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1 Introduction

Metric spaces and fixed-point theory have an important role in various areas of
mathematics such as analysis, topology, differential equation etc. Fixed-point theory
begin with the Banach’s contraction principle. Then the principle has been studied
and generalized on some metric spaces (see [1], [2], [6], [7] and [8]). Recently, it has
been introduced the notion of an S-metric space as a generalization of a metric space
[8]. Some mathematicans proved new fixed-point theorems on an S-metric space (see
[4], [5], [6], [8], [9] and [10]). Mlaiki presented the concept of a complex valued S-
metric space and gave a common fixed-point theorem of two self-mappings on a
complex valued S-metric space [3]. The present authors investigated new common
fixed-point theorems using the notion of CS-compatibility on a complex valued S-
metric space [7].

Let X = C and the function S : C× C× C→ C be defined by

S(x, y, z) = i (|x− z|+ |y − z|) ,
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for all x, y, z ∈ C. Then the function S is a complex valued S-metric space on C.
Let us define the self-mapping T : C→ C as follows:

Tx = 1− x,

for all x ∈ C. Then T is a self-mapping on the complete complex valued S-metric
space (C, S). T has a fixed point x = 1

2
, but it does not satisfy the condition of

Banach’s contraction principle. Therefore it is important to study new generalized
fixed-point theorems.

Motivated by the above studies, in this paper, we investigate new fixed-point the-
orems as generalizations of the Banach’s contraction principle on a complete complex
valued S-metric spaces. We expect that new generalized fixed-point theorems will
be obtained using our main theorems.

In Section 2 we recall some known definitions, lemmas and a theorem. In Section
3 we generalize the Banach’s contraction principle on a complete complex valued S-
metric space. Also we give an example which satisfies the conditions of our results,
but does not satisfy the condition of Banach’s contraction principle.

2 Preliminary

In this section we recall some definitions, lemmas and a theorem which is called the
Banach’s contraction principle.

Let C be the set of complex numbers and z1, z2 ∈ C. The partial order - is
defined on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2)

and
z1 ≺ z2 if and only if Re(z1) < Re(z2), Im(z1) < Im(z2).

Also we write z1 - z2 if one of the following conditions hold:

1. Re(z1) = Re(z2) and Im(z1) < Im(z2),

2. Re(z1) < Re(z2) and Im(z1) = Im(z2),

3. Re(z1) = Re(z2) and Im(z1) = Im(z2).

Note that
0 - z1 � z2 ⇒ |z1| < |z2|

and
z1 - z2, z2 ≺ z3 ⇒ z1 ≺ z3.
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Definition 2.1. [3] Let X be a nonempty set. A complex valued S-metric on X
is a function S : X × X × X → C that satisfies the following conditions for all
x, y, z, t ∈ X:

(CS1) 0 - S(x, y, z),
(CS2) S(x, y, z) = 0 if and only if x = y = z,
(CS3) S(x, y, z) - S(x, x, t) + S(y, y, t) + S(z, z, t).
The pair (X, S) is called a complex valued S-metric space.

Definition 2.2. [3] Let (X, S) be a complex valued S-metric space. Then

1. A sequence {an} in X converges to x if and only if for all ε such that 0 ≺
ε ∈ C there exists a natural number n0 such that for all n ≥ n0, we have
S(an, an, x) ≺ ε and it is denoted by

lim
n→∞

an = x.

2. A sequence {an} in X is called a Cauchy sequence if for all ε such that 0 ≺
ε ∈ C there exists a natural number n0 such that for all n,m ≥ n0, we have
S(an, an, am) ≺ ε.

3. A complex valued S-metric space (X, S) is called complete if every Cauchy
sequence is convergent.

Lemma 2.3. [3] Let (X, S) be a complex valued S-metric space and {an} be a
sequence in X. Then {an} converges to x if and only if

|S(an, an, x)| → 0,

as n →∞.

Lemma 2.4. [3] Let (X, S) be a complex valued S-metric space and {an} be a
sequence in X. Then {an} is a Cauchy sequence if and only if

|S(an, an, am)| → 0,

as n →∞.

Lemma 2.5. [3] If (X, S) be a complex valued S-metric space then

S(x, x, y) = S(y, y, x),

for all x, y ∈ X.

