. The family of all ω-open subsets of
(X, τ) is denoted by τω. It is known that τω is a topology for X and τ ⊂ τω. For
a subset A of (X, τ), the closure of A and the interior of A denoted by Cl(A) and
Int(A), respectively. The closure of A with respect to τω denoted by ωCl(A). A is
called regular closed [9] if A = Cl(Int(A)).

Let us recall the following definitions which we shall require later.

Definition 2.1. A function f : X → Y is called perfectly continuous [8] if f−1(V )
is clopen in X for every open set V of Y .

Definition 2.2. A function f : X → Y is called ω-irresolute [4] if f−1(V ) is ω-open
in X for every ω-open set V of Y .

3 Perfectly ω-irresolute Functions

Definition 3.1. A function f : X → Y is said to be perfectly ω-irresolute if f−1(V )
is clopen in X for every ω-open set V of Y .

Theorem 3.2. For a function f : (X, τ) → (Y, σ), the followings are equivalent:
(1) f is perfectly ω-irresolute;
(2) for every ω-closed subset F of Y , f−1(F ) is clopen in X;
(3) f : (X, τ) → (Y, σω) is perfectly continuous.

Proof. (1)⇒(2). Let F be a ω-closed subset of Y . Then Y \F is an ω-open subset
and by (1), f−1(Y \F ) = X\f−1(F ) is clopen in X. Hence f−1(F ) is also clopen in
X.

(2)⇒(3). Let V ∈ σω. Then Y \V is an ω-closed in Y and by (2), f−1(Y \V ) =
X\f−1(V ) is clopen in X. Hence f−1(V ) is also clopen in X.

(3)⇒(1). It can be shown easily. Recal that a space (X, τ) is said to be ω-space
[1] if every ω-open set is open and is said to be locally ω-indiscrete [1] if every ω-open
set is closed in X.

Then we have the following theorem which gives a characterization of locally
ω-indiscrete ω-space. Its proof is clear.

Theorem 3.3. A space X is ω-space and locally ω-indiscrete if and only if the
identity map of X is perfectly ω-irresolute.

Theorem 3.4. For a function f : X → Y , the following are true.
(1) If f is perfectly ω-irresolute and A ⊆ X, then f |A: A → Y is perfectly

ω-irresolute.
(2) If {Gα : α ∈ I} is a locally finite clopen cover of X and if for each α,

fα = f |Gα is perfectly ω-irresolute, then f is perfectly ω-irresolute.

Proof. The proof of (1) is clear. We will only prove (2).
Let F be a ω-open subset of Y . Since each fα is perfectly ω-irresolute, each

f−1
α (F ) is clopen in Gα and hence in X. Thus f−1(F ) = ∪{f−1

α (F ) : α ∈ I} is
open in X. On the other hand, since the family {Gα : α ∈ I} is locally finite,
{f−1

α (F ) : α ∈ I} is a locally finite family of closed sets in X. Hence f−1(F ) being
the union of a locally finite collection of closed sets is closed in X. Consequently,
f−1(F ) is clopen in X.
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Definition 3.5. A function f : X → Y is called
(1) ω-continuous [6] f−1(V ) is ω-open in X for every open set V of Y .
(2) slightly ω-continuous [7] f−1(V ) is ω-open in X for every clopen set V of Y .
(3) contra ω-irresolute if f−1(V ) is ω-closed in X for every ω-open set V of Y .

Theorem 3.6. The followings hold for functions f : X → Y and g : Y → Z:
(1) If f : X → Y is perfectly ω-irresolute and g : Y → Z is ω-irresolute, then

g ◦ f : X → Z is perfectly ω-irresolute.
(2) If f : X → Y is perfectly ω-irresolute and g : Y → Z is ω-continuous, then

g ◦ f : X → Z is perfectly continuous.
(3) If f : X → Y is slightly ω-continuous and g : Y → Z is perfectly ω-irresolute,

then g ◦ f : X → Z is ω-irresolute.
(4) If f : X → Y is perfectly ω-irresolute and g : Y → Z is contra ω-irresolute,

then g ◦ f : X → Z is perfectly ω-irresolute.

