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1 Introduction

Since Chang [6] introduced fuzzy set theory to topology, many researchers have
successfully generalized the theory of general topology to the fuzzy setting with
crisp methods. In Chang’s I-topology on a set X, each open set was fuzzy, while the
topology itself was a crisp subset of the family of all fuzzy subsets of X.

From a different direction, the fundamental idea of a topology itself being fuzzy
was first defined by Höhle [14] in 1980, then was independently generalized be each of
Kubiak [17] and Sôstak [25] in 1985 and independently rediscovered by Ying [26, 27]
in Höhle’s original setting in 1991 in Höhle’s approach a topology was an L-subset
of a traditional powerset.

In 1999, the axioms of many-valued L-fuzzy topological spaces and L-fuzzy con-
tinuous mappings are given a lattice-theoretical foundation by Höhle and Sôstak
and a categorical foundation by Rodabaugh [23]. Sôstak [25] introduced the fuzzy
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topology as an extension of Chang’s fuzzy topology, Ramadan and his colleagues [21]
called it smooth topology.

Closure and interior operators on ordinary sets belongs to the very fundamental
mathematical structure with direct applications, both mathematical (topology, logic,
for instance) and extra mathematical (e.g. data mining, knowledge representation).
In fuzzy set theory, several particular cases as well as general theory of closure
operators which operate with fuzzy sets (so called fuzzy closure operators) are studied
(Mashour and Ghanim [19], Bandler and Kohout [1], Bêlohàvek [2, 3], Gerla [11]).

Interior operators, however, have appeared in a few studies only (Bandler and
Kohout [1], Dubois and Prade [7], Bodenhofer et al [5]), and it seem that no general
theory of interior operators appeared so far. In ordinary set theory, closure and
interior operators on a set in a bijective correspondence.

In this paper is, we investigate the concept of L-fuzzy interior (closure) operators
using the definition of the L-fuzzy topology, which deduced an L-fuzzy (interior)
closure spaces and vise versa. Continuity property and examples of those spaces are
also discussed.

2 Preliminary

Definition 2.1. [4, 15] An algebra (L,∧,∨,¯,→,⊥,>) is called a complete resid-
uated lattice if it satisfies the following conditions

(C1) L = (L,≤,∨,∧,⊥,>) is a complete lattice with the greatest element > and
the least element ⊥;

(C2) (L,¯,>) is a commutative monoid;
(C3) x¯ y ≤ z iff x ≤ y → z for x, y, z ∈ L.

An operator ∗ : L → L defined by a∗ = a → 0 is called a strong negation if
a∗∗ = a.

For α ∈ L, λ ∈ LX , we denote (α → λ), (α¯ λ), αX , >x ∈ LX as

(α → λ)(x) = α → λ(x), (α¯ λ)(x) = α¯ λ(x), αX(x) = α,

>x(y) =

{ >, if y = x,
⊥, otherwise.

In this paper, we assume that (L,∨,∧,¯,→, ∗,⊥,>) be a complete residuated
lattice with a strong negation ∗.

Lemma 2.2. [4, 15, 24] For each x, y, z, xi, yi ∈ L, the following properties hold.

(1) x → y = > iff x ≤ y, x → > = > and > → x = x,
(2) If y ≤ z, then x → y ≤ x → z, z → x ≤ y → x, x ⊕ y ≤ x ⊕ z and

x¯ y ≤ x¯ z,
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(3) x¯ y ≤ x⊕ y,
(4) x¯ (

∨
i∈Γ yi) =

∨
i∈Γ(x¯ yi) and x¯ (

∧
i∈Γ yi) ≤

∧
i∈Γ(x¯ yi),

(5) x⊕ (
∨

i∈Γ yi) =
∨

i∈Γ(x⊕ yi) and (
∨

i∈Γ xi)⊕ y =
∨

i∈Γ(xi ⊕ y),
(6) x → (

∧
i∈Γ yi) =

∧
i∈Γ(x → yi) and (

∧
i∈Γ xi) → y ≥ ∨

i∈Γ(xi → y),
(7) x → (

∨
i∈Γ yi) ≥

∨
i∈Γ(x → yi) and (

∨
i∈Γ xi) → y =

∧
i∈Γ(xi → y),

(8)
∨

i∈Γ xi →
∨

i∈Γ yi ≥
∧

i∈Γ(xi → yi) and
∧

i∈Γ xi →
∧

i∈Γ yi ≥
∧

i∈Γ(xi → yi),
(9) (x → y)¯ x ≤ y and (x → y)¯ (y → z) ≤ (x → z),
(10) x → y ≤ (y → z) → (x → z), x → y ≤ (z → x) → (z → y) and
y → z ≤ x¯ y → x¯ z,

