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Abstaract − In this paper, we shall establish some new inequalities of the Hermite Hadamard
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1 Introduction

A real-valued function f : I ⊂ R → R is called convex if and only if the following
inequality holds

f(ta + (1− t)b) ≤ tf(a) + (1− t)f(b) (1)

for all a, b ∈ I and t ∈ [0, 1]. If (1) is reversed, then f is called concave. In particular,
if f is a convex function defined on I, then for all a, b ∈ I with a < b the following
well-known double inequality

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(2)

is known in the literature as Hermite Hadamard’s inequality. Inequality (2) is re-
versed whenever f is concave. This famous integral inequality is generalized, im-
proved and extended by many mathematicians (see [3, 4, 5, 12] and [14]).

In 2003, the first time B. G. Pachpatte [9] established two new Hermite Hadamard
type inequalities for product of positive convex functions as follows.
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Theorem 1.1 ([9]). Let f and g be real-valued, non-negative, and convex functions
on [a, b] with a < b. Then the following inequalities hold

1

b− a

∫ b

a

f(x)g(x)dx ≤ M(a, b)/3 + N(a, b)/6, (3)

2f
(a + b

2

)
g
(a + b

2

)
≤ 1

b− a

∫ b

a

f(x)g(x)dx + M(a, b)/6 + N(a, b)/3, (4)

where M(a, b) = f(a)g(a) + f(b)g(b) and N(a, b) = f(a)g(b) + f(b)g(a).

These results were refined by Feixiang Chen [2] in 2013. In the same year, A.
Witkowskim [15] proved the following two theorems for convex functions.

Theorem 1.2 ([15]). If f, g : I ⊂ R→ R are of the same convexity (i.e. both convex
or both concave), then for all a, b ∈ I with a < b the following inequality holds

1

(b− a)2

∫ b

a

(b−x)[f(a)g(x)+f(x)g(a)]dx+
1

(b− a)2

∫ b

a

(x−a)[f(b)g(x)+f(x)g(b)]dx

≤ 1

b− a

∫ b

a

f(x)g(x)dx + M(a, b)/3 + N(a, b)/6, (5)

where M(a, b) and N(a, b) are as in Theorem 1.1. If f and g are of the opposite
convexity, then (5) is reversed.

Theorem 1.3 ([15]). Let f, g : I ⊂ R → [0,∞) be convex functions. Then the
following inequality holds for all a, b ∈ I with a < b,

1

b− a

∫ b

a

[
f
(a + b

2

)
g(x) + g

(a + b

2

)
f(x)

]
dx

≤ f
(a + b

2

)
g
(a + b

2

)
+

1

2(b− a)

∫ b

a

f(x)g(x) + M(a, b)/12 + N(a, b)/6, (6)

where M(a, b) and N(a, b) are as in Theorem 1.1.

By the early year 2014, M. Tunç [13] advanced two new results for product of a
s-convex function with a positive h-convex function as follows.

Theorem 1.4 ([13]). Let h : [0, 1] → R be a positive function, a, b ∈ [0,∞) with
a < b, f, g : [a, b] → R functions and fg ∈ L1([a, b]), h ∈ L1([0, 1]). If f is h-convex
and g is s-convex in the second sense for some fixed s ∈ (0, 1], then

1

b− a

∫ b

a

f(x)g(x)dx ≤ M(a, b)

∫ 1

0

h(t)tsds + N(a, b)

∫ 1

0

h(1− t)tsdt, (7)

where M(a, b) and N(a, b) are as in Theorem 1.1.

Theorem 1.5 ([13]). Let h : [0, 1] → R be a positive function, a, b ∈ [0,∞) with
a < b, f, g : [a, b] → R functions and fg ∈ L1([a, b]), h ∈ L1([0, 1]). If f is h-convex
on [a, b] and g is s-convex in the second sense on [a, b] for some fixed s ∈ (0, 1], then

2s−1

h(1/2)
f
(a + b

2

)
g
(a + b

2

)
− 1

b− a

∫ b

a

f(x)g(x)dx

≤ M(a, b)

∫ 1

0

h(1− t)tsds + N(a, b)

∫ 1

0

h(t)tsdt, (8)

where M(a, b) and N(a, b) are as in Theorem 1.1.
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The main aim of this paper is to give some new inequalities which are similar
to the above results for the classes of s-convex (concave) functions and h-convex
(concave) functions. As consequences, we also obtain some results for product of
two functions belonging to two different classes of functions.