Proof. (1) Let V be any ω-open set in Z. By the ω-irresoluteness of g, g−1(V ) is
ω-open. Since f is perfectly ω-irresolute, f−1(g−1(V )) = (g ◦ f)−1(V ) is clopen in
X. Therefore, g ◦ f is perfectly ω-irresolute.

The others can be proved similarly.

Theorem 3.7. If f : X → Y is a surjective open and closed function and g : Y → Z
is a function such that gof : X → Z is perfectly ω-irresolute function, then g is
perfectly ω-irresolute function.

Proof. Let V be any ω-open set in Z. Since gof is perfectly ω-irresolute, (gof)−1(V )
is clopen in X. Since f is surjective open and closed, f((g◦f)−1(V )) = f((f−1(g−1(V ))) =
g−1(V ) is clopen in Y . Therefore, g is perfectly ω-irresolute.

It is easy to show that perfect ω-irresoluteness implies perfect continuity and
ω-irresoluteness. The following theorems are about reverse of these implications and
they can be proved directly.

Theorem 3.8. Let X be a locally ω-indiscrete and ω-space. Then for any topological
space Y , a function f : X → Y is perfectly ω-irresolute if and only if f is ω-irresolute.

Theorem 3.9. Let Y be an ω-space. Then for any topological spaces X, a function
f : X → Y is perfectly ω-irresolute if and only if f is perfectly continuous.

Theorem 3.10. For a function f : X → Y , the following properties are equivalent:
(1) f is contra ω-irresolute;
(2) for every ω-closed F of Y , f−1(F ) is ω-open in X;
(3) for every x ∈ X and for every ω-closed set F containing f(x), there exists an

ω-open set U containing x such that f(U) ⊆ F .

Proof. (1)⇔(2). These follow from equality f−1(Y \F ) = X\f−1(F ) for each subset
F of Y .

(2)⇒(3). Let F be an ω-closed set containing f(x). Then by (2), f−1(F ) is
ω-open in X containing x. If we choose U = f−1(F ), proof is completed.

(3)⇒(2). Obvious.
A space X is called anti locally countable (see [3]) if every nonempty open set is

uncountable. It is shown in [7] that in an anti locally countable space X, U is clopen
in X iff U is ω-open and ω-closed in X. Then we have the following corollary.
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Corollary 3.11. Let (X, τ) be an anti locally countable space. Then for any topo-
logical spaces (Y, σ), a function f : (X, τ) → (Y, σ) is perfectly ω-irresolute if and
only if f is ω-irresolute and contra ω-irresolute.

A space X is called ω-regular [7] if for each closed set F and each point x ∈ X−F ,
there exist disjoint ω-open sets U and V such that x ∈ U and F ⊆ V . It is shown in
[2] that a space X is ω-regular if and only if for every point x of X and every open
set V containing x, there exists an ω-open set U such that x ∈ U ⊆ ωCl(U) ⊆ V .

Theorem 3.12. Let X be an anti local countable space and let Y be an ω-regular
space. For a function f : X → Y , the following properties are equivalent:

(1) f is perfectly ω-irresolute;
(2) for every ω-open set V in Y , f−1(V ) is regular closed in X;
(3) for every ω-open set V in Y , f−1(V ) is closed in X;
(4) f is contra-ω-irresolute.

Proof. The implications (1)⇒(2)⇒(3)⇒(4) are trivial. If we show that f is ω-
irresolute by Corollary 3.11, we have the proof of the implication (4)⇒(1). Let
x ∈ X be an arbitrary point and V be an ω-open set of Y containing f(x). Since
Y is ω-regular, there exists an ω-open set W in Y such that f(x) ∈ ωCl(W ) ⊆ V .
Since f is contra-ω-irresolute, there exists an ω-open set Ux containing x such that
f(Ux) ⊆ ωCl(W ). Then Ux ⊆ f−1(V ). This shows that f−1(V ) is ω-open in X.