(11) (x¯ y) → z = x → (y → z) = y → (x → z),
(12) x¯ (y → z) ≤ y → (x¯ z),
(13) (x → y)¯ (z → w) ≤ (x¯ z) → (y ¯ w),
(14) (x → y)¯ (z → w) ≤ (x⊕ z) → (y ⊕ w),
(15) (x → y)⊕ (z → w) ≤ (x¯ z) → (y ⊕ w),
(16) x∗ → y∗ = y → x,
(17)

∧
i∈Γ x∗i = (

∨
i∈Γ xi)

∗ and
∨

i∈Γ x∗i = (
∧

i∈Γ xi)
∗,

(18) (x¯ y)∗ = x → y∗ and (x → y)∗ = x¯ y∗,
(19) x¯ (x∗ ⊕ y∗) ≤ y∗.

Definition 2.3. [2, 3] Let X be a set. A function R : X × X → L is called an
L-partial order if it satisfies the following conditions

(E1) reflexive if R(x, x) = > for all x ∈ X,
(E2) transitive if R(x, y)¯R(y, z) ≤ R(x, z) for all x, y, z ∈ X,
(E3) if R(x, y) = R(y, x) = >, then x = y.

Lemma 2.4. [2, 3] For a given set X, define a binary mapping S : LX ×LX → L by

S(λ, µ) =
∧
x∈X

(λ(x) → µ(x)).

Then, for each λ, µ, ρ, ν ∈ LX and α ∈ L the following properties hold.
(1) S is an L-partial order on LX ,
(2) λ ≤ µ iff S(λ, µ) ≥ >,
(3) If λ ≤ µ, then S(ρ, λ) ≤ S(ρ, µ) and S(λ, ρ) ≥ S(µ, ρ) for each ρ ∈ LX ,
(4) S(λ, µ)¯ S(ν, ρ) ≤ S(λ¯ ν, µ¯ ρ),
(5) S(λ, µ)¯ S(ν, ρ) ≤ S(λ⊕ ν, µ⊕ ρ),
(6) S(λ, α → µ) = S(α¯ λ, µ) = α → S(λ, µ) and α¯ S(λ, µ) ≤ S(λ, α¯ µ),
(7) µ¯ S(µ, λ) ≤ λ, S(µ, λ) → λ ≥ µ and S(λ, µ) = S(µ∗, λ∗).

Proof. We need to prove (5) by Lemma 2.2(8),(14), we have

S(λ⊕ ν, µ⊕ ρ) =
∧
x∈X

(
(λ⊕ ν)(x) → (µ⊕ ρ)(x)

)

≥
∧
x∈X

(
(λ → µ)(x)¯ (ν → ρ)(x)

)

≥ ( ∧
x∈X

(λ → µ)(x)
)¯ ( ∧

x∈X

(ν → ρ)(x)
)

= S(λ, µ)¯ S(ν, ρ).
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Lemma 2.5. [2, 3] Let φ : X → Y be an ordinary mapping. Define φ→ : LX → LY

and φ← : LY → LX by

φ→(λ)(y) =
∨

φ(x)=y

λ(x) ∀ λ ∈ LX , y ∈ Y,

φ←(µ)(x) = µ(φ(x)) = µ ◦ φ(x) ∀ µ ∈ LY .

Then for λ, µ ∈ LX and ρ, ν ∈ LY ,

S(λ, µ) ≤ S(φ→(λ), φ→(µ)), S(ρ, ν) ≤ S(φ←(ρ), φ←(ν)),

and the equalities hold if φ is bijective.

Definition 2.6. [15] A map T : LX → L is called an L-fuzzy topology on X if it
satisfies the following conditions.