2 Inequalities for the class of s-convex functions

Before stating our main results, we shall recall some notions and definitions. The
first notion was introduced by E. K. Godunova and V. I. Levin in 1985 (see [3]).

Definition 2.1 (see [3]). We say that f : I ⊂ R → R is a Godunova - Levin
function, or that f belongs to the class Q(I), if f is non-negative and for all a, b ∈ I
and t ∈ (0, 1), the following inequality holds

f(ta + (1− t)b) ≤ f(a)

t
+

f(b)

1− t
. (9)

Restricting of the class of functions Q(I) is the class P (I) as follows.

Definition 2.2 (see [3]). We say that f : I ⊂ R → R is a P -function, or that f
belongs to the class P (I), if f is non-negative and for all a, b ∈ I and t ∈ [0, 1], we
have

f(ta + (1− t)b) ≤ f(a) + f(b). (10)

The next concept is s-convex. It was introduced and investigated by Breckner in
1978 as a generalization of convex function.

Definition 2.3 (see [11]). Let s ∈ (0, 1] be a real number and I be an interval on
[0,∞). A function f : I → [0,∞) is said to be s-convex (in the second sense), if

f(at + (1− t)b) ≤ tsf(a) + (1− t)sf(b) (11)

for all a, b ∈ I and t ∈ [0, 1]. If (11) is reversed, then f is called to be s-concave.

A more general notion than the above notions is h-convex given in the following
definition.

Definition 2.4 (see [11]). Let h : J ⊂ R → R be a non-negative function. We
say that f : I ⊂ R → R is h-convex, or f belongs to the class SX(h, I), if f is
non-negative and for all a, b ∈ I and t ∈ (0, 1), we have

f(ta + (1− t)b) ≤ h(t)f(a) + h(1− t)f(b). (12)

If inequality (12) is reversed, then f is said to be h-concave, or shortly f ∈ SV (h, I).

In Definition 2.4, if we choose h(t) = t, then f is an ordinary convex function;
if h(t) = 1/t, then f belongs to the class Q(I); if h(t) = 1, then f belongs to the
class P (I); and if h(t) = ts for some fixed s ∈ (0, 1], then f belongs to the class of
s-convex functions.

A number of properties and inequalities concerning these classes of functions can
be referred to [3, 4, 5] for the classes Q(I), P (I), and [1, 7, 8, 13, 10, 11] for the
classes s-convex and h-convex.

We can now state the first main result as follows.
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Theorem 2.1. Let f, g : I → R be of the same s-convexity (i.e. both s-convex or
both s-concave) and fg ∈ L1(I). Then, for all a, b ∈ I with a < b, the following
inequality holds

M(a, b)
1

2s + 1
+ N(a, b)

Γ(s + 1)2

Γ(2s + 2)
+

1

b− a

∫ b

a

f(x)g(x)dx

≥ 1

(b− a)s+1

∫ b

a

[(b− x)sf(a) + (x− a)sf(b)]g(x)dx

+
1

(b− a)s+1

∫ b

a

[(b− x)sg(a) + (x− a)sg(b)]f(x)dx. (13)

where Γ(·) is the Gamma function and M(a, b), N(a, b) are as in Theorem 1.1. If f
and g are of the opposite s-convexity, then (13) is reversed.

Proof. According to (11), for all t ∈ [0, 1], we find that the inequality

[tsf(a)+(1−t)sf(b)−f(ta+(1−t)b)][tsg(a)+(1−t)sg(b)−g(ta+(1−t)b)] ≥ 0 (14)

holds if f and g are of the same s-convexity, else (14) is reversed. Inequality (14) is
equivalent to

[tsf(a) + (1− t)sf(b)][tsg(a) + (1− t)sg(b)] + f(ta + (1− t)b)g(ta + (1− t)b)

≥ [tsf(a) + (1− t)sf(b)]g(ta + (1− t)b)

+ [tsg(a) + (1− t)sg(b)]f(ta + (1− t)b).