4 Applications

Note that (X, τω) is always a T1-space for any given space (X, τ) [3]. Hence we have
the following results.

Theorem 4.1. If f : (X, τ) → (Y, σ) is a perfectly ω-irresolute function, then f is
constant on each component of X.

Proof. Let a and b be two points of X that lie in same component C of X. Assume
that f(a) 6= f(b). Since (Y, σω) is T1- space, there exists an U ∈ σω containing say
f(a) but not f(b). By perfect ω-irresoluteness of f , f−1(U) and X − f−1(U) are
disjoint clopen sets containing a and b, respectively. This is a contradiction with the
fact that C is a component containing a and b. Hence we have the result.

Corollary 4.2. If f : X → Y is a perfectly ω-irresolute function and if A is non-
empty connected subset of X, then f(A) is a single point.

Theorem 4.3. A space X is connected if and only if every perfectly ω-irresolute
function from a space X into any space Y is constant.

Proof. The first part of the proof is clear by Theorem 4.1. For the seconf part, assume
that X is not connected. Then there exists a proper non-empty clopen subset A of
X. Let Y = {u, v} and σ be discrete topology on Y . Then the function f : X → Y
defined by f(x) = u if x ∈ A, f(x) = v if x /∈ A is non-constant and perfectly
ω-irresolute. This is a contradiction by Theorem 4.1. Hence X must be connected.

Note that the topological space consisting of two points with the discrete topology
is usually denoted by 2.
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Corollary 4.4. For a topological space X, the following are equivalent :
(1) X is connected;
(2) Every perfectly ω-irresolute function f : X → 2 is constant;
(3) There is no perfectly ω-irresolute function f : X → 2 is surjective.

Definition 4.5. A space X is said to be ultra Hausdorff [9] (resp. ω-T2 [3]) if every
two distinct points of X can be separated by disjoint clopen (resp. ω-open) sets.

Theorem 4.6. If f : X → Y is a perfectly ω-irresolute injection, then X is ultra
Hausdorff.

Proof. Let x1, x2 ∈ X and x1 6= x2. Then f(x1) 6= f(x2). Since Y is always
ω − T1, there exists an ω-open set U containing say f(x1) but not f(x2). By perfect
ω-irresoluteness of f , f−1(U) and X − f−1(U) are disjoint clopen sets containing x1

and x2, respectively. Thus X is ultra Hausdorff.
The quasi-topology denoted by τq on X is the topology having as base the clopen

subsets of (X, τ). A subset A of X is called quasi open if A ∈ τq. The complement
of a quasi-open set is called quasi-closed [9].

Theorem 4.7. Let Y be ω-T2 space.
(1) If f , g : X → Y are perfectly ω-irresolute functions, then the set A = {x ∈

X : f(x) = g(x)} is quasi-closed in X.
(2) If f : X → Y is perfectly ω-irresolute function, then the subset E = {(x, y) :

f(x) = f(y)} is quasi-closed in X ×X.

Proof. (1). Let x /∈ A. Then f(x) 6= g(x). Since Y is ω-T2, there exist disjoint ω-open
sets V1 and V2 in Y such that f(x) ∈ V1 and g(x) ∈ V2. Since f and g are perfectly
ω-irresolute, f−1(V1) and g−1(V2) are clopen sets. Put U = f−1(V1)∩ g−1(V2). Then
U is clopen set containing x and U ∩A = ∅. Hence we have U ⊆ X−A. This shows
that X − A is quasi-open or equivalently A is quasi-closed.

(2). Let (x, y) /∈ E. Then f(x) 6= f(y). Since Y is ω-T2, there exist disjoint
ω-open sets V1 and V2 containing f(x) and f(y) respectively. Since f is perfectly
ω-irresolute, f−1(V1) and f−1(V2) are clopen sets. Then for the clopen set U =
f−1(V1)×f−1(V2) containing (x, y), we have U ∩E = ∅ i.e. U ⊆ (X×X)−E. This
shows that (X ×X)− E is quasi-open or equivalently E is quasi-closed.