(LO1) T (⊥X) = T (>X) = >,
(LO2) T (λ¯ µ) ≥ T (λ)¯ T (µ), ∀ λ, µ ∈ LX ,
(LO3) T (

∨
i λi) ≥

∧
i T (λi), ∀ {λi}i∈Γ ⊆ LX .

An L-fuzzy topology is enriched if (R) T (α¯ λ) ≥ T (λ) for all λ ∈ LX , α ∈ L.

The pair (X, T ) is called an L-fuzzy topological space. Let (X, TX) and (Y, TY )
be two L-fuzzy topological spaces. A mapping φ : X → Y is said to be LF -fuzzy
continuous iff for each λ ∈ LY , we have

TY (λ) ≤ TX(φ←(λ)).

Definition 2.7. [15] A map F : LX → L is called an L-fuzzy co-topology on X if it
satisfies the following conditions.

(LF1) F(⊥X) = F(>X) = >,
(LF2) F(λ⊕ µ) ≥ F(λ)¯F(µ), ∀ λ, µ ∈ LX ,
(LF3) F(

∧
i λi) ≤

∨
iF(λi), ∀ {λi}i∈Γ ⊆ LX .

The pair (X,F) is called an L-fuzzy co-topological space. An L-fuzzy co-topology
is called enriched if (S) F(α → λ) ≥ F(λ) for all λ ∈ LX and α ∈ L.

Let (X,FX) and (Y,FY ) be two L-fuzzy co-topological spaces. A mapping φ :
X → Y is said to be LF -fuzzy continuous iff for each λ ∈ LY , we have

FY (λ) ≤ FX(φ←(λ)).

Definition 2.8. [22] A map I : LX ×L⊥ → LX , L⊥ = L−{⊥} is called an L-fuzzy
interior operator on X if I satisfies the following conditions

(I1) I(>X , r) = >X ,
(I2) I(λ, r) ≤ λ, or equivalently, S(I(λ, r), λ) ≥ > for all λ ∈ LX ,
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(I3) S(λ, µ) ≤ S(I(λ, r), I(µ, r)) for all λ, µ ∈ LX ,
(I4) If r ≤ s, then I(λ, s) ≤ I(λ, r),
(I5) I(λ¯ µ, r ¯ s) ≥ I(λ, r)¯ I(µ, s).

The pair (X, I) is called an L-fuzzy interior space. An L-fuzzy interior space
(X, I) is topological if

(T) I(I(λ, r), r) = I(λ, r) ∀ λ ∈ LX , r ∈ L⊥.

Let (X, IX) and (X, IY ) be two L-fuzzy interior spaces. A map φ : X → Y is
called I-map if

φ←(IY (µ, r)) ≤ IX(φ←(µ), r) ∀ µ ∈ LY , r ∈ L⊥.

Lemma 2.9. Let I : LX × L⊥ → LX , L⊥ = L − {⊥} be a map. It satisfies
S(λ, µ) ≤ S(I(λ, r), I(µ, r)) for all λ, µ ∈ LX iff I(α ¯ λ, r) ≥ α ¯ I(λ, r) and
I(λ, r) ≤ I(µ, r) if λ ≤ µ.

Proof. If λ ≤ µ, > = S(λ, µ) ≤ S(I(λ, r), I(µ, r)), then I(λ, r) ≤ I(µ, r). Moreover,
S(I(λ, r), I(α¯ λ, r)) ≥ S(λ, α¯ λ) ≥ α. That is,

α¯ I(λ, r) ≤ I(α¯ λ, r).

On the other hand, put α = S(λ, µ), then

S(λ, µ)¯ I(λ, r) ≤ I(S(λ, µ)¯ λ, r) ≤ I(µ, r).

Hence, S(λ, µ) ≤ S(I(λ, r), I(µ, r)).

Definition 2.10. A map C : LX × L⊥ → LX is called an L-fuzzy closure operator
on X if C satisfies the following conditions

(C1) C(⊥X , r) = ⊥X ,
(C2) C(λ, r) ≥ λ, or equivalently, S(λ, C(λ, r)) = >X for all λ ∈ LX ,
(C3) S(λ, µ) ≤ S(C(λ, r), C(µ, r)) for all λ, µ ∈ LX ,
(C4) If r ≤ s, then C(λ, r) ≤ C(λ, s),
(C5) C(λ⊕ µ, r ¯ s) ≤ C(λ, r)⊕ C(µ, s).