Lemma 2.6. [9] Let (X,S), (Y, S ′) be two S-metric spaces and f : X → Y be a
function. Then f is continuous at x ∈ X if and only if f(xn) → f(x) whenever
xn → x.
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In the next section, we consider two complex valued S-metric spaces in Lemma
2.6.

Now we recall the following theorem which is called the Banach’s contraction
principle.

Theorem 2.7. [7] Let (X, S) be a complete complex valued S-metric space and T
be a self-mapping of X satisfying

S(Tx, Tx, Ty) - hS(x, x, y) (1)

for all x, y ∈ X and some 0 ≤ h < 1. Then f has a fixed point in X.

3 Main Results

In this section we prove new generalizations of the Banach’s contraction principle.

Theorem 3.1. Let (X,S) be a complete complex valued S-metric space and T be
a self-mapping of X. If there exist nonnegative real numbers c1, c2, c3, c4 satisfying
max{c1 + 3c3 + 2c4, c1 + c2 + c3, c2 + 2c4} < 1 such that

S(Tx, Tx, Ty) ¹ c1S(x, x, y) + c2S(Tx, Tx, y) + c3S(Ty, Ty, x) (2)

+c4 max{S(Tx, Tx, x), S(Ty, Ty, y)},

for all x, y ∈ X, then T has a unique fixed point x in X and T is continuous at x.

Proof. Let a0 ∈ X and the sequence {an} be defined by

T na0 = an.

Assume that an 6= an+1 for all n. Using the inequality 2 we obtain

S(an, an, an+1) = S(Tan−1, Tan−1, Tan) ¹ c1S(an−1, an−1, an) (3)

+c2S(an, an, an) + c3S(an+1, an+1, an−1)

+c4 max{S(an, an, an−1), S(an+1, an+1, an)}
= c1S(an−1, an−1, an) + c3S(an+1, an+1, an−1)

+c4 max{S(an, an, an−1), S(an+1, an+1, an)}.

Using the condition (CS3), we get

S(an+1, an+1, an−1) ¹ 2S(an+1, an+1, an) + S(an−1, an−1, an). (4)

Hence using the inequalities (3), (4) and Lemma 2.5, we have

S(an, an, an+1) ¹ c1S(an−1, an−1, an) + 2c3S(an+1, an+1, an) + c3S(an−1, an−1, an)
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+c4S(an, an, an−1) + c4S(an+1, an+1, an),

(1− 2c3 − c4)S(an, an, an+1) ¹ (c1 + c3 + c4)S(an−1, an−1, an)

and

S(an, an, an+1) ¹ c1 + c3 + c4

1− 2c3 − c4

S(an−1, an−1, an). (5)

Let c = c1+c3+c4
1−2c3−c4

. Then we find c < 1 since c1 + 3c3 + 2c4 < 1. Using the inequality
(5), we obtain

S(an, an, an+1) ¹ cnS(a0, a0, a1). (6)

For all n,m ∈ N, n < m, using the inequality (6) and the condition (CS3), we have

S(an, an, am) ¹ 2S(an, an, an+1) + 2S(an+1, an+1, an+2) + · · ·+ 2S(am−1, am−1, am)

¹ 2(cn + cn+1 + · · ·+ cm−1)S(a0, a0, a1)

¹ 2cn(1 + c + · · ·+ cm−n−1)S(a0, a0, a1)

¹ 2cn 1− cm−n

1− c
S(a0, a0, a1)

¹ 2cn

1− c
S(a0, a0, a1),

which implies

|S(an, an, am)| ≤ 2cn

1− c
|S(a0, a0, a1)| .

Therefore |S(an, an, am)| → 0 as n,m →∞. Hence {an} is a Cauchy sequence. Since
(X, S) is complete, there exists x ∈ X such that {an} converges to x.

Now we show that x is a fixed point of T . Suppose that Tx 6= x. Then we get

S(an, an, Tx) = S(Tan−1, Tan−1, Tx) ¹ c1S(an−1, an−1, x)

+c2S(an, an, x) + c3S(Tx, Tx, an−1)

+c4 max{S(an, an, an−1), S(Tx, Tx, x)}
and

|S(an, an, Tx)| ≤ c1 |S(an−1, an−1, x)|+ c2 |S(an, an, x)|+ c3 |S(Tx, Tx, an−1)|
+c4 |max{S(an, an, an−1), S(Tx, Tx, x)}| .