Integrating the above inequality with respect to t over [0, 1], we get

∫ 1

0

[tsf(a)+(1−t)sf(b)][tsg(a)+(1−t)sg(b)]dt+

∫ 1

0

f(ta+(1−t)b)g(ta+(1−t)b)dt

≥
∫ 1

0

[tsf(a) + (1− t)sf(b)]g(ta + (1− t)b)dt

+

∫ 1

0

[tsg(a) + (1− t)sg(b)]f(ta + (1− t)b)dt. (15)

Directly computing, we obtain

∫ 1

0

[tsf(a) + (1− t)sf(b)][tsg(a) + (1− t)sg(b)]dt

=

∫ 1

0

t2sf(a)g(a)dt +

∫ 1

0

(1− t)2sf(b)g(b)dt

+

∫ 1

0

ts(1− t)s[f(a)g(b) + f(b)g(a)]dt

= M(a, b)
1

2s + 1
+ N(a, b)

∫ 1

0

ts(1− t)sdt.

By formulas (1.5.2) and (1.5.5) in [6], we have

∫ 1

0

ts(1− t)sdt = B(s + 1, s + 1) =
Γ(s + 1)2

Γ(2s + 2)
,
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where B(·, ·) is the Beta function, and so
∫ 1

0

[tsf(a)+(1− t)sf(b)][tsg(a)+(1− t)sg(b)]dt = M(a, b)
1

2s + 1
+N(a, b)

Γ(s + 1)2

Γ(2s + 2)
.

(16)
Moreover, by substituting x = ta + (1− t)b, it is easy to see that

∫ 1

0

f(ta + (1− t)b)g(ta + (1− tb))dt =
1

b− a

∫ b

a

f(x)g(x)dx, (17)

and
∫ 1

0

[tsf(a) + (1− t)sf(b)]g(ta + (1− t)b)dt

=
1

(b− a)s+1

∫ b

a

[(b− x)sf(a) + (x− a)sf(b)]g(x)dx, (18)

∫ 1

0

[tsg(a) + (1− t)sg(b)]f(ta + (1− t)b)dt

=
1

(b− a)s+1

∫ b

a

[(b− x)sg(a) + (x− a)sg(b)]g(x)dx. (19)

Substituting (16), (17), (18) and (19) in (15), we get the desired result.

Theorem 2.2. Let f, g : I → R be of the same s-convexity and fg ∈ L1(I). Then,
for all a, b ∈ I with a < b, the following inequality holds

1

b− a

∫ b

a

f(x)[g(x) + g(a + b− x)]dx + 22s−1f
(a + b

2

)
g
(a + b

2

)

≥ 2s

b− a

∫ b

a

[
f
(a + b

2

)
g(x) + g

(a + b

2

)
f(x)

]
dx. (20)

If f and g are of the opposite s-convexity, then (20) is reversed.

Proof. Putting x0 = (a + b)/2 and according to (11), for all a < x < b, we have the
inequality

[f(x) + f(a + b− x)− 2sf(x0)][g(x) + g(a + b− x)− 2sg(x0)] ≥ 0 (21)

holds if f and g are of the same s-convexity, else (21) is reversed. Inequality (21) is
equivalent to

[f(x) + f(a + b− x)][g(x) + g(a + b− x)] + 22sf(x0)g(x0)

≥ 2sf(x0)[g(x) + g(a + b− x)] + 2sg(x0)[f(x) + f(a + b− x)].

Integrating the above inequality with respect to x over [a, b], we have

1

b− a

∫ b

a

[f(x) + f(a + b− x)][g(x) + g(a + b− x)]dx + 22sf(x0)g(x0)

≥ 2s

b− a

∫ b

a

g(x0)[f(x) + f(a + b− x)]dx +
2s

b− a

∫ b

a

f(x0)[g(x) + g(a + b− x)]dx

=
2s+1

b− a

∫ b

a

g(x0)f(x)dx +
2s+1

b− a

∫ b

a

f(x0)g(x)dx

=
2s+1

b− a

∫ b

a

[g(x0)f(x) + f(x0)g(x)]dx. (22)
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Besides, we have

∫ b

a

[f(x) + f(a + b− x)][g(x) + g(a + b− x)]dx

=

∫ b

a

f(x)g(x)dx +

∫ b

a

f(a + b− x)g(a + b− x)dx

+

∫ b

a

f(x)g(a + b− x)dx +

∫ b

a

f(a + b− x)g(x)dx

= 2

∫ b

a

f(x)g(x)dx + 2

∫ b

a

f(x)g(a + b− x)dx

= 2

∫ b

a

f(x)[g(x) + g(a + b− x)]dx. (23)

Combining (22) and (23), we obtain inequality (20).

A direct corollary of Theorem 2.2 when we require g is symmetric about (a+b)/2
as follows.