The pair (X, C) is called an L-fuzzy closure space. An L-fuzzy closure space
(X, C) is topological if

(T) C(C(λ, r), r) = C(λ, r) ∀ λ ∈ LX , r ∈ L⊥.

Let (X, CX) and (X, CY ) be two L-fuzzy closure spaces. A map φ : X → Y is
called a C-map if φ←(CY (λ, r)) ≥ CX(φ←(λ), r), ∀ λ ∈ LY , r ∈ L⊥.

Lemma 2.11. Let C : LX × L⊥ → LX , L⊥ = L − {⊥} be a map. It satisfies
S(λ, µ) ≤ S(C(λ, r), C(µ, r)) for all λ, µ ∈ LX iff C(α ¯ λ, r) ≥ α ¯ C(λ, r) and
C(λ, r) ≤ C(µ, r) if λ ≤ µ.
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3 L-fuzzy Interior Space Induced by L-fuzzy Topo-

logical Space

Theorem 3.1. Let (X, T ) be an L-fuzzy topological space. Define the mapping
IT : LX × L⊥ → LX as follows

IT (λ, r) =
∨
µ

{µ¯ S(µ, λ) | T (µ) ≥ r}.

Then we have the following properties.
(1) (X, IT ) is an L-fuzzy interior space,
(2) If (X, T ) is enriched, then (X, IT ) is a strong L-fuzzy interior space,
(3) IT (λ, r) ≤ ∨{µ | µ ≤ λ, T (µ) ≥ r},
(4) If (X, T ) is enriched, then the equality in (3) holds.

Proof. (1) (I1) For each T (µ) ≥ r, S(>X ,>X) = >. Thus,
IT (>X , r) ≥ >X ¯> = >X . Therefore, IT (>X , r) = >X .

(I2) By Lemma 2.4(7), we have IT (λ, r) =
∨

µ{µ ¯ S(µ, λ) | T (µ) ≥ r} ≤ λ

for all λ ∈ LX .

(I3) Using Lemma 2.2(8),(10), we can get

S(IT (λ, r), IT (µ, r)) =
∧
x∈X

(IT (λ, r)(x) → IT (µ, r)(x)
)

=
∧
x∈X

( ∨

T (ρ)≥r

ρ(x)¯ S(ν, λ) →
∨

T (ρ)≥r

ρ(x)¯ S(ρ, µ)
)

≥
∧
x∈X

∧

T (ρ)≥r

(
ρ(x)¯ S(ρ, λ) → ρ(x)¯ S(ρ, µ)

)

≥
∧
x∈X

∧

T (ρ)≥r

(S(ρ, λ) → S(ρ, µ)) ≥ S(λ, µ).

(I4) If r ≤ s, then

IT (λ, s) =
∨

T (µ)≥s

µ¯ S(µ, λ) ≤
∨

T (µ)≥r

µ¯ S(µ, λ) = IT (λ, r).

(I5) By Lemma 2.4(4), we have

IT (λ, r)¯ IT (µ, s) =
∨

T (ρ1)≥r

ρ1 ¯ S(ρ1, λ)¯
∨

T (ρ2)≥s

ρ2 ¯ S(ρ2, µ)

=
∨

T (ρ1)≥r

∨

T (ρ2)≥s

(ρ1 ¯ ρ2)¯ S(ρ1, λ)¯ S(ρ2, µ)

≤
∨

T (ρ1)¯T (ρ2)≥r¯s

(ρ1 ¯ ρ2)¯ S(ρ1 ¯ ρ2, λ¯ µ)

= IT (λ¯ µ, r ¯ s).
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(2) Since T is enriched, T (IT (λ, r)) ≥ r. Thus,

IT (IT (λ, r), r) =
∨

T (µ)≥r

µ¯ S(µ, IT (λ, r))

≥ IT (λ, r)¯ S(IT (λ, r), IT (λ, r)) = IT (λ, r).

(3) For each T (µ) ≥ r with µ ≤ λ, we have µ = >¯µ ≤ S(µ, λ)¯µ, it follows
that ∨

T (µ)≥r

{µ | µ ≤ λ} ≤
∨

T (µ)≥r

S(µ, λ)¯ µ = IT (λ, r).

