http://www.newtheory.org

ISSN: 2149-1402

Received: 14.07.2016 Published: 18.09.2017 Year: 2017, Number: 15, Pages: 26-31 Original Article^{**}

$\Omega - \mathcal{N}$ -FILTERS ON *CI*-ALGEBRA

Prakasam Muralikrishna^{*} <pmkrishna@rocketmail.com> Duraisamy Vijayan <jyoshijeev@gmail.com>

PG & Research Department of Mathematics, Muthurangam Govt. Arts College, Vellore-632002. TN, India

Abstaract — This paper deals the notion of $\Omega - \mathcal{N}$ -structured subalgebras and $\Omega - \mathcal{N}$ -structured Filters on CI-algebra. Further some of the properties and results using the idea of $\Omega - \mathcal{N}$ -function on CI-algebra also established.

Keywords - CI-algebra, Subalgebra, Filter, $\Omega - N$ -filter

1 Introduction

After the initiation of the two classes of abstract algebras: BCK-algebras and BCIalgebras by Y. Imai and K. Iseki [2], B. L. Meng[4][5], introduced the notion of a CIalgebra. K. H. Kim [3] also dealt about some concepts on CI-algebras. Zadeh. L. A. [9], introduced Fuzzy Sets for classifying the uncertainty. Then many researches used the notion of fuzzy in various algebraic structures. Samy. M. Mostafa [8] dealt fuzzification of ideals in CI-algebra and Intuitionistic (T, S)-fuzzy CI-algebras were discussed by A. Borumand Saeid et. al [1]. Also in [6] and [7] the authors introduced \mathcal{N} -ideals of a BF-algebras and \mathcal{N} -filters of CI-algebras. Motivated by these, this paper, intends to discuss $\Omega - \mathcal{N}$ -structured filter of a CI-algebra and establish some simple, elegant and interesting results.

2 Preliminaries

This section deals with the basic definition of \mathcal{N} -function, $\Omega - \mathcal{N}$ -function, CI-algebra, subalgebra and Filter of a CI-algebra.

^{**} Edited by Naim Çağman (Editor-in-Chief).

^{*} Corresponding Author.

Definition.2.1. [6][7] \mathcal{N} -structure and \mathcal{N} -function

Consider a non-empty Set S. Denote the collection of functions from S to [-1,0] by $\mathcal{F}(S, [-1,0])$. It is said that a member of $\mathcal{F}(S, [-1,0])$ is a negative valued function from S to [-1,0], briefly \mathcal{N} -function and by an \mathcal{N} -structure on S, it means that an ordered pair (S,η) of S and \mathcal{N} -function η on S.

Definition.2.2. $\Omega - \mathcal{N}$ -function:

A $\Omega - \mathcal{N}$ -function η in a non-empty set S is a function $\eta : S \times \Omega \to [-1, 0]$, where Ω is any non-empty set. The set of all $\Omega - \mathcal{N}$ -functions from $S \times \Omega$ to [-1, 0] is denoted by $\mathcal{F}(S \times \Omega, [-1, 0])$ and by the term $\Omega - \mathcal{N}$ -Structure(Ω -NS) on S, it means that an ordered pair $(S \times \Omega, \eta)$ of $S \times \Omega$ and $\Omega - \mathcal{N}$ -function η on $S \times \Omega$.

Definition.2.2. Consider the $\Omega - \mathcal{N}$ -structure $(S \times \Omega, \eta)$ on a non-empty S. The negative Ω -Level subset η_t of η is defined as follows: For some $t \in [-1, 0], \eta_t = \{x \in S : \eta(x, q) \ge t \ \forall q \in \Omega\}$.

Definition 2.3. [3][4] A CI-algebra is a non-empty set X with a consonant 1 and a single binary operation * satisfying the following axioms: (i)x * x = 1(ii)1 * x = x(iii)x * (y * z) = y * (x * z) for all $x, y \in X$

Example 2.4.[3][4][5] Let $X = \{1, a, b, c\}$ and $Y = \{1, a, b, c, d\}$ be a set with the following tables

*	1	a	b	с
1	1	a	b	с
a	1	1	a	с
b	1	1	1	с
с	1	a	b	1

*	1	2	3	4	5
1	1	2	3	4	5
2	1	1	1	4	4
3	1	1	1	4	4
4	4	5	1	1	2
5	4	4	4	1	1

Then $\{X, *, 1\}$ and $\{Y, *, 1\}$ are CI-algebra.