Corollary 2.3. Let f, g : [a, b] ⊂ [0,∞) → R be functions and g is symmetric about
(a+ b)/2. If f and g are of the same s-convexity, then the following inequality holds

2

b− a

∫ b

a

f(x)g(x)dx + 22s−1f
(a + b

2

)
g
(a + b

2

)

≥ 2s

b− a

∫ b

a

[
f
(a + b

2

)
g(x) + g

(a + b

2

)
f(x)

]
dx. (24)

If f and g are of the opposite s-convexity, then (24) is reversed.

Proof. By the symmetric about (a + b)/2 of g, we find that

g(x) = g(a + b− x),

for all x ∈ [a, b]. Hence, inequality (20) reduces to inequality (24).

Corollary 2.4. Let f, g : [a, b] ⊂ [0,∞) → [0,∞) be two s-concave functions. Then
the following inequalities hold

1

b− a

∫ b

a

f(x)[g(x) + g(a + b− x)]dx + 22s−1f
(a + b

2

)
g
(a + b

2

)

≥ 2s

b− a

∫ b

a

[
f
(a + b

2

)
g(x) + g

(a + b

2

)
f(x)

]
dx

≥ 2s

s + 1
f
(a + b

2

)
[g(a) + g(b)] +

2s

s + 1
g
(a + b

2

)
[f(a) + f(b)]. (25)

Proof. The first inequality in (25) follows immediately from Theorem 2.2. In order
to prove the second inequality in (25), we remark that

x =
b− x

b− a
a +

x− a

b− a
b,
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for all a < x < b. By s-concavity of f , we get

f(x) = f
(b− x

b− a
a +

x− a

b− a
b
)
≥

(b− x

b− a

)s

f(a) +
(x− a

b− a

)s

f(b).

Therefore,

1

b− a

∫ b

a

f(x)dx ≥ 1

(b− a)s+1

∫ b

a

[(b− x)sf(a) + (x− a)sf(b)]dx

=
1

s + 1
[f(a) + f(b)]. (26)

Analogously, we can point out that

1

b− a

∫ b

a

g(x)dx ≥ 1

s + 1
[g(a) + g(b)]. (27)

Since the non-negative of f and g, combining (26) and (27), we obtain

2s

b− a

∫ b

a

[
f
(a + b

2

)
g(x) + g

(a + b

2

)
f(x)

]
dx

=
2s

b− a

∫ b

a

f
(a + b

2

)
g(x)dx +

2s

b− a

∫ b

a

g
(a + b

2

)
f(x)dx

≥ 2s

s + 1
g
(a + b

2

)
[f(a) + f(b)] +

2s

s + 1
f
(a + b

2

)
[g(a) + g(b)].

This proves the desired results.

3 Inequalities for the class of h-convex functions

The main purpose of this section is to establish some inequalities for product of two
functions to belong to the class of h-convex functions. To do this, we will first denote
by I a nonempty interval of the set of real numbers.

Theorem 3.1. Let h1, h2 : [0, 1] → R be positive functions satisfying h1, h2, h1h2 ∈
L1([0, 1]). Suppose that f, g : I → R are of the same h-convexity (i.e. f ∈ SX(h1, I)
and g ∈ SX(h2, I) or f ∈ SV (h1, I) and g ∈ SV (h2, I)) and fg ∈ L1(I). Then, for
all a, b ∈ I with a < b, the following inequality holds

M(a, b)

∫ 1

0

h1(t)h2(t)dt + N(a, b)

∫ 1

0

h1(t)h2(1− t)dt +
1

b− a

∫ b

a

f(x)g(x)dx

≥
∫ 1

0

[h1(t)f(a) + h1(1− t)f(b)]g(ta + (1− t)b)dt

+

∫ 1

0

[h2(t)g(a) + h2(1− t)g(b)]f(ta + (1− t)b)dt, (28)

where M(a, b) and N(a, b) are as in Theorem 1.1. If f and g are of the opposite
h-convexity, then (28) is reversed.
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Proof. According to (12), for all t ∈ (0, 1), we find that the inequality

[h1(t)f(a)+h1(1−t)f(b)−f(ta+(1−t)b)][h2(t)g(a)+h2(1−t)g(b)−g(ta+(1−t)b)] ≥ 0
(29)

holds if f and g are of the same h-convexity, else (29) is reversed. Inequality (29) is
equivalent to

[h1(t)f(a)+h1(1− t)f(b)][h2(t)g(a)+h2(1− t)g(b)]+f(ta+(1− t)b)g(ta+(1− t)b)

≥ f(ta + (1− t)b)[h2(t)g(a) + h2(1− t)g(b)]

+ g(ta + (1− t)b)[h1(t)f(a) + h1(1− t)f(b)]. (30)

By integrating (30) with respect to t over [0, 1] with noting that

∫ 1

0

h1(t)h2(t)dt =

∫ 1

0

h1(1− t)h2(1− t)dt

and ∫ 1

0

h1(t)h2(1− t)dt =

∫ 1

0

h1(1− t)h2(t)dt,

we get the desired result.