(4) For any T (µ) ≥ r, T (S(µ, λ) ¯ µ) ≥ T (µ) ≥ r, because T is enriched.
Thus, IT (λ, µ) =

∨
T (µ)≥r S(µ, λ)¯ µ ≤ ∨

T (µ)≥r{µ | µ ≤ λ}.
Theorem 3.2. Let (X, I) be an L-fuzzy interior space. Define the mapping
TI : LX → L by

TI(λ) =
∨
{r ∈ L | S(λ, I(λ, r)) = >}.

Then, TI is an enriched L-fuzzy topology on X.

Proof. (LO1) TI(>X) =
∨{r ∈ L | S(>X , I(>X , r)) = >}, and

TI(⊥X) =
∨{r ∈ L | S(⊥X , I(⊥X , r)) = >}.

(LO2) By Lemma 2.4(4) and Definition 2.8(I5), we have

S(λ1, I(λ1, r))¯ S(λ2, I(λ2, s)) ≤ S(λ1 ¯ λ2, I(λ1, r)¯ I(λ2, s))

≤ S(λ1 ¯ λ2, I(λ1 ¯ λ2, r ¯ s)).

If S(λ1, I(λ1, r)) = > and S(λ2, I(λ2, s)) = >, then
S(λ1 ¯ λ2, I(λ1 ¯ λ2, r ¯ s)) = >. Thus, TI(λ1 ¯ λ2) ≥ TI(λ1)¯ TI(λ2).

(LO3) For a family of {λi | i ∈ I} ⊆ LX , we have

TI(
∨
i∈I

λi) =
∨
{r ∈ L | S(

∨
i∈I

λi, I(
∨
i∈I

λi, r)) = >}

≥
∧
i∈I

∨
{r ∈ L | S(λi, I(

∨
i∈I

λi, r)) = >}

≥
∧
i∈I

∨
{r ∈ L | S(λi, I(λi, r)) = >} =

∧
i∈I

TI(λi).

Finally, for α ∈ L⊥ and λ ∈ LX , we have

TI(α¯ λ) =
∨
{r ∈ L | S(α¯ λ, I(α¯ λ, r)) = >}

≥
∨
{r ∈ L | S(α¯ λ, α¯ I(λ, r)) = >}

≥
∨
{r ∈ L | S(λ, I(λ, r)) = >} = TI(λ).

Hence, TI is an enriched L-fuzzy topology on X.
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Theorem 3.3. (1) If (X, I) is an L-fuzzy interior space, then ITI ≤ I.
(2) If (X, T ) is an L-fuzzy topological space, then TIT ≥ T .

Proof. (1) By Lemma 2.4(7), we have

ITI(λ, r) =
∨
µ

{µ¯ S(µ, λ) | TI(µ) ≥ r}

=
∨
µ

{µ¯ S(µ, λ)¯ S(λ, I(λ, r)) | TI(µ) ≥ r}

≤
∨
µ

{µ¯ S(µ, I(λ, r)) | TI(µ) ≥ r} ≤ I(λ, r).

(2) Let T (λ) ≥ r. Then, IT (λ, r) = λ. Thus, TIT (λ) ≥ r. Hence, TIT ≥ T .

Theorem 3.4. Let (X, TX) and (Y, TY ) be two L-fuzzy topological spaces. If
φ : (X, TX) → (Y, TY ) is an LF -continuous map, then φ : (X, ITX

) → (Y, ITY
) is

an I-map.

Proof. By Lemma 2.5 and Definition 2.6, we have

φ←(ITY
(λ, r)) = φ←

( ∨
µ

{µ¯ S(µ, λ) | TY (µ) ≥ r})

=
∨

φ←(µ)

{φ←(µ)¯ S(µ, λ) | TY (µ) ≥ r}

≤
∨

φ←(µ)

{φ←(µ)¯ S(φ←(µ), φ←(λ)) | TX(φ←(µ)) ≥ r}

≤
∨
ρ

{ρ¯ S(ρ, φ←(λ)) | TX(ρ) ≥ r} = ITX
(φ←(λ), r).