Example 2.5.[5] Let X be the set of all positive real numbers. Then X becomes a CI-algebra by defining $x * y = \frac{y}{x}$ for all $x, y \in X$.

Definition 2.6.[3][4] A partial ordering \leq on a *CI*-algebra (X, *, 1) can be defined as $x \leq y$ if, and only if, x * y = 1.

Definition 2.7. [3][4] A non-empty subset S of a CI-algebra X is said to be a subalgebra if $x * y \in S$ for all $x, y \in S$.

Definition 2.8. [3] A non-empty subset F of a CI-algebra X is said to be a Filter of X if (i) $1 \in F$ and (ii) $x * y \in F$ and $x \in F$ then $y \in F$ for all $x, y \in X$.

Definition 2.9. An Filter F of X is called closed if $x * 1 \in F$ for all $x \in F$.

3 $\Omega - \mathcal{N}$ -Subalgebra and $\Omega - \mathcal{N}$ -Filter on a *CI*-algebra

This section introduces, the notion of $\Omega - \mathcal{N}$ -subalgebra and $\Omega - \mathcal{N}$ -Filter on a CI-algebra and discuss some of its results. In the rest of the paper, X represents a CI-algebra, Ω is any non-empty set and η is a $\Omega - \mathcal{N}$ function from $X \times \Omega$ to [-1, 0] unless otherwise specified.

Definition 3.1. An $\Omega - \mathcal{N}$ -structure $(X \times \Omega, \eta)$, on a CI-algebra X is called an $\Omega - \mathcal{N}$ -subalgebra on X if $\eta((x * y), q) \leq \eta(x, q) \lor \eta(y, q)$ for all $x, y \in X$ and $q \in \Omega$.

Example 3.2. Consider the CI-algebra $X = (\{1, a, b, c, d\}, *, 1)$ given below.

*	1	a	b	с	d
1	1	a	b	с	d
a	1	1	b	b	d
b	1	a	1	a	d
с	1	1	1	1	d
d	d	d	d	d	1

The $\Omega - \mathcal{N}$ -structure $(X \times \Omega, \eta)$ defined by, $\forall q \in \Omega$

$$\eta(x,q) = \begin{cases} -0.8 & ; \quad x = 1\\ -0.7 & ; \quad x = a\\ -0.5 & ; \quad x = b\\ -0.3 & ; \quad x = c\\ -0.3 & ; \quad x = d \end{cases}$$

is an $\Omega - \mathcal{N}$ -subalgebra on X.

Proposition 3.3. If (X, η) is an $\Omega - \mathcal{N}$ -subalgebra on X then $\eta(1,q) \leq \eta(x*1,q) \leq \eta(x,q)$ for all $x \in X$ and $q \in \Omega$. *Proof.* Let $x \in X$. Then $\eta(1,q) = \eta((x*1)*(x*1),q) \leq \eta(x*1,q) \lor \eta(x*1,q) = \eta(x*1,q)$ and $\eta(x*1,q) \leq \eta(x,q) \lor \eta(1,q) = \eta(x,q) \lor \eta(x*x,q) = \eta(x,q)$.

Proposition 3.4. If (X, η) is an *N*-subalgebra of *X* then negative Level subset η_t of *X* is either empty or subalgebra of *X*, for all $t \in [-1, 0]$. *Proof.* Let $t \in [-1, 0]$ and η_t be nonempty. Take $x, y \in \eta_t \Rightarrow \eta(x, q) \le t$ and $\eta(y, q) \le t$. Then $\eta(x * y, q) \le \eta(x, q) \lor \eta(y, q) \le t \lor t = t \Rightarrow x * y \in \eta_t$.

Definition.3.5. An Ω -NS on a CI-algebra X is said to be $\Omega - \mathcal{N}$ -structured filter $(\Omega - \mathcal{N}$ -filter) on X if (i) $\eta(1,q) \leq \eta(x,q)$ and (ii) $\eta(y,q) \leq \eta(x*y,q) \lor \eta(x,q)$ for all $x, y \in X$ and $q \in \Omega$

Definition.3.6. An Ω -NS on a CI-algebra X is said to be $\Omega - \mathcal{N}$ -structured closed filter $(\Omega - \mathcal{N}c$ -filter) on X if (i) $\eta(y,q) \leq \eta(x * y,q) \vee \eta(x,q)$ and (ii) $\eta(x * 1,q) \leq \eta(1,q)$ for all $x, y \in X$ and $q \in \Omega$.