If we take limit for n →∞, then using the continuity of S and Lemma 2.5, we have

|S(x, x, Tx)| = |S(Tx, Tx, x)| ≤ (c3 + c4) |S(Tx, Tx, x)| ,
which is a contradiction since 0 ≤ c3 + c4 < 1. Hence we obtain Tx = x.

Now we show that x is unique. Let y be another fixed point of T such that x 6= y.
Using the inequality (2) and Lemma 2.5, we have

S(Tx, Tx, Ty) = S(x, x, y) ¹ c1S(x, x, y) + c2S(x, x, y)

+c3S(y, y, x) + c4 max{S(x, x, x), S(y, y, y)}
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and
|S(x, x, y)| ≤ (c1 + c2 + c3) |S(x, x, y)| ,

which implies x = y since c1 + c2 + c3 < 1.
Now we prove that T is continuous at x. For n ∈ N, using the inequality (2), we

get

S(Tan, Tan, Tx) ¹ c1S(an, an, x) + c2S(Tan, Tan, x) (7)

+c3S(Tx, Tx, an) + c4 max{S(Tan, Tan, an), S(Tx, Tx, x)}.

Using the condition (CS3), the inequality (7) and Lemma 2.5, we obtain

S(Tan, Tan, Tx) ¹ c1S(an, an, x) + c2S(Tan, Tan, x) + c3S(Tx, Tx, an)

+2c4S(Tan, Tan, x) + c4S(an, an, x)

and
(1− c2 − 2c4)S(Tan, Tan, Tx) ¹ (c1 + c3 + c4)S(an, an, x),

which implies

|S(Tan, Tan, Tx)| ≤ c1 + c3 + c4

1− c2 − 2c4

|S(an, an, x)| .

If we take limit for n →∞, then we have

|S(Tan, Tan, Tx)| → 0.

Therefore {Tan} is convergent to Tx = x. Consequently, T is continuous at x by
Lemma 2.6.

Remark 3.2. (1) Theorem 3.1 is a generalization of the Banach’s contraction prin-
ciple on complete complex valued S-metric spaces. Indeed, if we take c1 = h and
c2 = c3 = c4 = 0 in Theorem 3.1, then we obtain the Banach’s contraction condition
in Theorem 2.7.

(2) If we take the function S : X × X × X → [0,∞) in Theorem 3.1, Then we
have Theorem 3 in [6].

Corollary 3.3. Let (X, S) be a complete complex valued S-metric space and T be
a self-mapping of X. If there exist nonnegative real numbers c1, c2, c3, c4 satisfying
max{c1 + 3c3 + 2c4, c1 + c2 + c3, c2 + 2c4} < 1 such that

S(T px, T px, T py) ¹ c1S(x, x, y) + c2S(T px, T px, y) + c3S(T py, T py, x)

+c4 max{S(T px, T px, x), S(T py, T py, y)},

for all x, y ∈ X and some p ∈ N, then T has a unique fixed point x in X and T p is
continuous at x.
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Proof. Using the similar arguments in Theorem 3.1, we can easily see that T p has a
unique fixed point x in X and T p is continuous at x. Also we obtain

Tx = TT px = T p+1x = T pTx,

which implies that Tx is a fixed point of T p. Consequently we have Tx = x since x
is a unique fixed point.

Theorem 3.4. Let (X, S) be a complete complex valued S-metric space and T
be a self-mapping of X. If there exist nonnegative real numbers c1, c2, c3, c4, c5, c6

satisfying max{c1 + c2 + 3c4 + c5 + 3c6, c1 + c3 + c4 + c6, 2c2 + c3 + 2c6} < 1 such that

S(Tx, Tx, Ty) ¹ c1S(x, x, y) + c2S(Tx, Tx, x) + c3S(Tx, Tx, y) (8)

+c4S(Ty, Ty, x) + c5S(Ty, Ty, y) + c6 max{S(x, x, y),

S(Tx, Tx, x), S(Tx, Tx, y), S(Ty, Ty, x), S(Ty, Ty, y)},
for all x, y ∈ X, then T has a unique fixed point x in X and T is continuous at x.