Theorem 3.5. Let (X, IX) and (Y, IY ) be two L-fuzzy interior spaces. If φ :
(X, IX) → (Y, IY ) is an I-map, then φ : (X, TIX

) → (Y, TIY
) is LF -continuous.

Proof. From Theorem 3.4 and Lemma 2.5, we have

S(φ←(λ), IX(φ←(λ), r)) ≥ S(φ←(λ), φ←(IY (λ, r))) ≥ S(λ, IY (λ, r)).

So, TIX
(φ←(λ)) ≥ TIY

(λ).

4 L-fuzzy Closure Space Induced by L-fuzzy Co-

topological Space

Theorem 4.1. Let (X,F) be an L-fuzzy co-topological space. Define the mapping
CF : LX × L⊥ → LX by

CF(λ, r)(x) =
∧

F(µ)≥r

(
S(λ, µ) → µ(x)

)
.
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Then we have the following properties.

(1) (X, CF) is an L-fuzzy closure space,
(2) If (X,F) is enriched, then (X, CF) is a topological L-fuzzy closure space,
(3) C∗F(λ∗, r) = IT (λ, r),
(4) CF(λ, r) ≤ ∧

F(µ)≥r{µ | λ ≤ µ},
(5) If (X,F) is enriched, CF(λ, r) =

∧
F(µ)≥r{µ | λ ≤ µ}.

Proof. (1) (C1) By Lemma 2.4(7), we have

CF(⊥X , r)(x) =
∧

F(µ)≥r

(
S(⊥X , µ) → µ(x)

) ≥ ⊥X(x) = ⊥.

(C2) By Lemma 2.2(11), we have

S(λ, CF(λ, r)) =
∧
x∈X

(
λ(x) → CF(λ, r)(x)

)

=
∧
x∈X

(λ(x) →
∧

F(µ)≥r

(
S(λ, µ) → µ(x))

)

=
∧
x∈X

∧

F(µ)≥r

(
λ(x) → ((

∧
x∈X

λ(x) → µ(x)) → µ(x))
)

≥
∧
x∈X

∧

F(µ)≥r

(
λ(x) → ((λ(x) → µ(x)) → µ(x))

)

=
∧
x∈X

∧

F(µ)≥r

(
(λ(x) → µ(x)) → (λ(x) → µ(x))

)
= >.

(C3) By Lemma 2.2(10), we have

S(CF(λ, r), CF(ρ, r)) =
∧
x∈X

(CF(λ, r)(x) → CF(ρ, r)(x)
)

=
∧
x∈X

(
(

∧

F(µ)≥r

S(λ, µ) → µ(x)) → (
∧

F(µ)≥r

S(ρ, µ) → µ(x))
)

≥
∧
x∈X

∧

F(µ)≥r

(
(S(λ, µ) → µ(x)) → (S(ρ, µ) → µ(x))

)

≥
∧

F(µ)≥r

(
S(ρ, µ) → S(λ, µ)

) ≥ S(λ, ρ).

(C4) It follows from the definition of CF .

(C5) By Lemma 2.4(5) and Lemma 2.2(15), we have
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CF(λ, r)(x)⊕ CF(ρ, s)(x) =
( ∧

F(µ1)≥r

S(λ, µ1) → µ1(x)
)⊕ ( ∧

F(µ2)≥s

S(ρ, µ2) → µ2(x)
)

=
∧

F(µ1)≥r

∧

F(µ2)≥s

(
(S(λ, µ1) → µ1(x))⊕ (S(ρ, µ2) → µ2(x))

)

≥
∧

F(µ1⊕µ2)≥r¯s

(
(S(λ, µ1)¯ S(ρ, µ2)) → (µ1 ⊕ µ2)(x)

)

≥
∧

F(µ1⊕µ2)≥r¯s

(
S(λ⊕ ρ, µ1 ⊕ µ2) → (µ1 ⊕ µ2)(x)

)

= CF(λ⊕ ρ, r ¯ s)(x).

(2) Since F is enriched, then F(CF(λ, r) ≥ r. Thus,

CF(CF(λ, r), r)(x) =
∧

F(µ)≥r

(
S(CF(λ, r), µ) → µ(x)

)

≤
∧

F(CF (λ,r))≥r

(
S(CF(λ, r), CF(µ, r)) → CF(λ, r)(x)

)

= CF(λ, r)(x).