Definition 4.8. [5]A function f : X → Y is called
(a) ω-closed if for each closed set K in X, f(K) is ω-closed in Y .
(b) ω-open if for each open set U in X, f(U) is ω-open in Y .

Theorem 4.9. A function f : X → Y is ω-closed (resp. ω-open) if and only if for
each subset S of Y and for each open (resp. closed) subset U of X with f−1(S) ⊆ U ,
there exists an ω-open (resp. ω-closed) set V of Y such that S ⊆ V and f−1(V ) ⊆ U .

Proof. We only prove for the ω-closedness. The other is entirely analogous.
(⇒): Suppose that f is ω-closed. Let S be any subset of Y and U be an open

subset of X with f−1(S) ⊆ U . Since f is ω-closed, Y − f(X − U) is an ω-open
set in Y . Then for the set V = Y − f(X − U), we have S ⊆ V and f−1(V ) =
f−1(Y − f(X − U)) = X − f−1(f(X − U)) ⊆ U .

(⇐): Let K be any closed subset of X and S = Y − f(K). Then f−1(S) ⊆
X − K. By hypothesis, there exists an ω-open set V in Y containing S such that
f−1(V ) ⊆ X−K. Then, we have K ⊆ X−f−1(V ) and Y −V = f(K). Since, Y −V
is ω-closed, f(K) is ω-closed and thus f is an ω-closed function. A topological space
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X is called ω-normal [7] if for every pair of disjoint closed subsets F1 and F2 of X,
there exists disjoint ω-open sets U and V such that F1 ⊆ U and F2 ⊆ V .

Theorem 4.10. If f : X → Y is a continuous ω-closed surjection and if X is normal
space, then Y is ω-normal.

Proof. Let F1 and F2 be disjoint closed sets of Y . Since f is continuous and X is
normal, there exist disjoint open sets U and V such that f−1(F1) ⊆ U and f−1(F2) ⊆
V . By Theorem 4.9, there exist ω-open sets G and H such that F1 ⊆ G, F2 ⊆ H
and f−1(G) ⊆ U and f−1(H) ⊆ V . Then we have f−1(G) ∩ f−1(H) = ∅ and hence
G ∩H = ∅. This shows that Y is ω-normal. The following theorem shows that we
can get same result under different hypothesis.

Theorem 4.11. If f : X → Y is perfectly ω-irresolute, ω-open bijection and X is a
normal space, then Y is ω-normal.

Proof. Let F1 and F2 be disjoint closed sets in Y . Since F1 and F2 are also ω-closed
and f is perfectly ω-irresolute, f−1(F1) and f−1(F2) are disjoint clopen and so closed
sets in X. By normality of X, there exist disjoint open sets U and V such that
f−1(F1) ⊆ U and f−1(F2) ⊆ V . Then we obtain that F1 ⊆ f(U) and F2 ⊆ f(V )
such that f(U) and f(V ) are disjoint ω-open sets. Thus Y is ω-normal.

Theorem 4.12. If f : X → Y is a continuous, ω-open, ω-closed surjection and if X
is regular, then Y is ω-regular.

Proof. Let y ∈ Y and V be an open set in Y with y ∈ V . Take y = f(x). Since f is
continuous and X is regular, there exist an open set U such that x ∈ U ⊆ Cl(U) ⊆
f−1(V ). Then y ∈ f(U) ⊆ f(Cl(U)) ⊆ V . By assumptions, f(U) is ω-open and
f(Cl(U)) is ω-closed set in Y . Therefore, we have y ∈ f(U) ⊆ ωClf(U) ⊆ V . This
shows that Y is ω-regular.

Theorem 4.13. If f : X → Y is perfectly ω-irresolute, ω-open bijection and if X is
regular, then Y is ω-regular.

Proof. It is similar to that of Theorem 4.11.

Definition 4.14. A space (X, τ) is called
(1) mildly compact [9] (resp. ω-compact [1]) if every clopen (resp. ω-open) cover

of X has a finite subcover.
(2) mildly Lindelöf [9] if every cover of X by clopen sets has a countable subcover.