Proof. Let a0 ∈ X and the sequence {an} be defined by

T na0 = an.

Assume that an 6= an+1 for all n. Using the inequality 8, the condition (CS3) and
Lemma 2.5, we obtain

S(an, an, an+1) = S(Tan−1, Tan−1, Tan) ¹ c1S(an−1, an−1, an) + c2S(an, an, an−1)

+c3S(an, an, an) + c4S(an+1, an+1, an−1) + c5S(an+1, an+1, an)

+c6 max{S(an−1, an−1, an), S(an, an, an−1), S(an, an, an),

S(an+1, an+1, an−1), S(an+1, an+1, an)}
= c1S(an−1, an−1, an) + c2S(an, an, an−1) + c4S(an+1, an+1, an−1)

+c5S(an+1, an+1, an) + c6 max{S(an−1, an−1, an), S(an, an, an−1),

S(an+1, an+1, an−1), S(an+1, an+1, an)}
¹ (c1 + c2 + c4 + c6)S(an−1, an−1, an)

+(2c4 + c5 + 2c6)S(an+1, an+1, an)

and

S(an, an, an+1) ¹ c1 + c2 + c4 + c6

2c4 + c5 + 2c6

S(an−1, an−1, an). (9)

Let c = c1+c2+c4+c6
2c4+c5+2c6

. Then we find c < 1 since c1 + c2 + 3c4 + c5 + 3c6 < 1. Using the
inequality (9), we obtain

S(an, an, an+1) ¹ cnS(a0, a0, a1). (10)

For all n,m ∈ N, n < m, using the inequality (10) and the condition (CS3), we have

S(an, an, am) ¹ 2cn

1− c
S(a0, a0, a1),
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which implies

|S(an, an, am)| ¹ 2cn

1− c
|S(a0, a0, a1)| .

Therefore |S(an, an, am)| → 0 as n,m →∞. Hence {an} is a Cauchy sequence. Since
(X, S) is complete, there exists x ∈ X such that {an} converges to x.

Now we show that x is a fixed point of T . Suppose that Tx 6= x. Then we get

S(an, an, Tx) = S(Tan−1, Tan−1, Tx) ¹ c1S(an−1, an−1, x) + c2S(an, an, an−1)

+c3S(an, an, x) + c4S(Tx, Tx, an−1) + c5S(Tx, Tx, x)

+c6 max{S(an−1, an−1, x), S(an, an, an−1), S(an, an, x),

S(Tx, Tx, an−1), S(Tx, Tx, x)}

and

|S(an, an, Tx)| ≤ c1 |S(an−1, an−1, x)|+ c2 |S(an, an, an−1)|+ c3 |S(an, an, x)|
+c4 |S(Tx, Tx, an−1)|+ c5 |S(Tx, Tx, x)|
+c6

∣∣∣∣
max{S(an−1, an−1, x), S(an, an, an−1), S(an, an, x),

S(Tx, Tx, an−1), S(Tx, Tx, x)}
∣∣∣∣ .

If we take limit for n →∞, then using the continuity of S and Lemma 2.5, we have

|S(Tx, Tx, x)| ≤ (c4 + c5 + c6) |S(Tx, Tx, x)| ,

which is a contradiction since 0 ≤ c4 + c5 + c6 < 1. Hence we obtain Tx = x.
Now we show that x is unique. Let y be another fixed point of T such that x 6= y.

Using the inequality (8) and Lemma 2.5, we have

S(Tx, Tx, Ty) = S(x, x, y) ¹ c1S(x, x, y) + c2S(x, x, x) + c3S(x, x, y)

+c4S(y, y, x) + c5S(y, y, y) + c6 max{S(x, x, y),

S(x, x, x), S(x, x, y), S(y, y, x), S(y, y, y)}

and
|S(x, x, y)| ≤ (c1 + c3 + c4 + c6) |S(x, x, y)| ,

which implies x = y since c1 + c3 + c4 + c6 < 1.
Now we prove that T is continuous at x. For n ∈ N, using the inequality (8), the



Journal of New Theory 14 (2016) 26-36 34

condition (CS3) and Lemma 2.5, we obtain

S(Tan, Tan, Tx) ¹ c1S(an, an, x) + c2S(Tan, Tan, an) + c3S(Tan, Tan, x)