(3)

C∗F(λ∗, r) =
{ ∧

F(µ∗)≥r

(
S(λ∗, µ∗) → µ∗

)}∗

=
∨

F(µ∗)≥r

(
S(λ∗, µ∗)¯ µ

)
=

∨

T (µ)≥r

µ¯ S(µ, λ) = IT (λ, r).

(4) If µ ≤ λ, then S(λ, µ) = > and S(λ, µ) → µ ≤ µ. Thus,

∧

F(µ)≥r

(
S(λ, µ) → µ

) ≤
∧

F(µ)≥r

{µ | λ ≤ µ}.

(5) For any F(µ) ≥ r, F(
S(λ, µ) → µ

) ≥ F(µ), i.e., F(
S(λ, µ) → µ

) ≥ r,
because F is enriched. Thus,

∧

F(µ)≥r

(
S(λ, µ) → µ

) ≥
∧

F(µ)≥r

{µ | λ ≤ µ}.

Theorem 4.2. If C : LX ×L⊥ is an L-fuzzy closure operator. Define the mapping
FC : LX → L by

FC(λ) =
∨
{r ∈ L | S(C(λ, r), λ) = >}.

Then, FC is an enriched L-fuzzy co-topology on X.
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Proof. (LF1) FC(>X) =
∨{r ∈ L | S(C(>X , r),>X) = >} by (C2), and

FC(⊥X) =
∨{r ∈ L | S(C(⊥X , r),⊥X) = >} by (C1).

(LF2) By Lemma 2.4(5) and (C4), we have

S(C(λ1, r), λ1)¯ S(C(λ2, r), λ2) ≤ S(C(λ1, r)⊕ C(λ2, r), λ1 ⊕ λ2)

≤ S(C(λ1 ⊕ λ2, r), λ1 ⊕ λ2).

If S(C(λ1, r), λ1) = > and S(C(λ2, r), λ2) = >, then
S(C(λ1 ⊕ λ2, r), λ1 ⊕ λ2) = >. Thus, FC(λ1 ⊕ λ2) ≥ FC(λ1)¯FC(λ2).

(LF3) For a family of {λi | i ∈ I} ⊆ LX , we have

FC(
∧
i∈I

λi) =
∨
{r ∈ L | S(C(

∧
i∈I

λi, r),
∧
i∈I

λi) = >}

≤
∨
i∈I

∨
{r ∈ L | S(

∧
i∈I

C(λi, r), λi) = >}

≤
∨
i∈I

∨
{r ∈ L | S(C(λi, r), λi) = >} =

∨
i∈I

FC(λi).

Hence, FC is an L-fuzzy co-topology on X. By Lemma 2.4(3), (6), we have

FC(α → λ) =
∨
{r ∈ L | S(C(α → λ, r), α → λ) = >}

=
∨
{r ∈ L | S(α¯ C(α → λ, r), λ) = >}

≥
∨
{r ∈ L | S(C(α¯ (α → λ), r), λ) = >}

≥
∨
{r ∈ L | S(C(λ, r), λ) = >} = FC(λ).

Theorem 4.3. Let (X, CF) be an L-fuzzy closure space, then CFC ≥ C.

Proof. By Lemma 2.4(7), we have

CFC(λ, r) =
∧

FC(µ)≥r

(
S(λ, µ) → µ

)
=

∧

FC(µ)≥r

(
(S(C(λ, r), λ)¯ S(λ, µ)) → µ

)

≥
∧

FC(µ)≥r

(
S(C(λ, r), µ) → µ

) ≥ C(λ, r).

Theorem 4.4. Let (X,FX) and (Y,FY ) be two L-fuzzy co-topological spaces. If
φ : (X,FX) → (Y,FY ) is an LF -continuous map, then φ : (X, CFX

) → (Y, CFY
) is

a C-map.