Theorem 3.2. Let h1, h2 : [0, 1] → R be positive functions satisfying h1, h2, h1h2 ∈
L1([0, 1]). Suppose that f, g : I → R are of the same h-convexity (i.e. f ∈ SX(h1, I)
and g ∈ SX(h2, I) or f ∈ SV (h1, I) and g ∈ SV (h2, I)) and fg ∈ L1(I). Then, for
all a, b ∈ I with a < b, the following inequality holds

1

b− a

∫ b

a

f(x)[g(x) + g(a + b− x)]dx +
1

2h1(1/2)h2(1/2)
f
(a + b

2

)
g
(a + b

2

)

≥ 1

b− a

∫ b

a

[
f
(a + b

2

) g(x)

h1(1/2)
+ g

(a + b

2

) f(x)

h2(1/2)

]
dx. (31)

If f and g are of the opposite h-convexity, then (31) is reversed.

Proof. The proof runs as in the proof of Theorem 2.2. Here, in order to obtain the
desired result, we start with observing that the following inequality

[h1(1/2)f(x)+h1(1/2)f(a+b−x)−f(x0)][h2(1/2)g(x)+h2(1/2)g(a+b−x)−g(x0)] ≥ 0,

where x0 = (a + b)/2, holds for all a < x < b if f and g are of the same h-convexity,
else the above inequality is reversed.

Corollary 3.3. For the same hypotheses as in Theorem 3.2. If we require that g is
symmetric about (a + b)/2, then inequality (31) reduces to

2

b− a

∫ b

a

f(x)g(x)dx +
1

2h1(1/2)h2(1/2)
f
(a + b

2

)
g
(a + b

2

)

≥ 1

b− a

∫ b

a

[
f
(a + b

2

) g(x)

h1(1/2)
+ g

(a + b

2

) f(x)

h2(1/2)

]
dx. (32)

Proof. The above corollary is obtained from Theorem 3.2 with noting that g is
symmetric about (a + b)/2.
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Corollary 3.4. Let h1, h2 : [0, 1] → R be positive functions with h1, h2, h1h2 ∈
L1([0, 1]). Suppose that f : I → R is non-negative h1-concave function and g : I → R
is non-negative h2-concave function satisfying fg ∈ L1(I). Then, for all a, b ∈ I with
a < b, the following inequalities hold

1

b− a

∫ b

a

f(x)[g(x) + g(a + b− x)]dx +
1

2h1(1/2)h2(1/2)
f
(a + b

2

)
g
(a + b

2

)

≥ 1

b− a

∫ b

a

[
f
(a + b

2

) g(x)

h1(1/2)
+ g

(a + b

2

) f(x)

h2(1/2)

]
dx

≥ f
(a + b

2

)g(a) + g(b)

h1(1/2)

∫ 1

0

h2(t)dt + g
(a + b

2

)f(a) + f(b)

h2(1/2)

∫ 1

0

h1(t)dt. (33)

Proof. The first inequality in (33) is similar to Theorem 3.2. The second inequality
in (33) is proved as follows. For all a < x < b, we have

g(x) = g
(b− x

b− a
a +

x− a

b− a
b
)
≥ h2

(b− x

b− a

)
g(a) + h2

(x− b

b− a

)
g(b).

Integrating the above inequality over [a, b] and substituting t = (x− a)/(b− a), we
get

1

b− a

∫ b

a

g(x)dx ≥ 1

b− a

∫ b

a

(
h2

(b− x

b− a

)
g(a) + h2

(x− b

b− a

)
g(b)

)
dx

=

∫ 1

0

[h2(1− t)g(a) + h2(t)g(b)]dt

= g(a)

∫ 1

0

h2(1− t)dt + g(b)

∫ 1

0

h2(t)dt

= [g(a) + g(b)]

∫ 1

0

h2(t)dt. (34)

Multiplying (34) by non-negative quantity 1
h1(1/2)

f(a+b
2

), we obtain

1

b− a

∫ b

a

f
(a + b

2

) g(x)

h1(1/2)
dx ≥ f

(a + b

2

)g(a) + g(b)

h1(1/2)

∫ 1

0

h2(t)dt. (35)

Analogously, we can point out that

1

b− a

∫ b

a

g
(a + b

2

) f(x)

h2(1/2)
dx ≥ g

(a + b

2

)f(a) + f(b)

h2(1/2)

∫ 1

0

h1(t)dt. (36)

Combining (35) and (36) reduces to the desired result.