Theorem 4.15. Let f : X → Y be a perfectly ω-irresolute surjection. If X is mildly
compact, then Y is ω-compact.

Proof. Let f be a perfectly ω-irresolute surjection and let X be a mildly com-
pact space. If {Vi}i∈I is an ω-open cover of Y , by perfect ω-irresoluteness of f ,
{f−1(Vi)}i∈I is a clopen cover of X and so there is a finite subset I0 of I such that
X = ∪i∈I0f

−1(Vi). Therefore, we have Y = ∪i∈I0Vi since f is surjective. Thus Y is
ω-compact.

Theorem 4.16. [6]For a topological space (X, τ), (X, τ) Lindelöf if and only if
(X, τω) Lindelöf.

Theorem 4.17. Let f : X → Y be a perfectly ω-irresolute surjection. If X is mildly
Lindelöf, then Y is Lindelöf.
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Proof. It is similar to that of Theorem 4.15. We notice that a subspace A of a space
X is mildly Lindelöf relative to X if for every cover {Vi : i ∈ I} of A by clopen sets
of X, there exists a countable subset I0 of I such that {Vi : i ∈ I0} covers A.

Theorem 4.18. Let f : X → Y be an ω-closed surjection such that f−1({y}) is
a mildly Lindelöf relative to X for each y ∈ Y . If Y is Lindelöf, then X is mildly
Lindelöf.

Proof. Let {Ui : i ∈ I} be an clopen cover of X. Since f−1({y}) is a mildly Lindelöf
relative to X for each y ∈ Y , there exists a countable subset Iy of I such that
f−1({y}) ⊆ ∪{Ui : i ∈ Iy}. Put Uy = ∪{Ui : i ∈ Iy}. Then since f is ω-closed,
Vy = Y − f(X − Uy) is an ω-open set containing y such that f−1(Vy) ⊆ Uy. Again
since {Vy : y ∈ Y } is an ω-open cover of the Lindelöf space Y , by Theorem 4.16, there
exist countable points of Y , says, y1, y2, ..., yn, ... such that Y = ∪n∈NVyn . Therefore,
we have X = f−1(∪n∈NVyn) = ∪n∈Nf−1(Vyn) ⊆ ∪n∈NUyn = ∪n∈N(∪{Ui : i ∈ Iyn}) =
∪{Ui : i ∈ Iyn , n ∈ N}. This completes the proof.

Corollary 4.19. Let f : X → Y be an perfectly ω-irresolute and ω-closed surjection
such that f−1({y}) is a mildly Lindelöf relative to X for each y ∈ Y . Then X is
mildly Lindelöf if and only if Y is Lindelöf.

5 Graphs of Perfectly ω-irresolute Functions

Recall that for a function f : X → Y , the subset {(x, f(x)) : x ∈ X} ⊂ X × Y is
called the graph of f and is denoted by G(f).

Definition 5.1. The graph G(f) of a function f : X → Y is said to be quasi-ω-
closed if for each (x, y) ∈ (X × Y ) − G(f), there exist a clopen set U containing x
and an ω-open set V containing y such that (U × V ) ∩G(f) = ∅.

The proof of the following lemma is clear.

Lemma 5.2. The graph G(f) of a function f : X → Y is quasi-ω-closed in X × Y
if and only if for each (x, y) ∈ (X ×Y )−G(f), there exist a clopen set U containing
x and an ω-open set V containing y such that f(U) ∩ V = ∅.

Theorem 5.3. If f : X → Y is perfectly ω-irresolute and Y is ω-T2, then G(f) is
quasi-ω-closed.

Proof. Let (x, y) /∈ G(f), then y 6= f(x). Since Y is ω-T2, there exist disjoint ω-
open sets V1 and V2 containing f(x) and y, respectively. Again since f is perfectly
ω-irresolute, f−1(V1) is clopen set containing x. If we choose U = f−1(V1), then
we have f(U) ∩ V2 = ∅ and hence G(f) is quasi-ω-closed. A subset A of a space
X is said to be mildly compact (resp. ω-compact) relative to X if for every cover
{Vi : i ∈ I} of A by clopen (resp. ω-open) sets of X, there exists a finite subset I0

of I such that A ⊆ ∪{Vω : ω ∈ I0}.
Theorem 5.4. If a function f : (X, τ) → (Y, σ) has quasi-ω-closed graph, then the
followings are true.