Proof. By Lemma 2.11, we have

φ←(CFY
(λ, r)) = φ←

( ∧

FY (µ)≥r

(S(λ, µ) → µ)
)

=
∧

FY (µ)≥r

(S(λ, µ) → φ←(µ))

≥
∧

FX(φ←(µ))≥r

(
S(φ←(λ), φ←(µ)) → φ←(µ)

)
= CFX

(φ←(λ), r).
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Theorem 4.5. Let (X, CX) and (Y, CY ) be two L-fuzzy closure spaces. If φ :
(X, CX) → (Y, CY ) is a C-map, then φ : (X,FCX

) → (Y,FCY
) is LF -continuous.

Proof. From Theorem 4.3, we have

FCX
(φ←(λ)) =

∨
{r ∈ L | S(CX(φ←(λ), r), φ←(λ)) = >}

≥
∨
{r ∈ L | S(φ←(CY (λ, r)), φ←(λ)) = >}

=
∨
{r ∈ L |

∧
x∈X

(CY (λ, r)(φ(x)) → λ(φ(x))
)

= >}

≥
∨
{r ∈ L |

∧
y∈Y

(CY (λ, r)(y) → λ(y)
)

= >}

=
∨
{r ∈ L | S(CY (λ, r), λ) = >} = FCY

(λ).

Example 4.6. Let (L = [0, 1],¯,→, ∗) be a complete residuated lattice defined as

x¯ y = (x + y − 1) ∨ 0, x → y = (1− x + y) ∧ 1, x∗ = 1− x.

Let X = {x, y, z} be a set and let µ ∈ [0, 1]X be a fuzzy set as follow

µ(x) = 0.5, µ(y) = 0.3, µ(z) = 0.6.

We define the [0, 1]-fuzzy topology T : [0, 1]X → [0, 1] as follows

T (λ) =





1, if λ = ⊥X or >X ,
0.3, if λ = µ¯ µ,
0.6, if λ = µ,
0, otherwise.

Also, we define the [0, 1]-fuzzy co-topology F : [0, 1]X → [0, 1] as follows

F(λ) =





1, if λ = ⊥X or >X ,
0.2, if λ = µ⊕ µ,
0.6, if λ = µ,
0, otherwise.

(1) By Theorem 3.1, we have IT : [0, 1]X×(0, 1] → [0, 1]X as a [0, 1]-fuzzy interior
space as follows

IT (λ, r) =





(
∧

λ(x)), if r > 0.6,
(
∧

λ(x)) ∨ (µ¯ S(µ, λ)), if 0.3 < r ≤ 0.6,
(
∧

λ(x)) ∨ (µ¯ S(µ, λ)), if 0 < r ≤ 0.3,
∨(µ¯ µ¯ S(µ¯ µ, λ)).

For λ = (0.1, 0, 2, 0, 3), we have

IT (λ, 0.5) = (
∧

λ(x)) ∨ (µ¯ S(µ, λ)) = (0.1, 0.1, 0.2).
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Since IT ((0.1, 0.1, 0.2), r) = (0.1, 0.1, 0.2) for 0 < r ≤ 0.6, then we have

T (IT (0.1, 0.1, 0.2)) = 0.6.

(2) By Theorem 4.1, we have CF : [0, 1]X × (0, 1] → [0, 1]X as a [0, 1]-fuzzy
closure space as follows

CF(λ, r) =





∨
x∈X λ(x), if r > 0.6,

(
∨

λ(x)) ∧ (S(λ, µ) → µ), if 0.3 < r ≤ 0.6,
(
∨

λ(x)) ∧ (S(λ, µ) → µ), if 0 < r ≤ 0.3,
∧(S(λ, µ⊕ µ) → µ⊕ µ),

because S(λ, 0) → 0 =
∧

x∈X(λ∗(x)) → 0 =
∨

x∈X λ(x).

For λ = (0.7, 0, 6, 0, 8), CF(λ, 0.5) = (
∨

λ(x)) ∧ (S(λ, µ) → µ) = (0.8, 0.8, 0.9).
Since (0.9, 0.8, 0.9) = CF(CF(λ, 0.5), 0.5) 6= CF(λ, 0.5) = (0.8, 0.8, 0.9).

5 Conclusion

In this paper, we managed to deduce a new form of an L-fuzzy interior space (L-fuzzy
closure space) through an L-fuzzy topological space (L-fuzzy co-topological space)
and vise versa in a complete residuated lattice. We gave an example on [0,1] interval
and finally we proved that the continuity property is compatible with the introduced
spaces.
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