4 Inequalities for product of different kinds of con-

vex functions

In this section, we shall give some inequalities for product of different kinds of convex
functions as corollaries of Theorem 3.1 and 3.2 in the previous section.
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Proposition 4.1. Let h : [0, 1] → R be an integrable positive function and s ∈ (0, 1]
is a real number. Suppose that f : [a, b] ⊂ [0,∞) → R is a h-convex (concave)
function and g : [a, b] ⊂ [0,∞) → R is a s-convex (concave, respectively) function
satisfying fg ∈ L1([a, b]). Then the following inequality holds

M(a, b)

∫ 1

0

h(t)tsdt + N(a, b)

∫ 1

0

h(t)(1− t)sdt +
1

b− a

∫ b

a

f(x)g(x)dx

≥
∫ 1

0

[h(t)f(a) + h(1− t)f(b)]g(ta + (1− t)b)dt

+

∫ 1

0

[tsg(a) + (1− t)sg(b)]f(ta + (1− t)b)dt, (37)

where M(a, b) and N(a, b) are as in Theorem 1.1. If f is h-convex (concave) and g
is s-concave (convex, respectively), then (37) is reversed.

Proof. If choosing h1(t) = h(t) and h2(t) = ts for all t ∈ [0, 1] in Theorem 3.1, then
we obtain the desired result.

Proposition 4.2. Let h : [0, 1] → R be an integrable positive function satisfying
h(t) = h(1 − t) for all t ∈ [0, 1/2]. If f : I ⊂ R → R is h-convex and g : I → R
is P -function satisfying fg ∈ L1(I). Then, for all a, b ∈ I with a < b, the following
inequality holds

[M(a, b) + N(a, b)]

∫ 1

0

h(t)dt +
1

b− a

∫ b

a

f(x)g(x)dx

≥ g(a) + g(b)

b− a

∫ b

a

f(x)dx + [f(a) + f(b)]

∫ 1

0

h(t)g(ta + (1− t)b)dt, (38)

where M(a, b) and N(a, b) are as in Theorem 1.1. If f is h-concave and g is P -
function, then (38) is reversed.

Proof. If choosing h1(t) = h(t) and h2(t) = 1 for all t ∈ [0, 1] in Theorem 3.1, then
we obtain the desired result.

Proposition 4.3. Let h : [0, 1] → R be a integrable positive function and s ∈ (0, 1]
is a real number. If f : I ⊂ [0,∞) → R is h-convex (concave) and g : I → R is
s-convex (concave, respectively) satisfying fg ∈ L1(I). Then, for all a, b ∈ I with
a < b, the following inequality holds

1

b− a

∫ b

a

f(x)[g(x) + g(a + b− x)]dx +
2s−1

h(1/2)
f
(a + b

2

)
g
(a + b

2

)

≥ 1

b− a

∫ b

a

[
f
(a + b

2

) g(x)

h(1/2)
+ 2sg

(a + b

2

)
f(x)

]
dx. (39)

If f is h-convex (concave) and g is s-concave (convex, respectively), then (40) is
reversed.

Proof. If choosing h1(t) = h(t) and h2(t) = ts for all t ∈ [0, 1] in Theorem 3.2, then
we obtain the desired result.



Journal of New Theory 13 (2016) 26-37 36

Proposition 4.4. If f : I ⊂ R→ R is convex and g : I → R is P -function satisfying
fg ∈ L1(I). Then, for all a, b ∈ I with a < b, the following inequality holds

1

b− a

∫ b

a

f(x)[g(x) + g(a + b− x)]dx + f
(a + b

2

)
g
(a + b

2

)

≥ 1

b− a

∫ b

a

[
2f

(a + b

2

)
g(x) + g

(a + b

2

)
f(x)

]
dx. (40)

If f is concave and g is P -function, then (40) is reversed.

Proof. If choosing h1(t) = t and h2(t) = 1 for all t ∈ [0, 1] in Theorem 3.2, then we
obtain the desired result.
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