Example.3.7. The $\Omega - \mathcal{N}$ -structure (X, η) on the *CI*-algebra in Example.2.5 defined by, $\forall q \in \Omega$

$$\eta(x,q) = \begin{cases} -0.8 & ; \quad x = 1 \\ -0.7 & ; \quad x = 2^n & ; n \in \mathbb{N} \\ -0.5 & ; & \text{otherwise} \end{cases}$$

is an $\Omega - \mathcal{N}$ -filter but not $\Omega - \mathcal{N}c$ -filter on X.

Example.3.8. The $\Omega - \mathcal{N}$ -structure (X, η) on the *CI*-algebra in Example.2.5 defined by $\forall q \in \Omega$

$$\eta(x,q) = \begin{cases} -0.8 & ; \quad x = 1 \\ -0.7 & ; \quad x = 2^n & ; n \in Z^+ \\ -0.5 & ; & \text{otherwise} \end{cases}$$

is an $\Omega - \mathcal{N}c$ -filter on X.

Proposition.3.9. If (X, η) is an $\Omega - \mathcal{N}$ -filter on X with $x \leq y$ for all $x, y \in X$, and $q \in \Omega$ then $\eta(x, q) \geq \eta(y, q)$ that is η is order-reversing.

Proof. Let $x, y \in X$ and $q \in \Omega$ such that $x \leq y$. Then by the partial ordering \leq defined in X, we have x * y = 1. Thus $\eta(y,q) \leq \eta(x * y,q) \lor \eta(x,q) = \eta(1,q) \lor \eta(x,q) \leq \eta(x,q)$. This completes the proof.

Proposition.3.10. If (X, η) is an $\Omega - \mathcal{N}$ -filter on X with $x \leq y * z$ for all $x, y, z \in X$, and $q \in \Omega$ then $\eta(z, q) \leq \eta(x, q) \lor \eta(y, q)$.

Proof. Let $x, y, z \in X$ such that $x \leq y * z$. Then by the partial ordering \leq defined in X, we have x * (y * z) = 1. Then $\eta(z,q) \leq \eta(y * z,q) \lor \eta(y,q)$ $\leq (\eta((x * (y * z),q)) \lor \eta(x,q)) \lor \eta(y,q)$ $= (\eta(1,q) \lor \eta(x,q)) \lor \eta(y,q)$ $= \eta(x,q) \lor \eta(y,q)$. **Remark.3.11.** The terms $\Omega - \mathcal{N}$ -subalgebra and $\Omega - \mathcal{N}$ -filter on X are independent to each other. The following examples give the illustration.

Example.3.12. Consider the $\Omega - \mathcal{N}$ -filter in Example 3.7. Here

$$\eta\left(\left(2^4 * 2^2\right), q\right) = \eta\left(\frac{1}{4}, q\right) = -0.5 > -0.7 = \eta\left(2^4, q\right) \lor \eta\left(2^2, q\right)$$

, which is not an $\Omega - \mathcal{N}$ -subalgebra.

Example.3.13. Consider the $\Omega - \mathcal{N}$ -subalgebra in Example 3.2. Here

$$\eta(c,q) = -0.3 > -0.5 = -0.7 \lor -0.5 = \eta(b * c,q) \lor \eta(b,q),$$

which is not an $\Omega - \mathcal{N}$ -filter.

The following gives a sufficient condition for an $\Omega - \mathcal{N}$ -subalgebra to be an $\Omega - \mathcal{N}$ -filter.

Theorem.3.14. In a $\Omega - \mathcal{N}$ -subalgebra (X, η) , If $\eta(x * y, q) \leq \eta(y * x, q)$ $\forall x, y \in X$ and $q \in \Omega$ then (X, η) is an $\Omega - \mathcal{N}$ -filter of X.

Proof. Let
$$(X, \eta)$$
 be a $\Omega - \mathscr{N}$ -subalgebra of X with
 $\eta(x * y, q) \leq \eta(y * x, q) \ \forall \ x, y \in X \text{ and } q \in \Omega.$
Then $\eta(y, q) = \eta(1 * y, q) \leq \eta(y * 1, q)$
 $= \eta((y * (x * x), q))$
 $\leq \eta((x * (y * x), q))$
 $\leq \eta((x * (y * x), q))$
 $\leq \eta(x, q) \lor \eta(y * x, q).$
Hence (X, η) is an $\Omega - \mathscr{N}$ -filter of X .