(1) f(E) is ω-closed in Y for every subset E which is mildly compact relative to
X.

(2) f−1(K) is quasi-closed in X for every subset K which is ω-compact relative
to Y .
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Proof. (1) Let E be mildly compact relative to X and y /∈ f(E). Then we have
(x, y) ∈ (X × Y )−G(f) for each x ∈ E and by Lemma 5.2, there exist a clopen set
Ux and ω-open set Vx containing x and y respectively, such that f(Ux) ∩ Vx = ∅.
Since the family of {Ux : x ∈ E} is a cover of E by clopen sets of X, there exists a
finite number of points, say, x1, x2, ..., xn of E such that E ⊆ ∪{Uxi

: i = 1, 2, ..., n}.
Set V = ∩{Vxi

: i = 1, 2, ..., n}, then V is an ω-open set containing y and f(E)∩V ⊆
(∪{f(Uxi

) : i = 1, 2, ..., n})∩V = ∅. Therefore, we have, y /∈ ωCl(f(E)). This shows
that f(E) is ω-closed in Y .

(2) It is similar.

Theorem 5.5. Let f : (X, τ) → (Y, σ) have the quasi-ω-closed graph. If f is
injective, then (X, τq) is T1.

Proof. Let x1, x2 ∈ X and x1 6= x2. Then, we have f(x1) 6= f(x2) and so
(x1, f(x2)) ∈ (X × Y ) − G(f). By quasi-ω-closedness of graph G(f), there exist
a clopen set U and an ω-open set V containing x1and f(x2) respectively, such that
f(U) ∩ V = ∅, and hence U ∩ f−1(V ) = ∅. Since x2 ∈ f−1(V ), clopen sets U and
X − U are desired sets. This completes the proof.

Theorem 5.6. If f : X → Y is an injection with quasi-ω-closed graph, then X is
ultra Hausdorff.

Proof. Let x1 and x2 be distinct points in X. Then f(x1) 6= f(x2) and so (x1, f(x2)) /∈
G(f). Therefore, there exist a clopen set U and an ω-open set V such that (x1, f(x2)) ∈
U × V and U ∩ f−1(V ) = ∅. Hence we have disjoint clopen sets U and X\U con-
taining x1 and x2 respectively. This shows that X is ultra Hausdorff.

Theorem 5.7. Let f : X → Y have the quasi-ω-closed graph. If f is a surjective
ω-open function, then Y is ω-T2.

Proof. Let y1 and y2 be any distinct points of Y . Since f is surjective, f(x) = y1 for
some x ∈ X and (x, y2) ∈ (X × Y ) − G(f). By quasi-ω-closedness of graph G(f),
there exist a clopen set U and an ω-open set V such that (x, y2) ∈ (U × V ) and
f(U)∩ V = ∅. Since f is ω-open, then f(U) is ω-open such that f(x) = y1 ∈ f(U).
This shows that Y is ω-T2.

Definition 5.8. A topological space X is said to be hyperconnected [10] if every
pair nonempty open sets of X has nonempty intersection.

Theorem 5.9. Let X be hyperconnected. If f : X → Y is a perfectly ω-irresolute
function with quasi-ω-closed graph, then f is constant.

Proof. Suppose that f is not constant. Then there exist two point x1 and x2 of X
such that f(x1) 6= f(x2). Then we have (x1, f(x2)) /∈ G(f). Since G(f) is quasi-ω-
closed, there exist a clopen set U and an ω-open set V such that (x1, f(x2)) ∈ U ×V
and f(U) ∩ V = ∅. Therefore, we have U ∩ f−1(V ) = ∅. This is a contradiction
with the hyperconnectedness of X since f−1(V ) is non-empty open set in X.
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