+c4S(Tx, Tx, an) + c5S(Tx, Tx, x)

+c6 max{S(an, an, x), S(Tan, Tan, , an), S(Tan, Tan, x),

S(Tx, Tx, an), S(Tx, Tx, x)}
¹ c1S(an, an, x) + 2c2S(Tan, Tan, x) + c2S(an, an, x)

+c3S(Tan, Tan, x) + c4S(Tx, Tx, an)

+c6 max{S(an, an, x), 2S(Tan, Tan, x) + S(an, an, x),

S(Tan, Tan, x)}
= (c1 + c2 + c4 + c6)S(an, an, x) + (2c2 + c3 + 2c6)S(Tx, Tx, Tan)

and

(1− 2c2 − c3 − 2c6)S(Tan, Tan, Tx) ¹ (c1 + c2 + c4 + c6)S(an, an, x),

which implies

|S(Tan, Tan, Tx)| ≤ c1 + c2 + c4 + c6

1− 2c2 − c3 − 2c6

|S(an, an, x)| .

If we take limit for n →∞, then we have

|S(Tan, Tan, Tx)| → 0.

Therefore {Tan} is convergent to Tx = x. Consequently, T is continuous at x by
Lemma 2.6.

Remark 3.5. (1) Theorem 3.4 is a generalization of Banach’s contraction principle
on complete complex valued S-metric spaces. Indeed, if we take c1 = h and c2 =
c3 = c4 = c5 = c6 = 0 in Theorem 3.4, then we obtain the Banach’s contraction
condition in Theorem 2.7.

(2) If we take the function S : X × X × X → [0,∞) in Theorem 3.4, Then we
have Theorem 4 in [6].

Corollary 3.6. Let (X, S) be a complete complex valued S-metric space and T
be a self-mapping of X. If there exist nonnegative real numbers c1, c2, c3, c4, c5, c6

satisfying max{c1 + c2 + 3c4 + c5 + 3c6, c1 + c3 + c4 + c6, 2c2 + c3 + 2c6} < 1 such that

S(T px, T px, T py) ¹ c1S(x, x, y) + c2S(T px, T px, x) + c3S(T px, T px, y)

+c4S(T py, T py, x) + c5S(T py, T py, y) + c6 max{S(x, x, y),

S(T px, T px, x), S(T px, T px, y), S(T py, T py, x), S(T py, T py, y)},
for all x, y ∈ X and some p ∈ N, then T has a unique fixed point x in X and T p is
continuous at x.
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Proof. It follows from Theorem 3.4 by the same argument used in the proof of
Corollary 3.3.

In the following example we give a self-mapping satisfying the conditions of our
results, but does not satisfy the condition of the Banach’s contraction principle.

Example 3.7. Let X = R and the function S : X ×X ×X → C be defined as

S(x, y, z) = eit(|x− z|+ |x + z − 2y|),

for all x, y, z, t ∈ R. Then (R, S) is a complete complex valued S-metric space. Let
us define the self-mapping T : R→ R as follows:

Tx =

{
x + 70 if x ∈ {0, 6}

65 if otherwise
,

for all x ∈ R. Therefore T satisfies the inequality (2) in Theorem 3.1 for c1 = c2 =
c3 = 0, c4 = 1

4
and the inequality (8) in Theorem 3.4 for c1 = c3 = c4 = c5 = 0,

c2 = c6 = 1
5
. So T has a unique fixed point x = 65. But T does not satisfy the

Banach’s contraction condition in Theorem 2.7. Indeed, for x = 6, y = 2, we obtain

S(Tx, Tx, Ty) = S(76, 76, 65) = 22eit ¹ hS(x, x, y) = hS(6, 6, 2) = 8heit

and ∣∣22eit
∣∣ = 22 ≤

∣∣8heit
∣∣ = 8h,

which is a contradiction h < 1.
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[7] N. Y. Özgür and N. Taş, Common fixed points of continuous mappings on com-
plex valued S-metric spaces, submitted for publication.

[8] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems
in S-metric spaces, Matematicki Vesnik 64 (3) (2012) 258-266.

[9] S. Sedghi and N. V. Dung, Fixed point theorems on S-metric spaces, Matemat-
icki Vesnik 66 (1) (2014) 113-124.
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