Theorem.3.15. If the $\Omega - \mathcal{N}$ -structure (X, η) of X is a $\Omega - \mathcal{N}c$ -filter of X, then the set $K = \{x \in X; \eta(x, q) = \eta(1, q) \forall q \in \Omega\}$ is a filter of X.

Proof. Clearly, K is nonempty (since $1 \in K$). Let $x, x * y \in K$. Then $\eta(x * y, q) = \eta(x, q) = \eta(1, q)$ $\Rightarrow \eta(y, q) \leq \eta(x * y, q) \lor \eta(x, q)$ $= \eta(1, q) \lor \eta(1, q)$ $= \eta(1, q)$. But $\eta(1, q) \leq \eta(y, q) \Rightarrow \eta(y, q) = \eta(1, q)$.

Thus $y \in K$. Hence K is a filter of X.

The following theorem shows the arbitrary union of family of $\Omega - \mathcal{N}c$ -filters of X is also an $\Omega - \mathcal{N}c$ -filter of X.

Theorem.3.16. Let $\{\eta_i : i \in I\}$ be the family of $\Omega - \mathcal{N}c$ -filter of X. Then $\bigcup_i \eta_i$ is also $\Omega - \mathcal{N}c$ -filter of X.

Proof. Let $x * y \in X$. Since $\{\eta_i : i \in I\}$ is the family of $\Omega - \mathcal{N}c$ -filter of X, for any $i \in I$ we have,

(i)
$$\eta_i(y,q) \leq \eta_i(x*y,q) \quad \forall \quad \eta_i(x,q) \text{ and } (ii) \quad \eta_i(x*1,q) \leq \eta_i(x,q)$$

Now $\bigcup_i \eta_i(y,q) = \sup\{\eta_i : i \in I\}$ $\leq \sup\{\eta_i(x * y,q) \lor \eta_i(x,q) : i \in I\}$ $= \sup\{\eta_i(x * y,q) : i \in I\} \lor \sup\{\eta_i(x,q) : i \in I\}$ $= \bigcup_i \eta_i(x * y,q) \lor \bigcup_i \eta_i(x,q)$ and $\bigcup_i \eta_i(x * 1,q) = \sup\{\eta_i(x * 1,q) : i \in I\} \leq \sup\{\eta_i(x,q) : i \in I\} = \bigcup_i \eta_i(x,q)$ Hence $\bigcup_i \eta_i$ is an $\Omega - \mathcal{N}c$ -filter of X.

Conclusion

In this paper, the notion of $\Omega - \mathcal{N}$ -subalgebra and $\Omega - \mathcal{N}$ -filter on a *CI*-algebra are introduced and some of the results have been discussed. In future it is planned to extend these ideas to homomorphism on $\Omega - \mathcal{N}$ -filters, Cartesian products on $\Omega - \mathcal{N}$ -filters and translation on $\Omega - \mathcal{N}$ -filters.

References

- [1] Borumand Saeid.A., Rezaei.A., Intuitionistic (T, S)-fuzzy CI-algebras, Computers and Mathematics with Applications, 63 (2012), 158-166.
- [2] Imai.Y. and Iseki.K., On Axiom Systems of Propositional Calculi, XIV Proc. Japan Academy, 42 (1966), 19-22.
- [3] Kim.K.H, A Note on CI-Algebras, International Mathematical Forum, 6(1) (2011), 1-5.
- [4] Meng.B. L., CI-algebras, Sci. Math. Japo. Online, (2009), 695-701.
- [5] Meng.B. L., Closed filters in CI-algebras, Sci. Math. Japo., 71(3) (2010), 265-270.
- [6] Muralikrishna.P and Chandramouleeswaran.M, Study on N-ideals of BF-Algebras, International Journal of Pure and Applied Mathematics, 83(4) (2013), 607-612.
- [7] Muralikrishna.P, Srinivasan.S and Chandramouleeswaran.M, On N-Filters of CI-Algebra, Afrika Matematika, 26(3-4) (2015), 545-549.
- [8] Samy.M. Mostafa, Mokhtar A. Abdel Naby and Osama R. Elgendy, Fuzzy Ideals in CI-algebras, Journal of American Science, 7(8) (2011), 485-488.
- [9] Zadeh.L. A., Fuzzy Sets, Inform. Control, Vol 8 (1965) 338-353.